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Роль п’єзоелектричного зв’язку в поведiнцi фiзичних хара-
ктеристик регулярних i невпорядкованих сегнетоактивних
сполук сiм’ї KH2PO4

Р.Р.Левицький, C.I.Сороков, I.Р.Зачек, А.С.Вдович, А.П.Моїна,
Л.М.Коротков, О.I.Бочаров

Анотацiя. Представлено огляд результатiв теоретичних та експе-
риментальних робiт для матерiалiв типу Rb1−x(NH4)xH2PO4. По-
казано, що результати розрахунку фiзичних характеристик цих
матерiалiв на основi запропонованої теорiї задовiльно узгоджую-
ться з експериментальними даними, за винятком областi фазо-
вого переходу. Представлено також результати розрахунку фiзи-
чних характеристик регулярних сполук сiм’ї KH2PO4 з врахуван-
ням п’єзоелектричного зв’язку. Вказано на необхiднiсть врахування
п’єзоелектричного зв’язку в змiшаних матерiалах.

Role of piezoelectric coupling in behavior of the physical char-
acteristics of regular and disordered ferroelectric compounds
of the KH2PO4 family

R.R.Levitskii, S.I.Sorokov, I.R.Zachek, A.S.Vdovych, A.P.Moina,
L.M.Korotkov, A.I.Bocharov

Abstract. The review of theoretical and experimental papers for
Rb1−x(NH4)xH2PO4 type materials are presented. It is shown, that re-
sults of calculation of physical characteristics of these materials within
proposed theory satisfactorily agree with experimental data, with the
exception of phase transition region. The results of calculation of phys-
ical characteristics of regular KH2PO4 family compounds with taking
into account of piezoelectric coupling are also presented. We have point-
ed on necessity of taking into account of piezoelectric coupling in mixed
crystals.
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1. Introduction

1.1. Experimental studies of the Rb1−x(NH4)xH2PO4 type
compounds

The hydrogen bonded compounds of the Rb1−x(NH4)xH2PO4 type,
which at certain compositions have a proton glass phase, have been
intensively studied for more than 25 years. In order to describe pos-
sible proton configurations in the mixed Rb1−x(NH4)xH2PO4 type com-
pounds, let us consider first the structure of the pure RDP - RbH2PO4

and ADP - NH4H2PO4 crystals. In figure 1 a unit cell of the KDP -
KH2PO4 crystal, which is isomorphic to RDP, is shown. A primitive cell

Figure 1. A unit cell (four formula units) of the KDP - KH2PO4 crystal.

of the RbH2PO4 type compounds contains one PO4 tetrahedron of the
“A” type and one PO4 tetrahedron of the “B” type, two Rb atoms and
four protons on four hydrogen bonds attached to the “A” type tetrahe-
dron. In the ferroelectric phase the net dipole moment of the primitive
cell, associated with displacements of heavy ions and deformations of the
PO4 groups, is directed along the c axis. A triggering mechanism of the
ionic displacements in these crystals is the proton ordering (their posi-
tions are described by pseudospin operators Sf = ±1, f = 1, 2, 3, 4) in
double potential wells on the hydrogen bonds. The bond dipole moments
lie almost in the ab plane; the total dipole moment of protons in the cell
of the RDP type crystals is zero. Thus,

~µ1α = (µxα, 0, 0), ~µ3α = (−µxα, 0, 0), ~µ2α = (0,−µyα, 0), ~µ4α = (0, µyα, 0),
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where ~µfα are the dipole moments of the f -th hydrogen bond; α = +
for x = 0, and α = − for x = 1.

The composition range in these compounds can be divided into three
regions of x, which we shall call the glass phase region, the ferroelectric
phase region, and the antiferroelectric phase region. The glass phase re-
gion exists in the Rb1−x(NH4)xH2PO4 system at x ∼ 0.22− 0.75, in the
Rb1−x(ND4)xD2PO4 at x ∼ 0.23−0.65, in the Rb1−x(NH4)xH2AsO4 at
x ∼ 0.2−0.45, and in the K1−x(NH4)xH2PO4 system at x ∼ 0.23−0.67.
The ferroelectric phase region lies between x = 0 and the glass phase
region; the antiferroelectric phase region lies between x = 1 and the glass
phase region. An important characteristics of the Rb1−x(NH4)xH2PO4

type compounds is the Edwards-Anderson parameter qEA, which is the
averaged over configurations square of the averaged over the Gibbs en-
semble Sf -operator. It is different from zero at 0 < x < 1 at all temper-
atures.

Glass phase composition region. In the proton glass phase the
net spontaneous polarization is absent, but the unit cell polarization is
different from zero. It means that the average over the sample square of
the cell dipole moment (proportional to the Edwards-Anderson param-
eter) is different from zero.

Experimental measurements of the dielectric permittivity
of Rb1−x(NH4)xH2PO4 [1–8], Rb1−x(ND4)xD2PO4 [7], [9–14],
Rb1−x(NH4)xH2AsO4 [15–18], and K1−x(NH4)xH2PO4 [19–23] in
the glass phase composition region have shown that the temperature
curves of the longitudinal ε33(T, ν) and transverse ε11(T, ν) permit-
tivities are qualitatively similar. At high temperatures the real parts
of the permittivities are roughly described by the Curie-Weiss law.
Below a certain temperature Tf , a deviation from the Curie-Weiss law
is observed. Then ε′33(T, ν) and ε′11(T, ν) have maxima at temperature
Tm and slowly decrease after that. Below a certain temperature Tg (the
inflection points) ε′33(T, ν) and ε′11(T, ν) rapidly fall to their minimal
values. The imaginary parts of the permittivities ε′′33(T, ν) and ε′′11(T, ν)
have peaks at Tg and fall nearly to zero at other temperatures. It should
be noted that the temperatures Tf , Tm, and Tg(ν) determined from
ε′33(T, ν) are somewhat different from those determined from ε′11(T, ν).

The temperature Tg(ν) decreases with decreasing frequency ν, at
which the permittivity is measured. The temperature of the transition
to the glass phase is T0, where Tg(ν) → T0 at ν → 0. Character of the
temperature curves of ε′′33(T, ν) and ε′′11(T, ν) indicates that this transi-
tion is strongly smeared out (it starts near Tf and finishes at T0).

The temperature Tf , in the vicinity of which the proton freezing
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begins, is estimated by different methods. The EPR studies on param-
agnetic Tl2+ impurity ions [24–26], whose spectrum is sensitive to struc-
tural transformations, in the RADP crystals show that the energy levels
of these ions are gradually split by local fields with lowering tempera-
ture. This confirms the existence of a significant static random field in
Rb1−x(NH4)xH2PO4.

The chaotic static electric fields governed by the piezoelectric inter-
actions and static elastic strains are believed [27] to be formed by chaotic
substitutional disorder of ions of different radii. It has been shown that
these fields act, mainly, on the lattice polarization along the c-axis and
on the configurations with two protons near the “upper” or “lower” (with
respect to the c–axis) oxygen atoms. It is shown that in addition to
these chaotic fields and pseudospin-pseudospin interactions with a ran-
dom sign, a chaotic local anisotropy should be taken into account. The
difference in the symmetry of “upper” or “lower” and lateral proton con-
figurations and peculiarities of the proton-lattice interactions can lead
to coexistence of the long-range order with the glass state or paraelectric
state.

The temperature dependence of the spin-lattice relaxation time for
protons of NH4 ionic groups in Rb0.65(NH4)0.35H2PO4 was studied by
the NMR method in [28]. In these compounds such a dependence has a
minimum at ∼ 180K, associated with the start of proton freezing and
with formation of the hydrogen bonds between the NH4 and PO4 groups.
In [29] the relaxation time of 31P in Rb1−x(ND4)xD2PO4 for different
compositions was measured; a similar minimum in its temperature de-
pendence was obtained near 170K.

The X-ray structural studies revealed [30] a deviation of the lattice
constants in Rb1−x(NH4)xH2PO4 from the Debye approximation below
a certain temperature Tf(x) ∼ 90K; these deviations increase with in-
creasing ammonium concentration. Despite the changes in the lattice
constants, these compounds remain tetragonal. Below Tf (x) in the pro-
ton glass state a diffuse X-ray scattering increases [30–32]. It is parti-
cularly notable near the boundary between the ferroelectric and glass
phases [32]. Possibly, it is related to formation of some heterogeneous
structure, that is, to coexistence of two phases.

In the obtained in [33, 34] Raman spectra of Rb1−x(ND4)xD2PO4

(x=0.5 and 0.25) some lines split below Tf ∼ 200K, because of the non-
equivalency of PO4 groups (some of them are surrounded by Rb+, while
the others by ND+

4 ). In the Raman spectra of Rb0.3(NH4)0.7H2PO4 the
orientational vibrations of NH+

4 ions are revealed [35], indicating for-
mation of the PO4 – NH+

4 bonds and of the proton glass. The tem-
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perature dependence of the position of the peak, corresponding to the
ν2 vibrations of the PO4 tetrahedra, has a characteristic break near
Tf ∼ 100K. This break is related to the start of the proton freezing
and their attaching to the PO4 tetrahedra. A similar break was re-
vealed in [36] for K1−x(NH4)xH2PO4 (x = 0.32, 0.53) and in [37] for
Rb1−x(NH4)xH2AsO4 (x = 0.35).

The Edwards-Anderson parameter, which at moderately low temper-
atures is approximately proportional to the widths of various spectral
lines, gradually increases with lowering temperature. This indicates that
the transition to the proton glass state is smeared out. Thus, the NMR
spectral line for Rb1−x(ND4)xD2PO4 at different x [38,39] and the NQR
line for 0.5(NH4)0.5H2PO4 [41] widens at lowering temperature, and the
intensity of elastic neutron scattering from Rb0.38(ND4)0.62D2PO4 in-
creases [42].

Below T0 the system becomes non-ergodic. The temperature T0 is
estimated by approximation of the experimental data for the dielectric
permittivities at low temperatures. In [11] using the results of dielectric
measurements and the following phenomenological expression for the
longitudinal dielectric susceptibility

χ(T, ω) = χ0(T ) ·
∞
∫

0

d ln τ · g(τ, T )
1− iωτ

the distribution function of relaxation times g(τ, T ) was analyzed. In
the time range τ ≈ [τ0, τc] the function g(τ, T ) was qualitatively approx-
imated by a rectangular distribution with the critical relaxation time τc.
The best fit to the experimental data for x=0.35 was obtained using the
Vogel-Fulcher law

τc = τ0 exp

(

Ec
T − T0

)

; T0 = 8.74K, Ec = 268K,

ν0 = 1/2πτ0 = 3.49 · 1012Hz.

At T = T0 the maximal relaxation time becomes infinite. In [10] using
the measured dielectric permittivities of Rb0.5(ND4)0.5D2PO4 the value
of T0 ≈ 32K was obtained.

In [43] it has been shown that for Rb0.53(ND4)0.47D2PO4 the spec-
trum of the distribution function g(τ, T ) consists of two wide lines; with
decreasing temperature from 55K down to 35K a fast intensity redistri-
bution from smaller times to larger ones takes place. These results are
interpreted within a model of dynamically correlated domains [44, 45],
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which form a system of classical dipoles. At the freezing temperature
part of them form an infinite percolation cluster. In this model T0 = 0K
(the Arrhenius law).

At low temperatures an essential role is, most likely, played by proton
tunneling. This is indicated by the maximum on the temperature curve of
the dielectric losses tangent in Rb0.25(NH4)0.75H2PO4 [8] at T ≈ 0.2K,
as well as by splitting of NMR spectral lines of Rb0.56(ND4)0.44D2PO4

[46]. This means that deuteron motion is not completely frozen out.
Tunneling lowers down T0.

Polarization relaxation and non-ergodic processes in proton glasses
M1−x(NW4)xW2AO4 (M=Rb, K; W=H, D; A=P, As) were explored by
the Monte-Carlo method in [47]. The following interactions were tak-
en into account: 1) between protons in the “upper” or “lower”, lateral
(W2AO4), and Takagi (WAO4 and W3AO4) configurations; 2) between
protons via NH4 ions, which in pure ammonium compounds render the
state with lateral configurations the ground state; 3) proton-lattice in-
teractions, arising as a displacement field, if one of the nearest neighbors
is the alkali ion, whereas the other is the ammonium ion; 4) interactions
with an external electric field. At a given temperature the average value
of polarization was calculated; the total number of proton jumps was
up to 107 for each temperature. The temperature variation of polari-
zation at heating in zero external field (PZFH with the initial value of
PZFH(T = 0) = Pi ) and at heating in non-zero field (PFH with the ini-
tial PFH(T = 0) = 0) were approximated by the following dependences

PZFH = Pi · exp
[

−
(

T/Te

)γ]

; PFH = Pf ·
(

1− exp
[

−
(

T/Te

)γ])

.

At small fields Te ≃ TSlater0.53, γ = 6, where the non-ergodicity tem-
perature Te is introduced.

Little attention has been paid to investigation of the temperature
dependence of specific heat of these systems in the glass phase region.
We are aware of a single paper [48], where it has been shown that the
molar specific heat C(T) of Rb1−x(NH4)xH2PO4 at x=0.7 and x=0.74
increases monotonically with temperature. Near 60K the curve C(T) is
somewhat convex upwards. This convexity is most likely related to the
protonic contribution to the specific heat, which is difficult to separate
from the lattice contribution.

The ferroelectric phase composition region. In this region at
high temperatures the qEA parameter obtained from the NQR linewidths
in Rb1−x(NH4)xH2AsO4 with x=0.01, 0.02 [49] and NMR linewidths
in Rb1−x(ND4)xD2PO4 [39] with x=0.22 is different from zero. This
indicates a partial proton freezing at high temperatures.
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With lowering temperature, the transition to the ferroelectric phase
takes place at Tc(x); in this phase a spontaneous polarization Ps exists.
Unfortunately, the experimental data for Ps and qEA are very limited, ex-
cept for the case of x = 0. At x = 0 Ps has a jump at Tc(x). The temper-
ature Tc(x) is maximal at x = 0 and decreases with increasing x, where-
as the jump in Ps disappears (as observed in Rb1−x(NH4)xH2AsO4 at
x = 0.08 [18]), and the phase transition is smeared out. The temperature
Tc(x) can be also determined from the NMR data. Thus, in [50] by the
NMR method it has been established that the temperature dependence
of the spin-lattice relaxation time of 87Rb ions in Rb1−x(ND4)xD2PO4

has a minimum at Tc(x).
The transverse dielectric permittivity ε′11(T, ν) of the

Rb1−x(NH4)xH2PO4 type compounds in the ferroelectric phase
composition region is somewhat smaller that in the glass phase region.
It gradually increases at lowering temperature, then has a rounded max-
imum at Tc(x), and rapidly decreases to a certain constant value below
Tc(x). At even lower temperature Tg(x) (inflection point), the permittivi-
ty ε′11(T, ν) decreases to a minimal value. At the same time ε′′11(T, ν) has
two maxima at Tc(x) and Tg(x). The same behavior was experimentally
detected also for ε′11(T, ν) and ε′′11(T, ν) in Rb1−x(NH4)xH2PO4 [51],
Rb1−x(ND4)xD2PO4 [12], Rb1−x(NH4)xH2AsO4 [16, 18, 52, 53], and
K1−x(NH4)xH2PO4 [54].

The longitudinal permittivity ε′33(T, ν) of the Rb1−x(NH4)xH2PO4

type compounds in the ferroelectric phase composition region also has
a rounded peak at Tc(x), but its height is by two orders of magni-
tude larger than that of ε′11(T, ν) and larger than in the glass phase
composition region. It becomes larger and sharper with lowering x.
Such a behavior of ε′33(T, ν) was observed in Rb1−x(NH4)xH2PO4 [3],
Rb1−x(NH4)xH2AsO4 [17], and K1−x(NH4)xH2PO4 [22, 23, 55, 56].

Smearing of the transition to the ferroelectric phase is associated
with fluctuations of ammonium concentration. In samples with smaller
x the transition to the ferroelectric phase takes place at higher tem-
peratures than in samples with higher x. Such an explanation is confi-
rmed by the data of [57], where in the neutron diffraction patterns of
Rb0.9(ND4)0.1D2AsO4 the intensity maxima characteristic for the para-
electric and for the ferroelectric phase were shown to coexist in a certain
temperature range (7-10K). This fact indicates coexistence of the two
phases.

Presence of the low-temperature peaks of ε′′11(T, ν) and ε′′33(T, ν) at
Tg(x) in the ferroelectric phase composition region is related to coexi-
stence of the ferroelectric and glass phases. Such a coexistence was re-
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vealed by measurements of ε′′11(T, ν) in Rb1−x(NH4)xH2PO4 at x=0.15
and 0.17 [51], Rb1−x(NH4)xH2AsO4 [16, 18, 52, 58], K1−x(NH4)xH2PO4

[54], Rb0.96(ND4)0.04D2AsO4 [54, 59]. It is believed that in the ferro-
electric phase composition region the samples have small inclusions, in
which the concentration of NH4 is characteristic for the glass phase
composition region. These inclusions at the temperature Tg(x) undergo
a transition to the proton glass state. With lowering x the temperature
Tg(x) decreases. This is associated with a decrease of the dimensions and
correlation length of the clusters, where the transition to the glass state
takes place; as a result, at low x the system dynamics is faster than at
x close to the glass phase composition region.

In [58] the imaginary part of the permittivity ε′′11(T, ν) and the Cole-
Cole curves were measured at different frequencies for low concentrations
x=0; 0.01; 0.05; 0.1 in Rb1−x(NH4)xH2AsO4 and Rb1−x(ND4)xD2AsO4.
At x=0.05; 0.1 a coexistence of the low-temperature proton glass phase
and non-uniform ferroelectric phase has been detected below Tg(ν, x).
From the Cole-Cole curves a presence of the relaxation time distribution
below Tg(ν, x) is evident.

In [18] the temperature dependences of spontaneous polarization of
Rb1−x(NH4)xH2AsO4 and Rb1−x(ND4)xD2AsO4 (at x=0.0; 0.08), as
well as transverse permittivities ε′a(1kHz, T ) (for x=0.0; 0.08; 0.4 in
Rb1−x(NH4)xH2AsO4 and x=0.0; 0.08; 0.28 in Rb1−x(ND4)xD2AsO4)
were measured. It has been shown that at x=0.08 in the temperature
range between Tg(x) and Tc(x) the sample polarization is proportional
to the contribution of the so-called lost dielectric response

Psd(T )=Pso
∆ε′a1(T )

ε′a(T, x=0.4)
; ∆ε′a1(T )=ε

′
a(T, x=0.4)−ε′a(T, x=0.08).

Antiferroelectric phase composition region. In this region
the high-temperature proton glass phase exists at high temperatures,
since the qEA parameter obtained from the NMR linewidths in the
Rb1−x(ND4)xD2PO4 system is different from zero and increases with
decreasing temperature [39, 60].

At lowering temperature a phase transition to the antiferroelectric
phase takes place at TN (x). The transition temperature TN(x) is maxi-
mal at x=1, decreases with lowering x, and vanishes at a certain critical
value of x, where the glass phase composition region begins. The ob-
tained in [35] temperature dependence of the Raman scattering line, cor-
responding to ν2 vibrations of PO4 tetrahedra in Rb1−x(NH4)xH2PO4

crystals at x=0.8, has two bends at 130K and 65K. The first bend corre-
sponds to Tf(x) and to the start of the proton freezing on the O-H. . . O
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bonds, just like in the glass phase composition region. The second bend
corresponds to the transition to the antiferroelectric phase at TN(x), be-
cause below TN(x) the frequency ν2 increases due to formation of the
NH4–PO4 clusters. In [35] the two bends are observed also in the ferro-
electric phase composition region at x=0.2: the first one at Tf(x), the
second one at Tc(x).

Using the experimental data for the transverse dielectric per-
mittivity of Rb1−x(NH4)xH2PO4 [3, 4], Rb1−x(ND4)xD2PO4 [12],
Rb1−x(NH4)xH2AsO4 [17], and K1−x(NH4)xH2PO4 [19, 22, 61] it has
been established that ε′11(T, ν) in the antiferroelectric phase compositi-
on region at T > TN(x), just like in the glass and ferroelectric phase
composition region, increases with lowering temperature, but the value
of ε′11(T, ν) here is somewhat larger. At T < TN (x) ε′11(T, ν) is much
smaller than at T > TN and slightly decreases with decreasing temper-
ature. Near TN(x) a fast drop of ε′11(T, ν) takes place, which at x → 1
transforms into a break. At x close to the glass phase composition region
this decrease slows down, whereas the maximum of ε′11(T, ν) at TN (x)
becomes rounded, that is, the phase transition is smeared out. In [3] the
observed ε′11(T, ν) of Rb1−x(NH4)xH2PO4 with x=0.75 has a rapid drop
at a certain temperature Tg(ν).

As has been shown in [61], ε33(T, ν) in K1−x(NH4)xH2PO4 at x=0.8
and 0.9 is qualitatively similar to ε11(T, ν), but twice smaller. This is
the only experimental measurement of ε33(T, ν) in the antiferroelectric
phase composition region, except for the case x=1.

In the antiferroelectric part of the phase diagram, the coexistence of
deuteron glass and antiferroelectric phases in Rb1−x(ND4)xD2AsO4 at
(x=0.39, 0.55, 0.69) was revealed [62] using the measured temperature
and frequency dependences of ε11(T, ν). This coexistence is indicated by
a weak frequency dispersion of the temperature dependence of permit-
tivity at T ≤ 100K (it is by two orders of magnitude smaller that in the
region with the deuteron glass phase only at x=0.28).

In [63] by the example of the Rb1−x(NH4)xH2AsO4 system a possi-
bility of phase coexistence (of PE - dynamically disordered paraelectric
phase, PG- structurally disordered proton glass state, FE - ferroelec-
tric, and AFE - antiferroelectric phases) in this type of compounds is
explored. Experimental evidence for this coexistence at different x is
presented.

The temperature dependence of specific heat in the antiferroelectric
phase composition region, as shown in [48] for Rb1−x(NH4)xH2PO4 at
x=0.79 and 0.89, has two peaks: at TN and a much lower one at a few
degrees below TN . The second peak remains unexplained. Considering
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the facts that i) the obtained results were not explained by their authors,
and that ii) a too high peak of the specific heat for these values of x was
obtained, we can assume that these data are possibly unreliable.

Unfortunately, for all compositions and for both dielectric permit-
tivities the experimental data obtained in different papers are in a poor
agreement. Let us consider here examples of such discrepancies. It should
be noted that ε11(T, ν) and ε33(T, ν) were measured at different frequen-
cies. However, these frequencies are low enough, so the the dielectric
permittivity hardly varies with frequency in this temperature range.

In Rb1−x(NH4)xH2PO4 at x = 0.25 (ferroelectric phase), T = 60K
ε′33(T, ν) ≈ 340 as measured in [2] at ν=1 kHz and ε′33(T, ν) ≈ 250
as measured in [3] at ν=300 Hz. In [2] and [7] at T = 60K and close
compositions in the proton glass phase x = 0.4 and 0.4 and frequencies
ν=1 kHz and 12 kHz, respectively, it was obtained that ε′33(T, ν) ≈ 140
and ε′33(T, ν) ≈ 65, respectively, that is a nearly two-fold difference. The
measured in [2](1 kHz) and [6](50 kHz) ε′11(T, ν) for x = 0.5 is about
40% higher than measured in [3] (10 kHz); for x = 0.7 the measured
in [2](1 kHz) ε′11(T, ν) is about 30% larger than measured in [3] (10
kHz) and [4](70 kHz); whereas ε′11(T, ν) at x = 0.43 [7](12 kHz) is about
80% smaller than found in [2](1 kHz) at a very close composition x = 0.4.
In the system Rb1−x(ND4)xD2PO4 with x = 0.4 (proton glass phase)
ε′11(T, ν) obtained in [7](12 kHz) is about twice smaller than in [14](116
Hz).

In Rb1−x(NH4)xH2AsO4 ε
′
11(T, ν) found in [18] (1 kHz) for x = 0.4

is about 20% smaller, whereas that found in [17](10 kHz) for x = 0.44 is
about 10% smaller than measured in [15](30 kHz) for x = 0.35; in [17]
ε′11(T, ν) decreases with decreasing x. In K1−x(NH4)xH2PO4 at x = 0.39
ε′33(T, ν) measured in [21](20 Hz) is about twice larger than measured at
x = 0.32 in [20] (0.1 Hz), even though ε′33(T, ν) in [20] strongly increases
with lowering x.

There are available lots of other experimental data, which disagree
within 10%. Such discrepancies can be explained by errors in mea-
surements of ε11(T, ν) and ε33(T, ν), as well as by an incorrect de-
termination of x. For example, the concentration of ammonium x in
K1−x(NH4)xH2PO4 depends non-linearly on its concentration in a solu-
tion during the sample growth [36].

The temperatures Tg(x), corresponding to the maximum of ε′′11(T, ν)
and to the rapid drop of ε′11(T, ν), obtained in different experiments are
also different. Thus, for Rb0.5(ND4)0.5D2PO4 Tg=59K [12] at ν=1 kHz
and Tg=53K [9] at ν=10kHz, and both in [12] and [9] Tg(x) increases
with frequency.
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The data for the temperatures Tc in the ferroelectric phase compo-
sition region are also contradictory. Thus, Tc of Rb1−x(NH4)xH2AsO4

determined from the maximum of ε′33(T, ν) in [17] are about by 10 K
larger than Tc determined from the maximum of ε′11(T, ν) in [16]. This
means that the value of x is either overestimated in [17] or underesti-
mated in [16].

The experimental data for ε′11(T, ν) in the antiferroelectric phase
composition region are also in a poor agreement. The values of ε′11(T, ν)
for Rb1−x(NH4)xH2PO4 at x=0.9 measured in [4] at cooling are by 20%
larger than at heating and by about 10% larger than that obtained in [3].
The value of ε′11(T, ν) measured in [61] for K1−x(NH4)xH2PO4 at x=0.8
is almost three times smaller than that found in [19].

Unfortunately, the experimentalists who measured the components
of the dielectric permittivity tensors did not comment on the discrepan-
cies between their results and the previous measurements. We think that
the major origin of these discrepancies is the difficulty of growing iden-
tical samples for a given x, because in these samples there are regions
with different x. In spite of the quantitative differences, the qualita-
tive behavior of the experimental curves of dielectric permittivities of
the Rb1−x(NH4)xH2PO4 type compounds is approximately the same.
Therefore, very important are theoretical studies of these compounds.

1.2. Theoretical studies of the Rb1−x(NH4)xH2PO4 compounds

From the point of view of a theoretical description, the
Rb1−x(NH4)xH2PO4 type compounds, which in a certain compo-
sition region can undergo a transition to the proton glass state, are
quite similar to the magnetic compounds with a spin glass phase.
Therefore, we can use the theoretical methods developed for the spin
glass models. A detailed description of the proton glasses, however, is
not possible within the spin glass models, since these models do not
take into account the random electric fields and real crystal structure of
proton glasses.

In [64,65] the Ising model in a transverse field with proton tunneling
was explored. In [64] the interaction constants Jij = ±J were taken to
be different from zero only for the nearest neighbors. In [65], as in the
Sherrington-Kirkpatrick model [66], Jij are long-range ones and fluctuate
with the Gaussian distribution. Calculations performed therein in the
mean field approximation have shown that in both cases tunneling lowers
down the temperatures of the transitions between the paraelectric and
glass phases Tg, as well as between the paraelectric and ferroelectric
phase Tc or antiferroelectric phase TN .
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In [46, 67, 68] the Ising model in a transverse field Ωi also with a
random internal longitudinal field hi

H = −1

2

∑

i,j

JijS
z
i S

z
j −

∑

i

ΩiS
x
i −

∑

i

(E + hi)S
z
i , (1.1)

was explored, where E is a uniform external field. Gaussian dis-
tributions are used for the random infinite range interactions with
(
〈

J2
ij

〉

c
= x(1 − x) · const(i − j)) and random deformational field hi

(〈hi〉 = 0,
〈

h2i
〉

∼ x(1− x)). In [67] within the replica symmetric ap-
proach a system of equations for unknown p, q, r

p = 〈Szα〉n ; q =
〈

SzαS
z
β

〉

n
; r =

〈

(Szα)
2
〉

n
−→
Ω→0

1; n→ 0,

(where α, β are the replica numbers), as well as as expressions for the
free energy, susceptibility χ, instability line of the replica symmetric so-
lution (Almeida-Thouless line) are obtained and explored. It is shown
that the temperature of the transition to the glass phase Tg exists only
at
〈

h2i
〉

c
= 0 and corresponds to the peak on the temperature curve of

χ(T ). The random internal field (
〈

h2i
〉

c
6= 0) leads to existence of the pro-

ton glass state at any temperature above Tg (qEA > 0, qEA −→
T→∞

0) and

smoothes the peak in the temperature curve of χ(T ). The distribution
function of the local fields P (h) = 〈δ(h− hi −

∑

j

JijSj)〉 was calculated

at Ωi = 0. Its shape at high temperatures is close to the Gaussian one,
whereas at lowering temperature or increasing

〈

h2i
〉

c
it transforms into

a two-peak curve with a minimum at h = 0. Such a shape of P (h) quali-
tatively agrees with the experimentally observed shape of EPR [24] and
NMR [69] spectral lines. The temperature dependence of qEA calculated
within the model [67] well agrees with the second moment of the distribu-
tion function of the EPR [24] and NMR [39,69] spectral lines. In [25,70]
for the model with Hamiltonian (1.1) at Ωi = 0, using the Glauber equa-
tion, a shape of the EPR line was calculated (a single-peak one at high
temperatures and a two-peak one at low temperatures) that agrees well
with the experiment in a wide temperature range (T = [10K, 150K]).
For this model, as shown in [46], qEA → 1 at Ωi = 0, T → 0. In presence
of tunneling (Ωi 6= 0) qEA < 1 at all temperatures, which means an
incomplete freezing.

In [68] the order parameter m and the parameter qEA for the mod-
el with Hamiltonian (1.1) are calculated by the replica method, and
the phase diagrams at different values of the transverse field and of the
random field dispersion are constructed. Since in presence of random
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fields qEA > 0 at all T , the temperature of the transition to the glass
phase Tg(x) here is introduced as a temperature below which the replica-
symmetry solution is instable, that is, the replica symmetry is broken,
and the system is in non-ergodic state. It is established that the random
fields decrease the temperatures Tg, Tc, and TN and widen the glass
phase region. It has been shown that between the glass and ferroelectric
phases there exists a region where m 6= 0, and the replica symmetric so-
lution is unstable; this region is called the region of coexistence of glass
and ferroelectric phases.

If in (1.1) the distribution function of the fields hi consists of two
Gaussians, then a critical point appears on the phase boundary between
the ferroelectric and paraelectric phases, whereas the transition between
the ferroelectric and paraelectric phases becomes the first order one [71].

In [72] a dynamic generalization of the static approach of [67] has been
presented. The Rb1−x(ND4)xD2PO4, Rb1−x(ND4)xD2AsO4 compounds
described by the Hamiltonian

H = −1

2

∑

i,j

JijS
z
i S

z
j −

∑

i

(E + hi)S
z
i − g

∑

i,k

(

bk + b+−k
)

Sxi , (1.2)

〈Jij〉
/√

N=J0=(1− 2x)J ;
〈

J2
ij

〉

c

/

N=∆=4x · (1− x)J2;
〈

h2i
〉

c
=∆h.

are considered. Here an interaction of the pseudospins with the phonon
thermostat is introduced into the Ising model Hamiltonian. This leads
to the Debye-type relaxation [72]

ε(ω)=1+
β

4π

1−
〈

th2 (βh(ξ))
〉

ξ

1 + iτω
; h(ξ)=ξ∆

/

2J2
√

q + 4∆h

/

J2+J0p,

where polarization and the Edwards-Anderson parameter p, q obey the
following system of equations

p =

∞
∫

−∞

dξ√
2π

exp

(

−ξ
2

2

)

th [βh(ξ)] ; q =

∞
∫

−∞

dξ√
2π

exp

(

−ξ
2

2

)

th2 [βh(ξ)] .

For the relaxation time a phenomenological Arrhenius-like expression is
assumed

τ−1 ≈
∞
∫

−∞

dt [〈b(t)b(0)〉+ 〈b(0)b(t)〉] ∼ τ−1
0 · e−E/T ; E ≈ 100K.
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A quantitative comparison of the obtained results with experiment was
performed for the temperature behavior of the ε′′(ν) peak only. It yielded

ε′′teor(ωp) = 0.027T − 0.10;

ε′′exp(ωp) = 0.04T − 0.57 (Rb0.7(ND4)0.3D2AsO) ;

ε′′exp(ωp) = 0.11T − 3.411 (Rb0.6(ND4)0.4D2PO4) .

It is claimed that the proposed simple approach can be useful for descrip-
tion of dielectric properties of deuteron glasses. However, the based on
this model relaxation theory of deuterated mixtures [72] does not yield
a correct frequency dependence of the dielectric permittivity.

The drawback of the described above calculations based on the Ising
model with transverse field and random longitudinal field is that they
do not take into account the real structure of the Rb1−x(NH4)xH2PO4

type compounds. Also, the considered there interactions are long-range
ones (of the Sherrington-Kirkpatrick type), whereas in the real systems
the major role is played by the nearest neighbors interactions.

The first theory of the Rb1−x(NH4)xH2PO4 mixtures that takes in-
to account its real structure has been proposed in [73]. A pseudospin
Hamiltonian was used to describe the energy levels of protons near the
PO4 groups; the critical lines Tc(x), TN (x) (an expansion over the order

parameter 1/N
N
∑

i=1

〈Si〉) and Tg(x) (an expansion over 1/N
N
∑

i=1

(〈Si〉)2)
were found in the cluster approach. A qualitative description of the ex-
perimentally observed phase diagram was obtained.

Later the cluster approach was used in [74, 75]. Thus, in [74] for de-
scription of the Rb1−x(NH4)xH2PO4 a pseudospin model was proposed
that takes into account the configurational energy of the cluster of hy-
drogen bonds near a PO4 group and a long-range interaction W

Hcl =
V

4
(S1S2 + S2S3 + S3S4 + S4S1) +

U

4
(S1S3 + S2S4)−

−
4
∑

i=1

(ϕcl,i +W 〈Si〉)Si.

Here ϕcl,i are the cluster fields that take into account the interactions of
i-th hydrogen bond with protons of the neighboring tetrahedra and are
determined from the condition of the extremum of the free energy for
the mixture of different phases. The Hamiltonian parameters U , V are



14 Препринт

related to the two lowest levels of the hydrogen cluster in RDP (ε′0, ε
′
1)

and ADP (ε0, ε1) as

U = ε′1/2, V =
1

4
(ε′0 + 2ε′1) ; U =

1

2
(ε0 + ε1)1 , V =

1

4
(ε0 + 2ε1) .

The free energy is presented as a sum of the energies of three phases

F = p+F (ε0 < 0,W = 0) + p0F (ε0 = 0,W = 0) + p−F (ε0 > 0,W 6= 0)

with the probabilities p+ for the ferroelectric phase, p− for the antifer-
roelectric phase, and p0 for the neutral phase.

It is believed that the state of each tetrahedron is formed by the six
ionic positions (Rb or NH4). Two of these six positions are the closest;
therefore, the ferroelectric (antiferroelectric) state of the tetrahedron is
formed if they are occupied with Rb (NH4). In other situations a neutral
state is formed. From the analysis of the free energy expansion over the
parameters 〈S1〉+ 〈S3〉 ; 〈S1〉 − 〈S3〉 the regions of ferroelectric (0 < x <
0.2 at T = 0) and antiferroelectric (0.75 < x < 1 at T = 0) phases on
the phase diagram are found that are close to experimental.

This model was used to describe the diagram of the state in the
proton glass region (0.2 < x < 0.75 at T = 0) in [75]. Here the replica
symmetric approximation was used in averaging the system free energy
with a parameter, being an analog of the Edwards-Anderson parameter
q = 〈SfαSfβ〉 (α, β are the replica numbers). Analytical expressions for
the partition function L(n, q) and temperature of the glass transition
Tg(n) (when q = 0) are found for the number of replicas n=2, 3, 4. For
Tg(n) an expression is found for an arbitrary n. From here an expression
Tg was obtained

(

kTg
〈h2〉

)2

=
1

8

1 + 2 exp(−2〈ε(x)〉/kTg)
(1 + 2 exp(−〈ε(x)〉/kTg))2

; Tg = lim
n→0

Tg(n).

Hence, no consistent approach to description of all states of these
compounds has been presented in [74, 75].

An original approach to description of thermodynamical properties
of proton glasses has been proposed in [76–78]. The model Hamiltoni-
an contains terms responsible for the ferroelectric ordering along the Z
axis (Sz-components of the classical spin) and for the antiferroelectric
ordering (Sx-components). Restricting consideration by the quadratic
in the Hamiltonian terms at averaging the system free energy over the
concentrations by the replica method, in the replica symmetric approx-
imation, a system of equations for the parameters of the ferroelectric p
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and antiferroelectric ξ ordering, as well as parameters of the short-range
ordering gz, gx (correlation between the nearest dipole moments)

p = 〈〈Szi1〉〉c = 〈〈Szi2〉〉c , ξ = 〈〈Sxi1〉〉c = −〈〈Sxi2〉〉c ;
gz = 〈〈Szi1Szi2〉〉c , gx = 〈〈Sxi1Sxi2〉〉c ,

was obtained. Here 1, 2 are the sublattices of the site i; 〈. . .〉c means
configurational averaging.

The constructed phase diagram for Rbn(NH4)1−nH2AsO4 qualitati-
vely agrees with experiment. At high temperatures (T ≥ 210K) p = 0,
ξ = 0, whereas for gz,1, gx,1 there exist single solutions that correspond
to the paraelectric region. The proton glass region is associated with
appearance of additional solutions for gz, gx at p = 0, ξ = 0 (at low
temperatures the maximal number of solutions is equal to 5). Fluctua-
tions of the dipole moments are described by the averages of the dipole
moments of the nearest spins gz, gx. The self-correlations of the dipole
moments of the 〈〈Szi1Szi1〉〉c type, measured in EPR or NMR experiments
as the Edwards-Anderson parameter, are not taken into account in this
approach. We think that such correlations are more important than the
correlations between the neighboring tetrahedra. Fluctuations of the de-
formational internal field, that can be estimated from the temperature
dependence of the Edwards-Anderson parameter, are not taken into ac-
count in this approach either.

Hence, a theoretical description of thermodynamic and dielectric
properties of hydrogen bonded compounds of the Rb1−x(NH4)xH2PO4

type which can undergo a transition into the proton glass state, that
would take into account the structural peculiarities and different types
of interactions, is still a complicated and unsolved problem of the stati-
stical physics. Particularly it concerns a microscopic description of the
dynamical properties of these mixtures. The temperature curves of the
real and imaginary parts of the longitudinal and transverse dielectric
permittivities at different frequencies have to be described. Particular-
ly interesting is to explore the low-temperature curves of the imaginary
parts of the dielectric permittivity at low frequencies.

In [79–82] a theory of static characteristics of model proton glasses
with an arbitrary range of competing interactions has been proposed.
In [83–88] a cluster theory of the thermodynamick and dynamic char-
acteristics of the Rb1−x(NH4)xH2PO4 type system has been proposed.
It has been shown that at the proper choice of the model parameters
this theory yields a satisfactory quantitative description of experimental
data for these systems. Inconsistency of different experimental data was
also revealed.
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In the paraelectric phase the ferroelectric compounds of the MD2XO4

type (M = K, Rb, ND4; X = P, As) crystallize in the 4̄ ·m class of tetrag-
onal syngony (the space group I 4̄2d with non-centrosymmetric point
group D2d). These crystals are piezoelectric in both phases (paraelectric
and ferroelectric or paraelectric and antiferroelectric), which essentially
affects the behavior of their physical characteristics.

Description of the dielectric properties of the MD2XO4 type ferro-
electrics within the framework of the conventional proton ordering model
(see [89–95]) was restricted to the static limit and to the high-frequency
relaxation. The Attempts to explore the piezoelectric resonance phe-
nomenon within a model that does not take into account the piezoelec-
tric coupling are pointless. The conventional proton ordering model does
not distinguish free and clamped crystals and is not able to reproduce
the effect of crystal clamping by high-frequency electric field. This leads
to an incorrect description of the temperature behavior of the calculated
polarization relaxation time and dynamic dielectric permittivitiy of the
MD2XO4 type ferroelectrics in the phase transition region.

Application of electric fields and shear stresses of certain symmetries
allows one to explore the role of the piezoelectric coupling in the phase
transition, as well as their influence on the physical characteristics of
these crystals.

Studies of the influence of the piezoelectric coupling on the physi-
cal characteristics of the KH2PO4 type ferrroelectric has been started
in [96], where the Slater theory [97] has been modified by taking into
account the splitting of the lowest ferroelectric level of the proton sys-
tem caused by the strain ε6. More extensive results for the deformed
ferroelectrics of the KH2PO4 type were obtained in [98–107] . In [98,99]
a consistent microscopic formulation of the way with the strains of the
different symmetries should be included into the proton ordering model
has been made. In [98,99] the model of a deformed KD2PO4 type crystals
was used for description of the effects of a symmetrized stress σ1 − σ2.
That model took into account a splitting of the lateral configurations
level. Later [100–103] all possible splittings of the proton configurati-
on levels by the strains ε6 were taken into account. In [100] the phase
transition in a deformed K(H0,12D0,88)2PO4 crystal has been explored
for the first time. The thermodynamic, longitudinal dielectric, piezo-
electric, and elastic characteristics of the crystal were calculated; their
dependence on the stress σ6 was studied. A thorough investigation of
the thermodynamic and longitudinal dielectric, piezoelectric, and elas-
tic characteristocs of the K(H1−xDx)2PO4 ferroelectrics was performed
in [101]. The thermodynamic and longitudinal physical characteristcs of
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KH2PO4 ferroelectrics with taking into account tunneling were studied
in [102, 103]. A good quantitative description of the available experi-
mental data for KH2PO4 type ferroelectrics and NH4H2PO4 type an-
tiferroelectrics in the paraelectric phase was obtained. In [105–107] the
influence of the longitudinal electric field on the physical characteristics
of K(H0,12D0,88)2PO4 and KH2PO4 was studied; a satisfactory quanti-
tative description of available experimental was obtained.

The mechanism of spontaneous strain ε6 in the KH2PO4 type ferro-
electrics and the influence of proton coupling with acoustic lattice vibra-
tions on this strain were explored in [108].

In [104] a generalization of the proton ordering model for the KH2PO4

type ferroelectrics was proposed, in order to explore the piezoelectric, di-
electric, and elastic characteristics associated with the strains ε4 and ε5.
The expressions for the transverse physical characteristics of these crys-
tals in the paraelectric phase have been obtained and explored within the
four-particle cluster approximation. By the proper choice of the model
parameters, a good agreement between the theory and experiment for
KH2PO4 and NH4H2PO4. A thorough investigation of transverse and
longitudinal characteristics of the NH4H2PO4 and ND4D2PO4 antifer-
roelectric has been performed in [109].

In [100–104,109] the dynamic properties of the KH2PO4 type ferro-
electrics have not been explored. Such studie, however, are very impor-
tant. Due to the established in [110–112] effect of tunneling suppression
in the KH2PO4 type ferroelectics and principal difficulties, arising in cal-
culations of the dynamic characteristics of these crystals when tunneling
is taken into account, this problem should be solved with neglecting
tunneling. The relaxation phenomena in the KH2PO4 type ferroelectrics
and NH4H2PO4 type antiferroelectrics were explored within the modifi-
ed proton ordering model in [113,114] and NH4H2PO4, respectively. The
ultrasound velocity and attenuation were calculated. The experimentally
observed phenomena of crystal clamping by the high-frequency electric
field, piezoelectric resonance, and microwave dispersion were described
explicitly.

In [21] a possibility of piezoelectric coupling in the
Rb1−x(NH4)xH2PO4 type systems was suggested. Unfortunately,
this coupling was neglected in [83–88].

In the present paper we shall consider in detail the obtained in
[83–88] results for the thermodynamic and dynamic characteristics of
the Rb1−x(NH4)xH2PO4 systems; we shall also discuss the discrepanci-
es between the obtained therein theoretical results and the corresponding
exprimental data. We shall also present a review of the results obtained
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within the modified proton ordering model for the associated with the
strains ε6 and ε4 longitudinal and transverse static dielectric, piezoelec-
tric, elastic, and dynamic characeristics of the M(H1−xDx)2XO4 crystals
in the paraelectric and ferroelectric phases.

Bearing in mind [21], we shall discuss in this paper a possi-
ble role of piezoelectric coupling in disordered compounds of the
Rb1−x(NH4)xH2PO4 type as well as ways of its experimental confir-
mation.

2. Thermodynamic properties of the Rb1−x
(NH4)x

H2PO4 type compounds

It is well known, that for description of thermodynamic characteristics
and dielectric properties (in a certain frequency range) of these crystals
within the pseudospin-phonon model, the ionic variables can be exclud-
ed in the static approximation ( [95, 116]). The system description is
then performed within the framework of a pseudospin model with renor-
malized moments of hydrogen bonds ~df,α (α = + for RDP , α = − for
ADP )

~d1α=(d
x
α, 0, d

z
α),

~d3α=(−dxα, 0, dzα), ~d2α=(0,−dyα, dzα), ~d4α=(0, dyα, dzα);
~PA(B)
α =

∑

f∈A(B)

~df,αη
A(B)
f,α ; η

A(B)
f,α = 〈Sf,α〉A(B) . (2.1)

Here we introduced an effective dipole moment of a tetrahedron ~Pα;
〈....〉 is the conventional Gibbs’ thermodynamic average; summation f =
A(B) is carried out over the bonds, on which the protons order close to
the given tetrahedron A(B). For RDP the tetrahedron polarization can
have two opposite values along the c axis, when two protons are ordered
close to the upper edge of the tetrahedron (ηf = η) and close to the
lower one (ηf = −η)

ηf = η ⇒ ~P
A(B)
+ = (0, 0, 2dz+η); ηf = −η ⇒ ~P

A(B)
+ = (0, 0,−2dz+η).

(2.2)
For ADP − NH4H2PO4 the primitive cell is twice as large as for

RDP , and in addition to ”A”, ”B” tetrahedra it contains ”A′”, ”B′”
tetrahedra. Since their polarizations are opposite to those of ”A”, ”B”,
the total cell polarization is zero:

−ηA1,− = −ηA2,− = ηA3,− = ηA4,− = η; ~PA− = − ~PA′

− = (−dx−η; +dy−η; 0)
−ηB1,− = ηB2,− = ηB3,− = −ηB4,− = η; ~PB− = − ~PB′

− = (−dx−η,−dy−η, 0).
(2.3)
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For an ADP −NH4H2PO4 crystal the change of sign of η
A(B)
f,− at tran-

sition to the ”A′”, ”B′” tetrahedra can be taken into account as (here

~n the RDP primitive cell vector; ~kz∗ is the vector at the Brillouin zone
boundary directed along Z)

η
A(B)
nf,− = ei~n

~kz∗ · ηA(B)
f,− . (2.4)

Hence, in the cases of both ADP and RDP we use a primitive cell with
”A” and ”B” tetrahedra.

Hamiltonian of a mixed Rb1−x(NH4)xH2PO4 system can be written
as

H({h}) = −
∑

n,f

(

〈~dnf 〉c ·
[

~E + ~Gn

])

Snf +
∑

n

[HA(n) +HB(n)]−

−1

2

∑

n,f

∑

n′,f ′

Jnf,n′f ′SnfSn′f ′ ; (2.5)

HA(n) =
Vn
4

(Sn1Sn2 + Sn2Sn3 + Sn3Sn4 + Sn4Sn1) +

+
Un
4

(Sn1Sn3 + Sn2Sn4) +
Φn
16
Sn1Sn2Sn3Sn4.

Here Snf = ±1 are spin operators describing position of a proton on

the f = 1, 2, 3, 4 hydrogen bond in the ~n cell at the R tetrahedron; ~E
is an external uniform electric field; ~Gn is an internal random defor-
mational field; Jnf,n′f ′ is the long-range interaction between protons;
HA(n), HB(n) are the configurational energies of the ”A”, ”B” tetrahe-
dra. In this work we take into account two configurational states of a
tetrahedron (α = +,−):

Vα=−1

8
w1α, Uα=

1

8
(w1α−2εα) , Φα=

1

8
(w1α+2εα−4wα) , α = +,−.

(2.6)
In the state +, the energy states of a tetrahedron are analogous to those
in a pure RDP crystal with the ground state level εs+

ε+ = εa+ − εs+, w+ = ε1+ − εs+, w1+ = εo+ − εs+. (2.7)

In the state – (ADP ) we use the same relations for Vα, Uα, Φα but
with different values of εα, wα, w1α.

In the case of a mixed Rb1−x(NH4)xH2PO4 crystal, ionic positions
are occupied by Rb with the probability c+ = 1−x and by NH4 with the
probability c− = x. Hence the distribution function of a strongly random
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energy parameter εα (and similarly for wα, w1α) can be qualitatively
written as

p(σ) = (1−x)δ(σ−ε+)+xδ(σ−ε−) = c+δ(σ−ε+)+c−δ(σ−ε−). (2.8)

A state of the dipole moment on the bond ~df,ααf
is determined by the

states α, αf of two tetrahedra connected by this bond. In the mean field
approximation over the bonds, the averaged over configurations moment

of a tetrahedron
〈

~PB
〉

c
reads

〈

~P
〉

c
≈

4
∑

f=1

〈

~df

〉

c
η̄f ,

〈

~df

〉

c
=
∑

α

∑

β

cαcβ ~df,αβ , η̄f =〈〈Sf 〉〉c . (2.9)

In the present work we consider only two realizations of the sets of
averaged over configurations values of η̄f = η̄; −η̄B1,− = η̄B2,− = η̄B3,− =

−η̄B4,− = η̄, which correspond to ferroelectric and antiferroelectric orderi-
ng. This permits us to use the primitive cell of RDP with 2 tetrahedra
and 4 hydrogen bonds. The mean free energy per primitive cell 〈F〉 can
then be written as

−β 〈F〉 = −
4
∑

f=1,∈A

〈

F
(0)
f

〉

c
+
〈

F
[0]
A

〉

c
+
〈

F
[0]
B

〉

c
− (2.10)

−β
4
∑

f=1,∈A

ϕ̄L,f

〈

F
(1)
f

〉

c
+
β

2

4
∑

f,f ′=1,∈A

〈

Jf,f ′(~k∗)
〉

c

〈

F
(1)
f

〉

c

〈

F
(1)
f ′

〉

c
,

where ~k∗ = ~0∗ for ferroelectric ordering
〈

F
(1)
f

〉

c
=
〈

F (1)
〉

c
, ~k∗ =

~kz∗ for antiferroelectric ordering −
〈

F
(1)
1

〉

c
=
〈

F
(1)
2

〉

c
=
〈

F
(1)
3

〉

c
=

−
〈

F
(1)
4

〉

c
=
〈

F (1)
〉

c
. We use the following notations for averages over

different random fields of the single-particle F
(0)
f and cluster F

[0000]
1234 gen-

erating functions

〈

F
(0)
f

〉

c
=
〈

F (0)(ζf )
〉

c
=
〈

F (0) (κf + σ + gx + gy + gz)
〉

σ,~g
=

=
∫

...
∫

dσR (σ, 2q) ρt(gx)ρt(gy)ρz(gz)dgxdgydgzF
(0)(κf+σ+gx+gy+gz) ,

(2.11)

〈

F
[0]
A

〉

c
=
〈

F
[0000]
1234

〉

c
=
〈

F [0000](ξ1|ξ2|ξ3|ξ4||R)
〉

c
=
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=

∫

...

∫ 4
∏

f=1

dσfR (σf , q)ρ(gx)ρ(gy)ρ(gz)dgxdgydgz×

×
〈

F [0000] (κcl,1 + σ1 + g1|...|κcl,4 + σ4 + g4||R)
〉

{σ},~g,R
. (2.12)

Here we introduce notations for the average values of cluster ϕ̄f and
long-range ϕ̄L,f fields, and

κf = hf + ϕ̄L,f + 2ϕ̄f ; κcl,f = hf + ϕ̄L,f + ϕ̄f ; hf =
(〈

~df

〉

c
· ~E
)

,

g1 = gz − gx, g2 = gz + gy, g3 = gz + gx, g4 = gz − gy. (2.13)

Averaging is performed over random cluster fields with dispersion q and
over random deformational fields with dispersion 〈G2〉c for tranverse and
longitudinal field components

R (σ, q) =
e−

1
2

σ2

q

√
2πq

, ρ (σ) =
e
− 1

2
σ2

〈G2〉c

√

2π〈G2〉c
, 〈G2〉c = 4x(1− x)QG. (2.14)

The expressions for the single-particle function F
(0)
f and its deriva-

tives F
(n)
f are as follows

F
(0)
f = ln [2 ch (βζf )] , F

(n)
f = ∂n/∂(βζf )

nF
(0)
f , F

(1)
f = th (βζf ) , (2.15)

F
(2)
f =1−

(

F
(1)
f

)2

, F
(3)
f =−2F

(1)
f F

(2)
f , F

(4)
f =−2F

(2)
f

[

1−3
(

F
(1)
f

)2
]

.

The cluster function F
[0000]
1234 and its derivatives F

[n1n2n3n4]
1234 read

F [0000](ξ1|ξ2|ξ3|ξ4||R) = ln [0.5 · L(ξ1, ξ2, ξ3, ξ4||Rα)] ;

F
[n1n2n3n4]
1234 =

∂n1

∂(βξ1)n1
· · · ∂n4

∂(βξ1)n4
F

[0000]
1234

F
[1,1]
11 = F [2000](ξ1|ξ2|ξ3|ξ4||R) = 1−M

[1]
1 M

[1]
1 ;

F
[1,1]
12 = F [1100](ξ1|ξ2|ξ3|ξ4||R) =M

[1,1]
12 −M

[1]
1 M

[1]
2 ;

F
[1,1]
13 = F [1010](ξ1|ξ2|ξ3|ξ4||R) =M

[1,1]
13 −M

[1]
1 M

[1]
3 ;

F
[1,1]
14 = F [1001](ξ1|ξ2|ξ3|ξ4||R) =M

[1,1]
14 −M

[1]
1 M

[1]
4 ;

F
[21]
ff ′ = −2F

[1]
f F

[11]
ff ′ ; F

[21]
ff ′ = −2F

[11]
ff ′ F

[1]
f ′ ;
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F
[22]
ff ′ = −2F

[1,1]
ff ′

[

M
[1,1]
ff ′ −M

[1]
f M

[1]
f ′

]

;

M
[1]
1 = L

[1000]
1234

/

L
[0000]
1234 , ...M

[1]
4 = L

[0001]
1234

/

L
[0000]
1234 ;

M
[1,1]
11 = L

[2000]
1234

/

L
[0000]
1234 ≡ 1,...,M

[1,1]
14 = L

[1001]
1234

/

L
[0000]
1234 , (2.16)

0.5L
[0000]
1234 =0.5L(ξ1, ξ2, ξ3, ξ4||Rα)=2aαch(βξ1−βξ3)ch(βξ2−βξ4)+

+ch(βξ1 + βξ2 + βξ3 + βξ4) + dαch(βξ1 − βξ2 + βξ3 − βξ4) +

+2bα [ch(βξ1+βξ3)ch(βξ2−βξ4)+ch(βξ1−βξ3)ch(βξ2+βξ4)] , (2.17)

aα = exp(−βεα), bα = exp(−βwα), dα = exp(−βw1α).

Here the partition function 0.5L ({ξ} ||Rα) is calculated with the cluster
Hamiltonian

HA({ξ} ;S1, S2, S3, S4||R) = HA({0} ;S1, S2, S3, S4||R)−
4
∑

f=1

ξfSf

HA({0} ;S1, S2, S3, S4||R) = (2.18)

=
Vα
4

(S1S2+S2S3+S3S4+S4S1)+
Uα
4

(S1S3+S2S4)+
Φα
16
S1S2S3S4

We shall use the same model dependence of the average eigenvalues of
the long-range interaction matrix as for the dipole moment of a hydrogen
bond:

〈

νµ(~k∗)
〉

c
= ν̄µ(~k∗) =

∑

α

∑

β

cαcβνµ,αβ(~k∗) ≈

≈ c2+νµ,++(~k∗) + c2−νµ,−−(~k∗) + 2c+c−νµ,00(~k∗). (2.19)

For these values of ~k∗ the long-range interaction matrix J̄f,f ′ =
〈

Jf,f ′

(

~k∗

)〉

c
and the unitary transformation matrix Û = {uµf} read

Û = Û+ =
1

2









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









; 〈J〉=









J̄11 J̄12 J̄13 J̄12
J̄12 J̄11 J̄12 J̄13
J̄13 J̄12 J̄11 J̄12
J̄12 J̄13 J̄12 J̄11









;

ˆ̄ν = Û ˆ̄JÛ =









ν̄1 0 0 0
0 ν̄2 0 0
0 0 ν̄3 0
0 0 0 ν̄4









. (2.20)
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ν̄1= J̄11+2J̄12+J̄13; ν̄2= ν̄4= J̄11−J̄13; ν̄3= J̄11−2J̄12+J̄13. (2.21)

From the condition of the free energy extremum we find and an ex-
pression for the average η̄f = 〈〈Sf 〉〉c, reduced Edwards-Anderson pa-
rameter QEA,f , and an equation for unknown quantities ϕ̄L,f , ϕ̄f , qf

η̄f =
〈

F
(1)
f

〉

c
; QEA,f = qEA,f − η̄2f ; qEA,f = 1−

〈

F
(2)
f

〉

c
; (2.22)

〈

F
(1)
f

〉

c
=
〈

F
[1000]
f

〉

c
;
〈

F
(2)
f

〉

c
=
〈

F
[2000]
f

〉

c
; ϕ̄L,f =

4
∑

f1

J̄ff1(
~k∗)η̄f1 .

In absence of external field and for the ferroelectric ordering we obtain
the following expressions for the free energy, for the average η̄ = η̄f ,
reduced Edwards-Anderson parameter QEA = QEA,f and for equations
for ϕ̄L, ϕ̄, q

η̄ = η̄f ; ϕ̄ = ϕ̄f ; ϕ̄L = ϕ̄L,f ; q = qf ;

−β 〈FF 〉c = −4
〈

F (0)
〉

c
+ 2 〈FA〉c − 4βϕ̄L

〈

F (1)
〉

c
+ 2βν̄1(~0∗)

〈

F (1)
〉2

c
;

η̄ =
〈

F (1)
〉

c
; QEA = qEA − η̄2; qEA,f = 1−

〈

F (2)
〉

c
;

〈

F (1)
〉

c
=
〈

F [1000]
〉

c
;
〈

F (2)
〉

c
=
〈

F [2000]
〉

c
; ϕ̄L = ν̄1(~0∗)η̄. (2.23)

In the case of an antiferroelectric ordering in absence of external
field, the free energy, for the average η̄ = −η̄1 = η̄2, reduced Edwards-
Anderson parameter QEA = QEA,f and equations for ϕ̄L, ϕ̄, q read

η̄=−η̄1(4)=η2(3); ϕ̄=−ϕ̄1(4)= ϕ̄2(3); ϕ̄L=−ϕ̄L,1(4)= ϕ̄L,2(3); q=qf ;

−β 〈FAF 〉c=−4
〈

F (0)
〉

c
+2 〈FA〉c−4βϕ̄L

〈

F (1)
〉

c
+2βν2(~k

z
∗)
〈

F (1)
〉2

c
;

η̄ =
〈

F (1)
〉

c
= −

〈

F
(1)
1

〉

c
; QEA = qEA − η̄2; qEA,f = 1−

〈

F (2)
〉

c
;

〈

F (1)
〉

c
=
〈

F [0100]
〉

c
;
〈

F (2)
〉

c
=
〈

F [0200]
〉

c
; ϕ̄L = ν̄2(~k

z
∗)η̄. (2.24)

As numerical calculations for the free energy show, the antiferroelec-
tric state is realized in the region close to the x = 1 − c → 1 limit; the
ferroelectric state is realized in the region 1 − x = c → 1, and a proton
glass state (ϕ̄ = ϕ̄L = 0, q > 0) takes place at intermediate compositions.

The static susceptibility of the system reads (ve is the cell volume)

χab = − 1

Tve

∑

f,f ′

〈daf 〉c〈dbf ′〉c · η̄′ff ′ = − 1

Tve

∑

µ

d̃aµd̃
b
µ · η̃′µ;
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η̄′ff ′ =
∂η̄f

∂(βhf ′)
; d̃aµ =

∑

f

uµf 〈daf 〉c; η̃′µ =
∑

f,f ′

uµfuµf ′ η̄′ff ′ .(2.25)

Here we used the fact that after the unitary transformation with Û ,
the matrix of η̃′µµ′ = δµµ′ η̃′µ correlators is diagonal for ferroelectric and
antiferroelectric orderings, and

η̃′1 = η̄′11 + η̄′12 + η̄′13 + η̄′14; η̃′2 = η̄′11 + η̄′12 − η̄′13 − η̄′14;

η̃′3 = η̄′11 − η̄′12 + η̄′13 − η̄′14; η̃′4 = η̄′11 − η̄′12 − η̄′13 + η̄′14. (2.26)

In this work we shall explore temperature and composition depen-
dences of the longitudinal ε33(T ) and transverse ε11(T ) permittivity of
the system

εaa(T ) = ε0aa + 4πχaa(T ), ε0aa = 1 + 4πχ0
aa, (a = 1, 2, 3);

χ33(T ) = −4
1

Tve
(〈dz〉c)2 η̃′1(T );

χaa(T ) = − 1

Tve
(〈da〉c)2 (η̃′2(T ) + η̃′4(T )) , a = 1, 2. (2.27)

In order to find the quantities η̃′µ occurring in the expression for
the susceptibility, we differentiate η̄f and eq. (2.22) for ϕ̄L,f , ϕ̄f , qf with
respect to the fields βhf ′ and obtain equations for η̄′ff ′ , ϕ̄′

ff ′ , and q′ff ′

[

1−
〈

F̂ (2)
〉

c
β ˆ̄J(~0)

]

ˆ̄η
′
=
〈

F̂ (2)
〉

c

[

1 + 2β ˆ̄ϕ′
]

+
1

2

〈

F̂ (2)
〉

c
β22q̂′,

[

2
〈

F̂ (2)
〉

c
−
〈

F̂ [11]
〉

c

]

β ˆ̄ϕ′ +
1

2

[

2
〈

F̂ (3)
〉

c
−
〈

F̂ [12]
〉

c

]

β2q̂′ =

=
[

−
〈

F̂ (2)
〉

c
+
〈

F̂ [11]
〉

c

] [

1 + β ˆ̄J(~0)ˆ̄η
′
]

,

[

2
〈

F̂ (3)
〉

c
−
〈

F̂ [21]
〉

c

]

β ˆ̄ϕ′ +
1

2

[

2
〈

F̂ (4)
〉

c
−
〈

F̂ [22]
〉

c

]

β2q̂′ =

=
[

−
〈

F̂ (2)
〉

c
+
〈

F̂ [21]
〉

c

] [

1 + β ˆ̄J(~0)ˆ̄η
′
]

. (2.28)

We multiply these equations by the unitary matrix Û (2.20) from the
left, rendering all the matrices in eqs. (2.28) diagonal or antidiagonal.

Let us explore the symmetry of the matrices in these equations in the
case of the antiferroelectric ordering (in the case of ferroelectric ordering
all minus signs are changed to plus signs), as well as the form of the
matrices after the unitary transformation

〈F̂ (2n)〉c = 〈F (2n)〉c · Î; ˆ̃F
(2n)

= Û+ · 〈F (2n)〉c · Û ≡ 〈F̂ (2n)〉c; (2.29)
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〈F̂ (2n+1)〉c = 〈F (2n+1)〉c









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1









;

ˆ̃F
(2n+1)

= 〈F (2n+1)〉c









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









;

ˆ̄ϕ′=









ϕ̄′
11 ϕ̄′

12 ϕ̄′
13 ϕ̄′

14

ϕ̄′
12 ϕ̄′

11 ϕ̄′
14 ϕ̄′

13

ϕ̄′
13 ϕ̄′

14 ϕ̄′
11 ϕ̄′

12

ϕ̄′
14 ϕ̄′

13 ϕ̄′
12 ϕ̄′

11









;
˜̂
ϕ′= Û ˆ̄ϕ′Û=









ϕ̃′
1 0 0 0

0 ϕ̃′
2 0 0

0 0 ϕ̃′
3 0

0 0 0 ϕ̃′
4









;

ϕ̃′
1 = ϕ̄′

11 + ϕ̄′
12 + ϕ̄′

13 + ϕ̄′
14; ϕ̃

′
2 = ϕ̄′

11 + ϕ̄′
12 − ϕ̄′

13 − ϕ̄′
14;

ϕ̃′
3 = ϕ̄′

11 − ϕ̄′
12 + ϕ̄′

13 − ϕ̄′
14; ϕ̃

′
4 = ϕ̄′

11 − ϕ̄′
12 − ϕ̄′

13 + ϕ̄′
14;

(2.30)

q̂′ =









q′11 −q′12 −q′13 q′14
q′12 −q′11 −q′14 q′13
q′13 −q′14 −q′11 q′12
q′14 −q′13 −q′12 q′11









;
˜̂
q′ =









0 0 0 q̃′4
0 0 q̃′3 0
0 q̃′2 0 0
q̃′1 0 0 0









q̃′1 = q′11 − q′12 − q′13 + q′14, q̃
′
2 = q′11 − q′12 + q′13 − q′14,

q̃′3 = q′11 + q′12 − q′13 − q′14, q̃
′
4 = q′11 + q′12 + q′13 + q′14.

(2.31)
The averaged matrices of the second derivatives 〈F̂ [11]〉c; 〈F̂ [22]〉c for

the antiferroelectric phase are of the same symmetry as the matrix ˆ̄ϕ
′
,

and the eigenvalues of these matrices F̃
[11]
µ ; F̃

[22]
µ are written as linear

combinations similar to ϕ̃′
µ. Symmetry of the matrix 〈F̂ [21]〉c is the same

as of q̂′; after the unitary transformation it becomes analogous to the an-

tidiagonal matrix
˜̂
q′ with the corresponding elements F̃

[21]
µ . The matrix

〈F̂ [12]〉c is transposed to 〈F̂ [21]〉c. After the unitary transformation and
exclusion of the parameters ϕ̃′

µ, q̃
′
µ we obtain expressions for the corre-

lators η̃′µ, entering the expression for the system susceptibility.

η̃′µ = −
[

Dµ/Bµ − βν̄µ(~0)
]−1

−→
ProtonGlassState

−
[

2/F̃ [11]
µ −

(

1− 〈F (1)〉c
)−1

− βν̄µ(~0)

]−1

, (2.32)
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Dµ =
[

2〈F (2)〉c − F̃ [11]
µ

] [

2〈F (4)〉c − F̃ [22]
µ

]

−

−
[

2〈F (3)〉c − F̃ [12]
µ

] [

2〈F (3)〉c − F̃ [21]
µ

]

,

Bµ = F̄ (2) · F̃ [11]
µ

[

2〈F (4)〉c − F̃ [22]
µ

]

+

+〈F (2)〉cF̃ [12]
µ F̃ [21]

µ − 2
[

〈F (3)〉c
]2

F̃ [11]
µ .

In the case of the ferroelectric ordering the matrices

ˆ̄η
′
, ˆ̄ϕ

′
, q̂′,

〈

F̂ [nn
′]
〉

c
have the same symmetry. As a result, we ob-

tain the same expression for η̃′µ, except that for the eigenvalues F̃
[12]
µ we

have to use the linear combination like for ϕ̃′
µ.

Let us note that dynamic susceptibility χaa(ν, T ) of the system is
expressed via the dynamic eigenvalues η̃′µ(ν) as in the static case (2.27)
after the replacement η̃′µ → η̃′µ(ν). The expressions for η̃′µ(ν) are derived
in [83].

3. Relaxational dynamics of the Rb1−x
(NH4)x H2PO4

type mixtures

Dynamics of the mixed system Rb1−x(NH4)xH2PO4 will be described
on the basis of Glauber equations for the n-th order correlation functi-
ons:
(

n
∑

j=1

νj + ∂/∂t

)

η12...n(t) =

n
∑

j

νj
〈

S1...SnF
(1)(hj(t) + ϕ̄L,j(t) + ϕ̂−

j + ϕ̂+
j )
〉

ρ(t)
;

η12...n(t) = 〈S1...Sn〉ρ(t) ; νj = 1/τ0,j ; ϕ̄L,j(t) =
∑

j

J̄jj′ (~k∗)η̄
′
j(t).

(3.1)
Here we introduce operator fields ϕ+

j , ϕ
−
j exerted on the bond j by the

two tetrahedral connected by this bond

ϕ̂+
j = − Vj / 4 (Sj2 + Sj4)− Uj / 4 Sj3 − Φj / 16 Sj2Sj3Sj4 ;

ϕ̂−
j = − Vj / 4 (Sj′2 + Sj′4)− Uj / 4 Sj′3 − Φj / 16 Sj′2Sj′3Sj′4 .

(3.2)

The seed relaxation time τ0,j can be expressed via correlation functions
of an ionic subsystem. Within the given below cluster approximation,
the bonds i, j belong to the same tetrahedron (as an example we use
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the ”B” tetrahedron with indices f, f ′ = 1 ÷ 4). Averaging over config-
urations will also be performed for each tetrahedron with its hydrogen
bonds independently. Therefore in our equations the primitive cell index
is absent.

We shall explain the approximation by the example of an equation
for a single-particle correlator. In the mean field approximation we make
a replacement ϕ̂±

j → ϕj(t) and obtain an equation

[ν1 + ∂/∂t] · η1(t) = ν1 · F (1) (κ1(t)) ; κ1(t) = h1(t) + 2ϕ1(t) + ϕ̄L,1(t).
(3.3)

Within the cluster approximation such a replacement is performed
for a field ϕ̂−

f → ϕf only

[ν1 + ∂/∂t] · η1(t) = ν1 · F (1)
(

κcl,1(t) + ϕ+
1

)

;

κcl,1(t) = h1(t) + ϕ1(t) + ϕ̄L,1(t);

ν1 · F (1)
(

κcl,1(t) + ϕ+
1

)

= L1 + P1 · η3(t) +Q1 (η2(t) + η4(t)) +

+N1η24(t) +M1 (η23(t) + η34(t)) +R1η234(t). (3.4)

The expansion coefficients are found from the relations

L1(t) =
ν1
8

∑

2,3,4

F
(1)
1 ; P1(t) =

ν1
8

∑

2,3,4

S3F
(1)
1 ;

Q1(t) =
ν1
8

∑

2,3,4

S2F
(1)
1 ≡ ν1

8

∑

2,3,4

S2F
(1)
1 ; N1(t) =

ν1
8

∑

2,3,4

S2S4F
(1)
1 ;

M1(t) =
ν1
8

∑

2,3,4

S2S3F
(1)
1 =

ν1
8

∑

2,3,4

S4S3F
(1)
1 ; (3.5)

R1(t) =
ν1
8

∑

2,3,4

S2S3S4F
(1)
1 .

In equations (3.3), (3.4) the t-dependent distribution functions ηf (t),
ηfg(t), ηfgk(t) and random dynamic cluster field ϕf (t) are unknown. In
the cluster approximation we need to write down a system of 14 closed
equations for 14 unknown correlation functions. In the matrix form

Â ({νf} ; {Lf , Pf , Qf , Nf ,Mf , Rf} ; ∂/∂t) · ~η(t) =
= ~C ({Lf , Pf , Qf , Nf ,Mf , Rf}) . (3.6)

Here we introduce notations for the column vectors

~η(t) = (η1; η2; η3; η4|η23; η34; η41; η12; η24; η13|η234; η341; η412; η123) ;
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− ~C ({Lf , Pf , Qf , Nf ,Mf , Rf}) = (L1;L2;L3;L4|Q2 +Q3;Q3 +Q4;

Q1 +Q4;Q1 +Q2;P2 + P4;P1 + P3|M2 +M4 +N3;

M1 +M3 +N4;M2 +M4 +N1;M1 +M3 +N2). (3.7)

The matrix contains the ∂/∂t operators only in its diagonal elements. It
is too cumbersome to be presented here.

In the present work we are interested in the linear response of the
system to a frequency-dependent field

hf (t) = hf + δhf (t); κf(t) = κf + δκf (t); κcl,f(t) = κcl,f + δκcl,f(t);

η′ff ′(t) =
δηf (t)

δhf ′(t)
; κ′ff ′(t) =

δκf (t)

δhf ′(t)
; ϕ′

ff ′(t) =
δϕf (t)

δhf ′(t)
. (3.8)

Expanding (3.3) in powers of δκf (t) and differentiating the dynamic
part with respect to δhf ′(t), we obtain expressions for the static ηf and
dynamic η′ff ′(ω) (after the Fourier transformation t→ ω) parts

ηf = F
(1)
f (κf ) ; κf = hf + 2ϕf +

∑

f1

J̄ff1(
~k∗)η̄f1 ;

η′ff ′(ω) = F
(2)
f (ω) · κ′ff ′(ω); F

(2)
f (ω) = νfF

(2)
f (κf )/(νf + iω);

κ̄′ff ′(ω) = δff ′ + 2ϕ′
ff ′(ω) +

4
∑

f1=1

J̄ff1(~0) · η̄′f1f ′(ω). (3.9)

Static solutions of the cluster equation (3.6), apparently, have the
form

~η0 =
(

Â0 ({νf} ; {} ; 0)
)−1

· ~C0 ({}) ;

Â0 ({νf} ; {} ; 0) = Â
(

{νf} ; {Lf , Pf , Qf , Nf ,Mf , Rf}hf (t)=hf
; 0
)

;

~C0 ({}) = ~C
(

{Lf , Pf , Qf , Nf ,Mf , Rf}hf (t)=hf

)

. (3.10)

Linear dynamic response can be expressed via the static solutions ~η0
as

δ~η(ω) =
(

Â0 ({νf} ; {} ; iω))
)−1 [

δ ~C ({})− δÂ ({νf} ; {} ; iω)) · ~η0
]

·
(3.11)

Expanding the linear responses δ ~C ({}) , δÂ ({νf} ; {} ; iω)) in powers of
δκcl,f (iω) and differentiating with respect to δh′f (ω), we obtain an ex-
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pression for η′ff ′(ω)

η′ff ′(ω) =

4
∑

f1=1

Ωff1(ω)κ
′
cl,f1f ′(ω); (3.12)

κ′cl,ff ′(ω) = δff ′ + ϕ′
ff ′(ω) +

4
∑

f1=1

J̄ff1(~0) · η̄′f1f ′(ω);

Ωff ′(ω) =

14
∑

i=1

(

A−1
0

)

f,i
· ∂ (C0)i
∂κcl,f ′

−
14
∑

i,j=1

(

A−1
0

)

f,i
·
∂ (A0)i,j
∂κcl,f ′

· η0,j .

After averaging over configurations with taking into account the
Gaussian fluctuations, we obtain from (3.9) and (3.12)

η̄′ff ′(ω) =
〈

η′ff ′(ω)
〉

c
=
〈

F
(3)
f (ω)

〉

c
q′ff ′(ω) +

+
〈

F
(2)
f (ω)

〉

c



δff ′ + 2ϕ̄′
ff ′(ω) +

4
∑

f1=1

J̄ff1(~0) · η̄′f1f ′(ω)



 ,

η̄′ff ′(ω)=
4
∑

f1=1

〈Ωff1(ω)〉c



δf1f ′+ϕ̄′
f1f ′(ω)+

4
∑

f2=1

J̄f1f2(~0) · η̄′f2f ′(ω)



+

+

4
∑

f1=1

〈

Ω′
ff1(ω)

〉

c

1

2
q′f1f ′(ω), (3.13)

Here we introduce the notations

〈

ϕf1 · ϕ′
f1f ′(ω)

〉cum

c
= q′f1f ′(ω)

/

2;
〈

Ω′
ff ′(ω)

〉

c
=

〈

∂Ωff ′(ω)

∂κcl,f ′

〉

c

.

(3.14)
Equating the mean values of correlators η̄′ff ′(ω) calculated within

the single-particle and cluster approximations, we obtain the first matrix
equation for unknown matrices ϕ̂′(ω), q̂′(ω)

[

2
〈

F̂ (2)(ω)
〉

c
−
〈

Ω̂(ω)
〉

c

]

ˆ̄ϕ′(ω) +
1

2

[

2
〈

F̂ (3)(ω)
〉

c
−
〈

Ω̂′(ω)
〉

c

]

q̂′(ω) =

=
[

−
〈

F̂ (2)(ω)
〉

c
+
〈

Ω̂(ω)
〉

c

]

·
[

1 + ˆ̄J
(

~0
)

ˆ̄η′(ω)
]

. (3.15)

Equating the mean values of correlators
〈

Q′
ff ′(ω)

〉

c
=

−2
〈

η0,f · η′ff ′(ω)
〉

c
calculated within the single-particle and clus-

ter approximations, we obtain the second matrix equation for unknown
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matrices ϕ̂′(ω), q̂′(ω)

[

2
〈

F̂ (3)(ω)
〉

c
−
〈

Ω̂Q(ω)
〉

c

]

ˆ̄ϕ′(ω)+
1

2

[

2
〈

F̂ (4)(ω)
〉

c
−
〈

Ω̂′
Q(ω)

〉

c

]

q̂′(ω)=

=
[

−
〈

F̂ (3)(ω)
〉

c
+
〈

Ω̂Q(ω)
〉

c

] [

1 + ˆ̄J
(

~0
)

ˆ̄η′(ω)
]

. (3.16)

Here we introduce matrix notations

〈ΩQ,ff ′(ω)〉c = 〈−2η0,f · Ωff ′(ω)〉c ;
〈

Ω′
Q,ff ′(ω)

〉

c
=

〈

∂ΩQ,ff ′(ω)

∂κcl,f ′

〉

c

.

(3.17)
From equations (3.15), (3.16) we derive expressions for ϕ̂′(ω), q̂′(ω)

used to find η̄′ff ′(ω) (3.13). For the sake of simplicity, in what follows we
shall use an effective relaxation time τ̄0

1

τ̄0
= 〈νf 〉c ≈ c2+

1

τ0,+
+ c2−

1

τ0,−
+ 2c+c−

1

τ0,0
. (3.18)

Let us consider the symmetry of matrices, entering these equations in
the case of antiferroelectric ordering (in the case of ferroelectric ordering
all minus signs should be replaced by plus signs), as well as the form of
the matrices after a unitary transformation (for the sake of simplicity we
omit the argument of ω in the matrix elements)

〈

F̂ (2n)(ω)
〉

c
=
〈

F (2n)(ω)
〉

c
Î;

˜〈

F̂ (2n)(ω)
〉

c
=U+

〈

F̂ (2n)(ω)
〉

c
U≡

〈

F̂ (2n)(ω)
〉

c
; (3.19)

〈

F̂ (2n+1)(ω)
〉

c
=
〈

F (2n+1)(ω)
〉

c









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1









;

˜〈

F̂ (2n+1)(ω)
〉

c
=
〈

F (2n+1)(ω)
〉

c









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









; (3.20)

ˆ̄ϕ′(ω) =









ϕ̄′
11 ϕ̄′

12 ϕ̄′
13 ϕ̄′

14

ϕ′
12 ϕ′

11 ϕ′
14 ϕ′

13

ϕ′
13 ϕ′

14 ϕ′
11 ϕ′

12

ϕ′
14 ϕ′

13 ϕ′
12 ϕ′

11









;
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˜̂ϕ̄′(ω) = Û ˆ̄ϕ′(ω)Û =









ϕ̃′
1 0 0 0

0 ϕ̃′
2 0 0

0 0 ϕ̃′
3 0

0 0 0 ϕ̃′
4









; (3.21)

ϕ̃′
1(ω) = ϕ̄′

11 + ϕ̄′
12 + ϕ̄′

13 + ϕ̄′
14; ϕ̃′

2(ω) = ϕ̄′
11 + ϕ̄′

12 − ϕ̄′
13 − ϕ̄′

14;

ϕ̃′
3(ω) = ϕ̄′

11 − ϕ̄′
12 + ϕ̄′

13 − ϕ̄′
14; ϕ̃′

4(ω) = ϕ̄′
11 − ϕ̄′

12 − ϕ̄′
13 + ϕ̄′

14;

q̂′(ω) =









q′11 −q′12 −q′13 q′14
q′12 −q′11 −q′14 q′13
q′13 −q′14 −q′11 q′12
q′14 −q′13 −q′12 q′11









;

˜̂q′(ω) = Û q̂′(ω)Û =









0 0 0 q̃′4
0 0 q̃′3 0
0 q̃′2 0 0
q̃′1 0 0 0









; (3.22)

q̃′1(ω) = q′11 − q′12 − q′13 + q′14, q̃′2(ω) = q′11 − q′12 + q′13 − q′14,

q̃′3(ω) = q′11 + q′12 − q′13 − q′14, q̃′4(ω) = q′11 + q′12 + q′13 + q′14.

The symmetry of
〈

Ω̂(ω)
〉

c
,
〈

Ω̂′
Q(ω)

〉

c
matrices in the antiferroelec-

tric phase is the same as of ˆ̄ϕ′(ω), and their eigenvalues Ω̃µ(ω), Ω̃
′
Q,µ(ω)

can be written as linear combinations similar to ˜̄ϕ′
µ(ω). Symmetry of

the
〈

Ω̂′(ω)
〉

c
,
〈

Ω̂Q(ω)
〉

c
matrices coincides with the symmetry of a

matrix transposed to q̂′(ω); after the unitary transformation its form

is analogous to the transposed ˜̂q′(ω) matrix with the corresponding
Ω̃′
µ(ω), Ω̃Q,µ(ω) elements. After the unitary transformation, the ma-

trix equation (3.15) becomes diagonal, and equation (3.16) becomes an-
tidiagonal. In order to have in transformed equation (3.16) products
with the same indices µ, that is, Ω̃Q,µ(ω) · ϕ̃′

µ(ω), Ω̃
′
Q,µ(ω) · q̃′1(ω) (in-

stead of Ω̃Q,4(ω) · ϕ̃′
1(ω), Ω̃

′
Q,4(ω) · q̃′1(ω)), one should change numberi-

ng of the Ω̃Q,µ(ω), Ω̃′
Q,µ(ω) matrices eigenvalues to the opposite one

((1, 2, 3, 4) → (4, 3, 2, 1)). Then, when the parameters ϕ̃′
µ(ω), q̃

′
µ(ω) are

found and substituted to the expression for ˜̄η
′
µ(ω) (diagonalized first

equation of (3.13)), we obtain

− ˜̄η
′
µ(ω) =

[

Dµ(ω)/Bµ(ω)− βνµ(~0)
]−1

, (3.23)
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Dµ(ω) =
[

2
〈

F (2)(ω)
〉

c
− Ω̃µ(ω)

] [

2
〈

F (4)(ω)
〉

c
− Ω̃′

Q,µ(ω)
]

−
−
[

2
〈

F (3)(ω)
〉

c
− Ω̃′

µ(ω)
] [

2
〈

F (3)(ω)
〉

c
− Ω̃Q,µ(ω)

]

Bµ(ω) =
〈

F (2)(ω)
〉

c
· Ω̃µ(ω)

[

2
〈

F (4)(ω)
〉

c
− Ω̃′

Q,µ(ω)
]

+

+
〈

F (2)(ω)
〉

c
· Ω̃Q,µ(ω) · Ω̃′

µ(ω)− 2
[〈

F (3)(ω)
〉

c

]2
Ω̃µ(ω).

(3.24)

In the case of ferroelectric ordering in (3.23), (3.24) the eigenvalues of
Ω̃µ(ω), Ω̃Q,µ(ω), Ω̃′

µ(ω), Ω̃
′
Q,µ(ω) matrices are constructed on the matrix

elements 〈Ωff ′(ω)〉c, 〈ΩQ,ff ′(ω)〉c,
〈

Ω′
ff ′(ω)

〉

c

〈

Ω′
Q,ff ′(ω)

〉

c
, similarly

as the matrix ˆ̄ϕ
′
(ω) (3.21). In the case of antiferroelectric ordering, in

these expressions the eigenvalues of Ω̃µ(ω), Ω̃Q,µ(ω) matrices are con-
structed on the matrix elements 〈Ωff ′(ω)〉c; 〈ΩQ,ff ′(ω)〉c, similarly to

the matrix ˆ̄ϕ
′
(ω) (3.21), and of the Ω̃′

µ(ω), Ω̃
′
Q,µ(ω) matrices are con-

structed on the matrix elements
〈

Ω′
ff ′(ω)

〉

c
;
〈

Ω′
Q,ff ′(ω)

〉

c
similarly to

the matrix q̂′(ω) (3.22). Let us note that in the case of a pure system
the expression for η̃′µ(ω) is analogous to (3.23) in the proton glass re-
gion, except that it does not contain the configurational averaging, and
coincides with the expression given in [117].

In this work we shall explore temperature and composition depen-
dences of the complex permittivity of the system

εaa(ω, T ) = ε0aa+4πχaa(ω, T ), ε0aa = 1+4πχ0
aa, (a = 1, 2, 3). (3.25)

Dynamic susceptibility χaa(ω, T )of the system is expressed via dy-
namic eigenvalues ˜̄η

′
µ(ω) (3.23) as in the static case (2.27) after the re-

placement ˜̄η
′
µ → ˜̄η

′
µ(ω).

4. Discussion

4.1. Optimal sets of model parameters

Using the obtained in previous Sections expressions, let us evaluate the
dielectric and thermal characteristics of the Rb1−x(NH4)xH2PO4 type
compounds and compare them with the corresponding experimental da-
ta. Values of the theory parameters should provide the best possible fit
to the experiment.

The found sets of the model parameters for the Rb1−x(NH4)xH2PO4

mixtures (Tc(x = 0) = 147.6K, TN (x = 1) = 148K),
Rb1−x(ND4)xD2PO4 (Tc(x = 0) = 235K, TN(x = 1) = 242K),
Rb1−x(NH4)xH2AsO4 (Tc(x = 0) = 110K, TN(x = 1) = 216K),
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Table 1. Parameters for Rb1−x(NH4)xH2PO4

tetrahedron εα wα ν1,αα(0) ν2,αα(k
z) ν2,αα(0)

state K K K K K
+(Ferro) 80 600 14.33 -50 -40
0(Glass) — — -34 -2 -65

-(Antiferro) -60 500 10 46.8 -35

tetrahedron dzα(G), 10
−18 dzα(F ), 10

−18 dxα(G), 10
−18 dxα(F ), 10

−18

state esu·cm esu·cm esu·cm esu·cm
+(Ferro) 0.93 0.73 2.7 2.7
0(Glass) 1.05 0.7 3.25 0.8

-(Antiferro) 1.18 1.18 2.9 0.85

tetrahedron χ0
33 χ0

11 ve
√

〈g2〉, τz0,α, s τx0,α, s
state 10−21cm K 10−16 10−16

+(Ferro) 0.55 1.25 0.209 — 100 —
0(Glass) 2.9 2.3 — 14.1 0.05 —

-(Antiferro) 0.23 0.7 0.211 — 40 —

Table 2. Parameters for Rb1−x(ND4)xD2PO4

tetrahedron εα wα ν1,αα(0) ν2,αα(k
z) ν2,αα(0)

state K K K K K
+(Ferro) 160 1100 22.76 25 20
0(Glass) — — -44 40 -60

-(Antiferro) -140 750 -40 67.44 -20

tetrahedron dzα(G), 10
−18 dzα(F ), 10

−18 dxα(G), 10
−18 dxα(F ), 10

−18

state esu·cm esu·cm esu·cm esu·cm
+(Ferro) 0.95 0.95 3.25 3.25
0(Glass) 1.7 0.9 3.55 1.0

-(Antiferro) 1.65 1.65 3.15 1.0

tetrahedron χ0
33 χ0

11 ve
√

〈g2〉, τz0,α, s τx0,α, s
state 10−21cm K 10−14 10−14

+(Ferro) 0.8 0.8 0.209 — 2.0 3
0(Glass) 0.6 0.7 — 24.5 0.55 6

-(Antiferro) 0.34 0.58 0.211 — 6.0 3

K1−x(NH4)xH2PO4 (Tc(x = 0) = 122K, TN(x = 1) =148K) are pre-
sented in Tables 1-4, respectively. The dashes in the tables means that
the given tetrahedron is averaged over two states only (without the neu-
tral state 0 (Glass)).
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Table 3. Parameters for Rb1−x(NH4)xH2AsO4

tetrahedron εα wα ν1,αα(0) ν2,αα(k
z) ν2,αα(0)

state K K K K K
+(Ferro) 60 500 9.83 5 5
0(Glass) — — -15 22 -25

-(Antiferro) -100 470 -80 75.19 5

tetrahedron dzα(G), 10
−18 dzα(F ), 10

−18 dxα(G), 10
−18 dxα(F ), 10

−18

state esu·cm esu·cm esu·cm esu·cm
+(Ferro) 0.88 0.59 2.55 2.55
0(Glass) 1.2 0.59 3.2 3.2

-(Antiferro) 1.35 1.35 3.15 1.0

tetrahedron χ0
33 χ0

11 ve
√

〈g2〉, τz0,α, s τx0,α, s
state 10−21cm K 10−14 10−14

+(Ferro) 0.5 0.7 0.2236 — 60 7
0(Glass) 0.45 1.1 — 10 60 7

-(Antiferro) 0.3 0.7 0.2275 — 60 7

Table 4. Parameters for K1−x(NH4)xH2PO4

tetrahedron εα wα ν1,αα(0) ν2,αα(k
z) ν2,αα(0)

state K K K K K
+(Ferro) 65 450 13.54 -70 -60
0(Glass) — — -28 5 -50

-(Antiferro) -60 500 10 46.8 -35

tetrahedron dzα(G), 10
−18 dzα(F ), 10

−18 dxα(G), 10
−18 dxα(F ), 10

−18

state esu·cm esu·cm esu·cm esu·cm
+(Ferro) 0.84 0.73 2.75 2.75
0(Glass) 0.85 0.73 2.95 1.75

-(Antiferro) 1.18 1.18 2.9 0.85

tetrahedron χ0
33 χ0

11 ve
√

〈g2〉, τz0,α, s τx0,α, s
state 10−21cm K 10−14 10−14

+(Ferro) 0.85 0.8 0.1946 — — —
0(Glass) 0.55 0.75 — 10 — —

-(Antiferro) 0.23 0.7 0.2110 — — —

4.2. Spontaneous polarization

The calculated temperature curves of spontaneous polarization
for Rb1−x(NH4)xH2PO4, Rb1−x(ND4)xD2PO4, Rb1−x(NH4)xH2AsO4,
K1−x(NH4)xH2PO4 compounds along with the available experimental
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Figure 2. Temperature behavior of spontaneous polarization of a tetra-
hedron P zs = P z/ve in the ferroelectric region of the phase diagram for
Rb1−x(NH4)xH2PO4 (a) at x: 0.0 – 1, 1’ [95], ∆ [118]; 0.1 – 2; 0.15
– 3; for Rb1−x(ND4)xD2PO4 (b) at x: 0.0 – 1; 0.1 – 2; 0.2 – 3; for
Rb1−x(NH4)xH2AsO4 (c) at x: 0.0 – 1, [18], [119], × [120]; 0.08 –
2; 0.13 – 3; for K1−x(NH4)xH2PO4 (d) at x: 0.0 – 1, - [121], [122],

[123]; 0.12 – 2; 0.17 – 3.

data are shown in fig. 2.
The calculated dependences Ps(T ) well describe the experimental

data at x=0. With increasing x the theory predicts a decrease of spon-
taneous polarization, until it completely vanishes at the concentration
corresponding to the transition into the glass phase composition regi-
on. The temperatures, at which the spontaneous polarization arises in
the ferroelectric phase, or the spontaneous sublattice polarization arises
in the antiferroelectric phase, at different x yield the Tc(x) or TN(x)
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dependences, respectively.
Let us note that at small x the saturation polarization is almost inde-

pendent of x (curves 1 and 2 for all compounds), even though the order
parameter η̄(x, T ) at small T decreases with x. As seen from Eq. (2.9)
the polarization is determined by the product 〈dz〉c η̄. For all explored
compounds the following relation is obeyed dz−(F ) > dz+(F ), and the
average 〈dz〉 increases with x, whereas the low-temperature polarization
of a tetrahedron is almost independent of x. With increasing x the pa-
rameter η̄ rapidly decreases at low T , which leads to a rapid decrease of
saturation polarization. The calculated curves for Rb1−x(NH4)xH2PO4

in the composition range indicate a certain increase of the saturation
polarization with increasing x. In the discussed model the spontaneous
polarization is given by the product . The parameter weakly decreas-
es with increasing at small ammonium concentrations. However, rapidly
tends to zero, when , which leads to disappearance of polarization. Besi-
des, the component of the dipole moment increases monotonically with
increasing , which follows from (2) and from the analysis of experimental
data: esu cm, esu cm, esu cm.

The calculated temperature curves of spontaneous polarization for
the K1−x(NH4)xH2PO4 compounds well describe the experimental data
at 0.0 and 0.19. However, the calculated saturation polarizations at 0.0;
0.04; 0.09 are close each to other but at 0.04; 0.09 is by 20higher than
the experimental data. In our opinion, the spontaneous polarization for
experimental samples with 0.4; 0.9 did not reached its saturation value,
because samples could contain domains with opposite polarizations.

4.3. Molar specific heat

The experimental points for the proton contribution ∆Cp to the specif-
ic heat of the considered systems should be determined by subtracti-
ng the lattice contribution from the measured specific heat; the lat-
tice contribution in the phase transition region is approximated by a
linear dependence. The proposed theory, as seen in figs. 3-6, proper-
ly describes the temperature dependence of proton contribution to the
molar specific heat of the Rb1−x(NH4)xH2PO4, Rb1−x(ND4)xD2PO4,
Rb1−x(NH4)xH2AsO4, K1−x(NH4)xH2PO4 compounds at x=0 and x=1.
At compositions other than x=0 or x=1 the theory predicts a decrease
of the jump of specific heat at Tc and TN and its vanishing at x in the
proton glass composition region. To answer the question about the va-
lidity of the proposed theory for the Rb1−x(NH4)xH2PO4 type systems,
further experimental investigation of the temperature dependences of
specific heat of these crystals in a wide composition range are required.
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Figure 3. Temperature behavior of the proton contribution ∆Cp into the
specific heat of Rb1−x(NH4)xH2PO4 in the ferroelectric (a) region of the
phase diagram at x: 0.0 – 1, 1’ [95], [124], ◦ [125]; 0.1 – 2; 0.15 – 3;
0.3 – 4 and in the antiferroelectric region at x: 1.0 – 1, 1’ [95], ◦ [126];
0.9 – 2; 0.8 – 3; 0.7 – 4; 0.74 – ⋄ [48].
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Figure 4. Temperature behavior of the proton contribution ∆Cp into
the specific heat of Rb1−x(ND4)xD2PO4 in the ferroelectric (a) region
of the phase diagram at x: 0.0 – 1; 0.1 – 2; 0.2 – 3; 0.24 – 4 and in the
antiferroelectric region at x: 1.0 – 1, ◦ [126], 1’ [95]; 0.85 – 2; 0.7 – 3;
0.62 – 4.
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Figure 5. Temperature behavior of the proton contribution ∆Cp into the
specific heat of Rb1−x(NH4)xH2AsO4 in the ferroelectric (a) region of
the phase diagram at x: 0.0 – 1, [119], ⋄ [120]; 0.08 – 2; 0.13 – 3; 0.2
– 4 and in the antiferroelectric region at x: 1.0 – 1, ◦ [127]; 0.75 – 2; 0.6
– 3; 0.45 – 4.
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Figure 6. Temperature behavior of the proton contribution ∆Cp into the
specific heat of K1−x(NH4)xH2PO4 in the ferroelectric (a) region of the
phase diagram at x: 0.0 – 1, ◦ [128], [129], [130]; 0.12 – 2; 0.17 –
3; 0.32 – 4 and in the antiferroelectric region at x: 1.0 – 1, ◦ [126]; 0.85
– 2; 0.75 – 3; 0.67 – 4.

4.4. The Edwards-Anderson parameter

The cumulant Edwards-Anderson parameter QEA(T ) of the
Rb1−x(NH4)xH2PO4 type compounds is different from zero at all
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Figure 7. The temperature dependence of the Edwards-Anderson param-
eter QEA for Rb1−x(NH4)xH2PO4 (a) at x: 0.1 – 1; 0.15 – 2; 0.3 – 3; 0.5
– 4; 0.7 – 5; 0.8 – 6; 0.9 – 7; for Rb1−x(ND4)xD2PO4 at different x: 0.1
– 1; 0.2 – 2; 0.22 – 3, [39]; 0.44 – 4, [39], [69]; 0.62 – 5; 0.7 –
6; 0.85 – 7; for Rb1−x(NH4)xH2AsO4 at different x: 0.08 – 1; 0.13 – 2;
0.35 – 3; 0.6 – 4; for K1−x(NH4)xH2PO4 at different x: 0.12 – 1; 0.17 –
2; 0.32 – 3; 0.5 – 4; 0.67 – 5; 0.75 – 6.

temperatures and concentrations x, except for x = 0 and x = 1 (fig. 7).
This is attributed to the internal random deformational fields, which
arise due to different properties of NH4+ and K+, Rb+ ions. Let us
note that the temperature and composition dependences of QEA(T )
are similar for all compounds. The parameter QEA(T ) has a rounded
peak at the transition from the high-temperature paraelectric phase
to the ferroelectric phase. This indicates a large local fluctuation of
proton ordering parameter ( is the unit cell vector) at T < Tc(x) ,
especially at compositions close to the boundary of the ferroelectric
phase. It can be explained by existence of microdomains with different
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polarization (up and down proton configuration) and microregions with
antiferroelectric ordering of proton on bonds (lateral proton configura-
tion). The parameter QEA(T ) rapidly falls to zero at the transition to
the antiferroelectric phase. This indicates, mainly, the lateral proton
configuration ordering at or T < TN(x) . The parameter QEA(T ) is
the largest in the proton glass composition region and increases with
decreasing temperature. The parameter QEA(T ) (curves 3, 4, 5 for
Rb1−x(NH4)xH2PO4, Rb1−x(ND4)xD2PO4, K1−x(NH4)xH2PO4, 3 for
Rb1−x(NH4)xH2AsO4,) increases quickly from about 0.05-0.1 , which
corresponds approximately to the upper inflection points of the ε′33(T, 0)
and ε′11(T, 0) dependences at the transition from the high-temperature
to the low-temperature region of the paraelectric phase (here QEA(T )
= 0.3-0.4), lying below the temperature maximum of ε′33(T, 0) and
ε′11(T, 0) dependences. For Rb1−x(ND4)xD2PO4 at x = 0.22 the
theoretical curve 3 (fig. 7 (b)) satisfactorily describes the experimental
data of [39]. At the same time, at x = 0.44 our calculations agree with
the data of [69] but the obtained values are lower than those of [39],
both for x = 0.44 and x = 0.22. We think that this can be explained by
an incorrectly determined composition x of the samples in [39].

For K1−x(NH4)xH2PO4 for the temperatures above the inflection
points the experimental data for QEA(T ) calculated from the dielectric
data [40], lie below the theoretical curves. However, for the deuterat-
ed system Rb1−x(ND4)xD2PO4 the data of our calculations [83] and
NMR measurements [39, 69] coincide. So one can assume that the dif-
ferent temperature behavior of QEA(T ) for K1−x(NH4)xH2PO4 and
Rb1−x(ND4)xD2PO4 may be caused either by tunneling not taken into
account in our calculations or by different methods of determination of
QEA(T ) dependences from different experimental data.

Unfortunately, no experimental data for QEA(T ) in other compounds
of this type were available.

4.5. Longitudinal dielectric permittivity

In fig. 8–11 we show the temperature cures of the longitudinal static
permittivity of ε′33(T, 0) (ε′33(T, 0) = ε33(T )) of the Rb1−x(NH4)xH2PO4

type compounds at different x along with the experimental data for
ε′33(T, ω) at low frequencies.

An essential difference between these quantities arises only in the
proton glass composition region and at temperatures below the maxi-
mum of ε′33(T, ν). Here ε′33(T, ν) even at small ν always tends to ε033,
whereas the theoretical static permittivity ε′33(T, 0) at T → 0 tends to a
certain finite value, larger than ε033. At high temperatures the static and
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Figure 8. The temperature dependence of the longitudinal permittivity
ε′33(T, 0) of Rb1−x(NH4)xH2PO4 at different x: 0.0 – 1, 1’ [95], [131],

[132]; 0.15 – 2, [3]; 0.25 – 3, [2], [3]; 0.5 – 4, [2] (1 kHz);
0.7 – 5, [2]; 0.8 – 6; 0.9 – 7; 1.0 – 8, 8’ [95], [133], × [134], [133].

dynamic permittivities practically coincide; this permits us to talk about
qualitative agreement or disagreement between the theoretical curves for
ε′33(T, 0) and experimental points for ε′33(T, ν 6= 0).

In figure 8 we plot the temperature dependences of the longitudinal
permittivity ε′33(T, 0) for Rb1−x(NH4)xH2PO4 at different x. The com-
positions with x=0.0 (curves 1, 1’ and the experimental points), 0.15
(2) correspond to the transition to the ferroelectric phase, x=0.25 (3),
0.5 (4), 0.7 (5) correspond to the transition to the proton glass phase,
whereas x=0.8 (6), 0.9 (7), 1.0 (8, 8’) correspond to the transition to the
antiferroelectric phase (experimental data are available for x=1.0 only).
In the regions with the transition to the ferroelectric phase the calcu-
lated curves of ε′33(T, 0) qualitatively correctly describe the temperature
behavior of experimental data, but their values in the vicinity of the
peak are much larger than experimental. This peak can be smeared out
and lowered down, if we take into account macroscopic fluctuations of
concentration x as well as the piezoelectric effect. In the regions where
the transition to the low-temperature proton glass takes place, the the-
ory and experiment coincide quantitatively at temperatures above the
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Figure 9. The temperature dependence of the longitudinal permittivity
ε′33(T, ν) of Rb1−x(ND4)xD2PO4 at different x: 0.0 – 1; 0.1 – 2; 0.2 –
3; 0.5 – 4, ◦ [9] (10 kHz), [10] (10 GHz); 0.7 – 5; 0.85 – 6; 1.0 – 7,
7’ [95], ⋄ [135].

peak of ε′33(T, ω). At x=0.0, 1.0, considering the dispersion of experi-
ment points, we can talk about a quantitative agreement of theoretical
results with experimental points. For these compositions we also present
the theoretical results [95] (dashed lines 1’, 8’, respectively), obtained
with somewhat different values of the model parameters. Note that the
changes in these values, as compared to those of [95], did not perceptibly
change ε′33(T, 0).

In figure 9 we show the temperature dependence of the longitudinal
permittivity ε′33(T, ν) of Rb1−x(ND4)xD2PO4 at different x. At x=0.0
(1), 0.1 (2), 0.2 (3) (ferroelectric composition region) no experimental da-
ta were available. The experimental points for x=0.5 [9] (10 kHz), ∆ [10]
(10 GHz) correspond to the glass phase composition region (static curve
4). At x=0.7 (5), x=0.85 (6), x=1.0 (7) we have the antiferroelectric
ordering region. Let us note that for x=1.0 the agreement with experi-
ment for ε33(T ) (curve 7’) would be slightly better if a different set of
the model parameter values was used [95].

In figure 10 the calculated longitudinal static permittivity ε33(T )
for Rb1−x(NH4)xH2AsO4 is compared with the experimental data for
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Figure 10. The temperature dependence of the longitudinal permittivity
ε′33(T, ν) of Rb1−x(NH4)xH2AsO4 at different x: 0.0 – 1, [131], ⊲ [136];
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Hz, 30 KHz); 0.75 – 5; 1.0 – 6, [137]. The dashed lines correspond to
the theoretical curves for x=0.35, ν=1 Hz, 30 kHz.

ε′33(T, ν 6= 0) for different compositions x at low frequencies ν. In the
ferroelectric phase composition region (x=0; 0.08; 0.13) the static theory
correctly describes parts of the curves above Tc(x) as well as the position
of the maximum of ε′33(T, ν → 0), but their values in the vicinity of the
peak are much larger than experimental. This peak can be smeared out
and lowered down, if we take into account macroscopic fluctuations of
concentration x as well as the piezoelectric effect. In the proton glass
composition region the theory and experiment coincide quantitatively
at temperatures above the peak of ε′33(T, ν). At x=0.0, 1.0, considering
the dispersion of experiment points, we can talk about a quantitative
agreement of theoretical results with experimental points.

In figure 11 we plot the temperature curve of the longitudinal per-
mittivity ε′33(T, ω) for K1−x(NH4)xH2PO4 at different x. Like for other
systems, in the ferroelectric region the calculated values of ε33(T ) in the
vicinity of the peak are too high. The best agreement with experiment is
obtained in regions of the so-called “pure” phases, that is, x→ 0, x→ 1,
and x in the middle of the glass phase composition range.
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Figure 11. The temperature dependence of the longitudinal permittivity
ε′33(T, 0) of K1−x(NH4)xH2PO4 in the ferroelectric region of the phase
diagram at different x: 0.0 – 1, [22] (100 kHz), × [138], ⊳ [121]; 0.12
– 2, [55] (175 Hz); 0.17 – 3, [22] (100 kHz); 0.25 – 4, [22] (100
kHz); 0.32 – 5, [19] (1к+ц), [20] (0.1 Hz); 0.5 – 6; 0.75 – 7; 1.0 –
8, ⊲ [133], ◦ - [134], - [139].

At low temperatures the experimental ε′33(T, ν) rapidly decreases,
because it is measured at non-zero frequencies. This decrease is quali-
tatively correctly described by the calculated real part of the dynamic
permittivity ε′33(T, ν) in the glass phase composition region, as shown
in fig. 12 for Rb1−x(ND4)xD2PO4 at x=0.5 and in fig. 10 (dashed lines)
for Rb1−x(NH4)xH2AsO4 x=0.35 (at ν=1 Hz, 30 kHz).

In the glass phase composition region the maximum of ε′′33(T, ν)
(approximately coincides with the low-temperature inflection point of
ε′33(T, ν)) corresponds to the temperature, at which the relaxation time
is close to the field period. For Rb1−x(ND4)xD2PO4 at x=0.5 the cal-
culated real and imaginary parts of ε33(T, ν) at different frequencies
satisfactorily describe the experimental data. The theory yields a faster
decrease than the experiment for ε′33(T, ν) and a more narrow and high
peak for ε′′33(T, ν). We attribute this drawback to the imperfect pro-
cedure of configurational averaging of the susceptibility. In the case of
Rb1−x(NH4)xH2AsO4 the calculated imaginary part of ε33(T, ν) has a
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Figure 12. The temperature dependences of real ε′33(T, ν) (a)
and imaginary ε′′33(T, ν) (b) parts of longitudinal permittivity for
Rb1−x(ND4)xD2PO4 at x=0.5 and at different frequencies: 6 MHz –
1, 1’ [9]; 1 GHz – 2, 2’, [9]; 8 GHz – 3, 3’, × [10]; 10 GHz – 4, 4’,

[10]; 36 GHz – 5, 5’, [10]; 52 GHz – 6, 6’, [10]; 150 GHz – 7,
7’, [10];

very narrow and high peak. This discrepancy can be possibly caused by
the tunneling effects, essential in undeuterated compounds, which are
not taken into account in our calculations performed within the Glauber
dynamics approach.

At high temperatures the frequency dependence of the complex per-
mittivity ε(T, ν) is close to the Debye type (fig. 13). At low temperatures
the Debye-type behavior disappears. In the imaginary part of the permit-
tivity a clear two-peak structure of the dielectric spectrum is observed.
In the antiferroelectric phase the low-frequency peak is less pronounced.

We also calculated ε′aa(T, ν), ε
′′
aa(T, ν) (a = 1, 3) in the regions of

ferroelectric and antiferroelectric ordering. At low frequencies and at
temperatures near and above Tc(x) ε

′
aa(T, ν) practically coincides with

the static permittivity εaa(T ). At low temperatures ε′′33(T, ν) has a peak
(correspondingly, ε′33(T, ν) has a bend ) (see fig. 14 for x = 0.2).

With lowering x the temperature position of this peak in ε′′aa(T, ν)
practically does not change, but its height rapidly decreases. We failed
to find this peak numerically at x < 0.15. A similar peak is detected in
the antiferroelectric phase region at 0.65 < x < 0.70. Let us note that for
the same frequency ε′′11(T, ν) < ε′′33(T, ν) for all concentrations x, what
agrees with the experimental data.

This sharp peak can be smeared out if we put ω 6= 0 and perform
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Figure 13. The frequency dependence of real ε′33(T, ν) and imagine
ε′′33(T, ν) parts of longitudinal permittivity (a) for Rb1−x(ND4)xD2PO4
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Figure 14. The temperature dependence of longitudinal ε′11(T, ν) and
transverse permittivities ε′33(T, ν) for Rb1−x(ND4)xD2PO4 compound
for x=0.2 at 1 MHz.

an additional averaging over macroscopic fluctuations of concentration.
For x = 0.35 the theory yields a faster decrease than experiment for
ε′33(T, ω), as well as a very narrow and sharp peak of ε′′33(T, ω).

In the case of undeuterated compounds of the Rb1−x(NH4)xH2PO4

type a certain role in the low-temperature dynamics can be played by
tunneling of protons on hydrogen bonds. To describe it we need to go
beyond the scope of the method of Glauber kinetic equations. At the
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same time, the proposed here approach can be used for a qualitative
evaluation of the behavior of the dynamic characteristics in this type of
compounds.

It should be noted that both for the transverse and longitudinal per-
mittivities the best description of experimental data is obtained in the
regions of the so-called “pure” phases, that is x→ 0, x→ 1, and the glass
phase region at x ∼ 0.5 for Rb1−x(NH4)xH2PO4, Rb1−x(ND4)xD2PO4,
K1−x(NH4)xH2PO4 and x ∼ 0.35 for Rb1−x(NH4)xH2AsO4.

The proposed here approach can be used to describe of the dynam-
ic characteristics of Rb1−x(ND4)xD2PO4 compounds and to evaluate
the qualitative behavior of the permittivities of Rb1−x(NH4)xH2PO4,
Rb1−x(NH4)xH2AsO4, K1−x(NH4)xH2PO4.

4.6. Transverse dielectric permittivity

In figures 15-18 we present the calculated temperature dependences
of static transverse permittivity ε′11(T, 0) (ε′11(T, 0) = ε11(T )) of the
Rb1−x(NH4)xH2PO4 type compounds as well as experimental data for
ε′11(T, ω) at low frequencies. The transverse permittivity, in contrast
to the longitudinal one, is finite at all compositions. At temperatures
above Tc(x) and TN (x) ε11(T ) monotonically increases with increasing
x, whereas ε33(T ) monotonically decreases. Just like for ε′33(T, 0), an
essential difference between ε′11(T, 0) and ε′11(T, ω 6= 0) exists only in
the composition range of the glass phase and at temperatures below
the maximum of ε′11(T, ω). Here ε′11(T, ω) always tends to ε011, whereas
the theoretical static permittivity ε′11(T, 0) at T → 0 tends to a cer-
tain finite value larger than ε011(x). However, at high temperatures, like
the longitudinal permittivity, the dynamic and static curves of the trans-
verse permittivity practically coincide. This fact enables us to talk about
qualitative agreement or disagreement between the theoretical curves for
ε′11(T, 0) and the experimental points for ε′11(T, ω 6= 0).

In figure 15 we show the temperature behavior of the transverse per-
mittivity ε′11(T, 0) of Rb1−x(NH4)xH2PO4 at different x. In the ferro-
electric (curves 1, 1’, 2) and antiferroelectric (curves 6, 7, 7’) phase com-
position ranges the temperature curves of ε′11(T, 0) have jumps at Tc(x)
and TN(x), respectively. The curves 3, 4, 5 correspond to the glass phase
composition range. A similar temperature dependence of ε′11(T, 0) is ob-
served also for the other compounds of the Rb1−x(NH4)xH2PO4 type.
Overall the theoretical results satisfactorily agree with the experimental
data. However, at x=0.8 (the antiferroelectric phase composition range)
the theory yields a lower peak and a faster decrease of permittivity at
the Neel temperature, than it is experimentally observed. In the ferro-



48 Препринт

0 50 100 150
0

20

40

60

80

100

120

ε
11

 

3 

2 
1 

1’ 

T, K

4 

x=0.0 (1, 1’)
    0.1 (2)
    0.3 (3)
    0.5 (4)     
    0.7 (5)     
    0.8 (6)
    1.0 (7, 7’)      

5 

6 

7 7’ 

Figure 15. The temperature dependences of transverse permittivity
ε′11(T, 0) of Rb1−x(NH4)xH2PO4 at different x: 0.0 – 1, 1’ [95], [140];
0.1 – 2; 0.3 – 3; 0.5 – 4, [2]; 0.7 – 5, [2]; 0.8 – 6, (cool) [4],

(heat) [4]; 1.0 – 7, 7’ [95], × [141], [142], [22].

electric phase the experimental data are available only for x=0.0. The
curves 1’ for x=0 and 7’ for x=1 in fig. 15 are the theoretical calculations
of [95], where a certain relation was used, being a partial case of (2.27)
at x=0; 1. However, in that paper a somewhat different values of the
model parameters is used. The found here sets of the model parameters
permit us to describe the thermodynamic and dielectric characteristics
at all compositions x = [0, 1].

In figure 16 the theoretical static transverse permittivity ε′11(T, 0)
of Rb1−x(ND4)xD2PO4 is compared with experimental data, including
the data for the real part of the transverse permittivity ε′11(T, ω 6= 0)
at low frequencies ω [9, 11, 12, 135,141]. For x=0.0 (curve 1), x=0.1 (2),
x=0.2 (3) only the theoretical results are shown. As one can see, for
x=0.24 (4), 0.50 (5), 0.62 (6) the theoretical calculations well agree
with experimental data. At x=0.50 the presented experimental values
for ε′11(T, ν = 10kHz) of [9] are larger than the values of ε′11(T, 0) ob-
tained in [12] even at high temperatures. This can indicate an unreliable
estimation of concentration x=0.50 in either of these papers or an uncer-
tainty of the experimental data for ε′11(T, 0). At x=0.7 (7) the calculated
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Figure 16. The temperature dependences of transverse permittivity
ε′11(T, 0) of Rb1−x(ND4)xD2PO4 at different x: 0.0 – 1; 0.1 – 2; 0.2
– 3; 0.24 – 4, [12] (stat); 0.5 – 5, [12] (stat), [9] (10 kHz); 0.62
– 6, ⋄ [11] (300 Hz); 0.7 – 7, [12] (1к+ц); 0.85 – 8; 1.0 – 9, 9’ [95],

[141], ⊳ [135].

curve of ε′11(T, 0) lies below the experimental points of [12] for 1 kHz.
The most essential deviation from the experimental data is obtained
at compositions close to x ∼0.2 and x ∼0.65, which are the transition
regions between the ferroelectric and glass phases and between the an-
tiferroelectric and glass phases. In these composition ranges we need to
taken into account a possible coexistence of different phases. This will
be a subject of a separate study.

In figure 17 the theoretical transverse permittivity ε′11(T, ω) of
Rb1−x(NH4)xH2AsO4 is compared with available experimental data at
low frequencies. The phase diagram is strongly asymmetric, and the
proton glass state exists in the region x = [0.2; 0.45]. As seen, a good
agreement with experiment takes place in the regions far from the phase
boundaries (curves 1,2 for the ferroelectric state and 5, 6 for the antifer-
roelectric state). The value of x=0.15 corresponds to the intermediate
region between the ferroelectric and proton glass phases. The rounded
maximum in the experimental curve, most likely, is related to coexis-
tence of ferroelectric and glass phases. Below the permittivity maximum
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Figure 17. The temperature dependences of transverse permittivity
ε′11(T, ω) of Rb1−x(NH4)xH2AsO4 at different x: 0.0 – 1, [16]; 0.08 –
2, ⋄ [18] (1 kHz); 0.15 – 3, [16] (1+ц, 30 kHz); 0.35 – 4, [15] (1
Hz, 30 kHz); 0.75 – 5, [17] (1 MHz); 1.0 – 6, [137], [143].

a similar to the described above for the glass phase deviation of the static
theoretical curve from the experimental points at ω 6= 0 takes place.

There is a lot of experimental data for the transverse permittivity
of the K1−x(NH4)xH2PO4 mixture (see fig. 18) for the compositions
from the ferroelectric (x=0.0; 0.047; 0.166) and antiferroelectric (x=0.75;
0.85; 0.85; 1.0) regions. Just like in the above discussed compounds,
the most prominent discrepancy between the theory and experiment is
observed for the compositions of the transition regions (curves 3 and 7).
Unfortunately, the experimental data for K1−x(NH4)xH2PO4 at x ∼ 0.5
are very limited. Most likely, this is caused by difficulties in growing
these crystals at x ∼ 0.5, since x in the obtained samples depends on x
in the solution in a non-linear manner [36].

Let us consider now the dynamic permittivity ε11(T, ω) in the proton
glass phase (x=0.5) for Rb1−x(ND4)xD2PO4. In figure 19 along with the
available experimental data we plot the calculated temperature depen-
dences of the real ε′11(T, ω) and imaginary ε′′11(T, ω) parts of the permit-
tivity at different frequencies. The maximum of ε′′11(T, ω) corresponds
to the inflection point of the ε′11(T, ω) curve. A large dispersion of the
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Figure 18. The temperature dependences of transverse permittivity
ε′11(T, 0) of K1−x(NH4)xH2PO4 at different x: 0.0 – 1, [54] (10 kHz),
⊳ [139], ⊲ [144]; 0.047 – 2, [54] (10 kHz); 0.166 – 3, [54] (10 kHz);
0.25 – 4; 0.5 – 5; 0.67 – 6, [19] (1 kHz); 0.75 - 7, [19] (1 kHz);
0.8 - 8, [19] (1 kHz); 0.85 - 9, [22] (100 kHz); 1.0 - 10, [141],
× [142], [22] (100 kHz).

experimental data takes place. For ε′11(T, ω) the data of [9] (in the region
of the low-temperature decrease) approximately correspond to the data
of [12] for essentially lower frequencies. The points for ν=10 kHz [12] ]
in the decrease region are shifted to higher temperatures as compared
to the points of [9] for ν=10 kHz. The latters are very close to the data
for ν=1 Hz [12]. Then the points of [9] for ε′33(T, ω) at ν=10 MHz are
shifted to lower temperatures as compared to the points of [12] at ν=1
MHz. Our theoretical curves for ν=10 kHz (curve 2), 10 MHz(3), 1 GHz
(4) qualitatively well describe the experimental temperature behavior
of ε′11(T, ω) and ε′′11(T, ω) obtained in [9]. However, the theory yields a
larger shift of the curves at changing frequency and a sharper shape and
larger values of the imaginary part of the permittivity.

For Rb1−x(NH4)xH2AsO4 (see fig. 17) at x = 0.35 (approximately
the center of the glass phase) we also compared the theoretical results
with the experimental data of [16] at frequencies ν=1 Hz, 30 kHz. The
theory also yields a faster, as compared to experimental, decrease of
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Figure 19. The temperature dependences of transverse permittivity
ε11(T, ω) of Rb1−x(ND4)xD2PO4 at x=0.5 and different frequencies 0
Hz – 1; 1 Hz – [12]; 1 kHz – [12]; 10 kHz – 2, [9]; 1 MHz –

[12]; 10 MHz – 3, [9]; 1 GHz – 4, [9].

ε′11(T, ω) with lowering temperature and a sharper shape and larger val-
ues of the imaginary part of the permittivity (dashed lines in fig. 17).
This can be associated with an imperfect procedure of configurational
averaging, as well as to neglected proton tunneling on hydrogen bonds
in Rb1−x(NH4)xH2AsO4.

4.7. Phase diagrams

The phase diagrams of the Rb1−x(NH4)xH2PO4 system are constructed,
using the calculated physical characteristics of the crystals. The following
regions are present in these diagrams: HP (high-temperature region of
paraelectric phase), LP (low-temperature region of paraelectric phase),
F ( ferroelectric phase), AF (antiferroelectric phase) (figs. 21–22).

Typical peculiarities of the phase diagrams of the considered com-
pounds will be discussed by the example of Rb1−x(ND4)xD2PO4 ( fig.11
). At high temperatures the system is in paraelectric phase. It region
is designated like the HP, because here the reduce Edwards-Anderson
parameter QEA is small but different from zero and decreases with in-
creasing temperature. For x < 0.2 and x > 0.65 a spontaneous polar-
ization or sublattice spontaneous polarization arise at T < Tc(x) and
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Figure 20. The phase diagram of the Rb1−x(NH4)xH2PO4 mixture con-
structed using various physical characteristics ( – [2], , , – [32],

, , – [35], , , , +, × – [145], , , – [146]). The
solid lines are the Tc, TN , and Tg transitions obtained from the maxima
of ε′33(T, 0).

T < TN(x), respectively. As a result, the system goes to the ferroelectric
or antiferroelectric state. Here the reduce Edwards-Anderson parameter
QEA can be significant ( fig.5) in vicinities of Tc(x), TN (x) and in ferro-
electric phase for x close to glass phase composition region. In the central
composition region we designate the low-temperature region of paraelec-
tric phase. This region lies below the maxima of the static permittivities
ε11(T ) and ε33(T ) ( the solid lines in fig.11, fig.12 ) and attributes large
value of QEA. The dashed lines (Tg,11(x, ν) and Tg,33(x, ν)) correspond
to the low-temperature peaks of ε′′11(T, ν) and ε′′33(T, ν) at ν = 1 MHz for
Rb1−x(ND4)xD2PO4 (the so-called freezing lines).These lines continue
in the regions x < 0.2 and x > 0.65, where the paraelectric (or the proton
glass) phase possibly coexists with ferroelectric or antiferroelectric phas-
es, respectively. Numerical calculations show that Tg,11(x, ν) → 0 and
Tg,33(x, ν) → 0 at ν → 0, so within the frame of our theory the aver-
aged relaxation times for longitudinal and transverse permittivity have
an Arrhenius-like temperature behavior that is T0 = 0 (Vogel-Fulcher
temperature). It should to note the approximation for averaged relax-
ation times on the basic of the experimental datum ( [10]) gives value
T0 ≈32K for x=0.5. The presented in this phase diagram experimental
points of [50] were obtained by NMR studies.



54 Препринт

  0.90.80.70.60.50.40.30.20.10  
0

50

100

150

200

250

T,K 

F 

HP 

DRADP 

AF 

LP 

x 

max ε
33

 

max ε
11

 

max ε"
33

 

max ε"
11

 

Figure 21. The phase diagram of the Rb1−x(ND4)xD2PO4 mixture. ⊳
– [7], ◦ – [9], – [12], ⊲– [13], ⋄– [50]. The solid lines are the Tc, TN ,
and Tg transitions obtained from the maxima of ε33(T ) and ε11(T ). The
dashed lines are the Tg lines obtained from the maxima of ε′′33(T, ν) and
ε′′11(T, ν) at frequency 1MHz.

The phase diagram of Rb1−x(NH4)xH2AsO4 is strongly asymmetric
(fig. 22), and the proton glass composition region exists at x = (0.2; 0.45).
The freezing lines Tg,11(x, ν) and Tg,33(x, ν) (dashed lines) correspond
to the maxima of ε′′11(ν = 30 kHz,T) and ε′′33(ν = 30 kHz,T). The ap-
proximation on the basic of the experimental datum ( [17]) gives val-
ue T0 ≈30K for x=0.36. According to the experimental data [18, 147]
Tg,11(x, ν) is observed in the ferroelectric phase down to x=0.01. Also
Tg,11(x, ν) → 0 with decreasing x. The calculations yield the freezing
line down to x ∼0.15. Overall, the calculated phase diagram correctly
describes the available experimental lines, even though some discrepan-
cies are present. Thus, at the accepted values of the theory parameters
the glass phase composition region is somewhat wider x ∼ [0.18; 0.46]
than the experimental one x ∼ [0.22; 0.42]. This difference can be related
with an incorrectly determined concentration x in experimental samples.

In the phase diagram of Rb1−x(NH4)xH2PO4 (fig. 20) the
temperatures of the phase transitions are lower than those of
Rb1−x(ND4)xD2PO4, whereas the glass phase region is wider. This is
caused by influence of proton tunneling. The experimental points are
obtained from dielectric permittivity measurements [2,145,146], Raman
scattering [35] and X-ray diffraction [32].
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Figure 22. The phase diagram of the Rb1−x(NH4)xH2AsO4 mixture. ,
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TN , and Tg transitions obtained from the maxima of ε33(T ) and ε11(T ).
The dashed lines are the Tg lines obtained from the maxima of ε′′33(T, ν)
and ε′′11(T, ν) at frequency 30kHz.

1 0.90.80.70.60.50.40.30.20.10  
0

20

40

60

80

100

120

140

160

IF 

NPG 

IAF 

max ε
33

 

max ε
11

 

EPG 

DRADP 

T,K 

x 

Figure 23. The phase diagram of the K1−x(NH4)xH2PO4. ⋄ - [19],
– [22], ◦– [54], - [55].The solid lines are the Tc, TN , and Tg transitions
obtained from the maxima of ε′33(T, 0) and ε′11(T, 0).
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The phase diagram of K1−x(NH4)xH2PO4 (fig. 23) is qualitative-
ly similar to that of Rb1−x(NH4)xH2PO4. Its experimental points are
obtained from the data for the maximum of the real part of trans-
verse [19,22,54] and longitudinal [19,22,55] dielectric permittivities. By
the circles at low temperatures in the ferroelectric phase we show the
temperatures of the maximum of ε′′11(T, ω).

It should be noted that both for the transverse and longitudinal per-
mittivities the best description of experimental data is obtained in the
regions of the so-called “pure” phases, that is x→ 0, x→ 1, and the glass
phase region at x ∼ 0.5 for Rb1−x(NH4)xH2PO4, Rb1−x(ND4)xD2PO4,
K1−x(NH4)xH2PO4 and x ∼ 0.35 for Rb1−x(NH4)xH2AsO4.

5. Modified proton ordering model for the KD2PO4

type crystals

We consider a system of deuterons moving on O–D-. . .-O bonds in
deuterated crystals of the KD2PO4 type. Axes of the reference system
(x,y,z) coincide with the the tetragonal (I4̄2d) crystallographic axes. The
primitive cell of such a crystal is composed of two neighbouring PO4

tetrahedra together with four hydrogen bonds attached to one of them
(”A” type tetrahedra). Hydrogen bonds going to another (”B” type)
tetrahedron belong to four nearest structural elements surrounding it
(see fig. 24).
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Figure 24. The primitive cell of the KD2PO4 crystal. One of possible
ferroelectric proton configurations is shown.

The full model Hamitlonian of the deuteron subsystem of the
KD2PO4 type ferroelectrics with taking into account the short-range
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and long-range interactions in presence of mechanical stresses σ6 = σxy,
σ4 = σyz and electric fields +3, +1 applied along the crystallographic
axes c and a reads

Ĥ = NUseed + Ĥlong + Ĥshort −
∑

qf

(µf1E1 + µf3E3)
σqf
2
, (4.1)

where N is the number of the primitive cells; σqf is the z-component
pseudospin operator, describing the state of a deuteron in the q-th cell
on the f-th bond. Two eigenvalues of the operator σqf = ±1 are assigned
to two equilibrium positions of a deuteron on the bond. Effective dipole
moments µ1, µ3, as shown in [149], are sums of the dipole moments of
the tetrahedra and of hydrogen bonds, with

µ11 = −µ31 = µ1 cos γ, µ21 = −µ41 = µ2 sin γ,

µ13 = µ23 = µ33 = µ43 = µ3.

The “seed” energy Useed is expressed in terms of the electric fields E1

and E3 and strains ε4 and ε6. It consists of the elastic, piezoelectric, and
dielectric parts

Useed = v(
1

2
cE0
44 ε

2
4 +

1

2
cE0
66 ε

2
6 − e014ε4E1 − e036ε6E3 −

−1

2
χε011E

2
1 − 1

2
χε033E

2
3 ), (4.2)

where v is the primitive cell volume, cE0
44 , cE0

66 , e014, e
0
36, χ

ε0
11, χ

ε0
33 are the

“seed” elastic constants, piezoelectric coefficients, and dielectric suscep-
tibilities. The “seed” characteristics determine the temperature depen-
dences of the corresponding physical characteristics far from the transi-
tion temperature Tc.

The Hamiltonian Ĥlong includes the long-range and indirect lattice-
mediated interactions between deuterons taken into account in the mean
field approximation, as well as the linear over the strains ε4 and ε6
mean field [98, 99] induced by the piezoelectric coupling. Ĥshort is the
Hamiltonian of the short-range interactions between the deuterons.

The dielectric, piezoelectric, and elastic characteristics of the
KD2PO4 type crystals will be explored using the thermodynamic po-
tential. Taking into accounts the peculiarities of the crystalline struc-
ture of KD2PO4, to find the thermodynamic potential we shall use the
four-particle cluster approximation [90]. In this approximation the ther-
modynamic potential of KD2PO4 reads

G = NUseed +
1

2

∑

qq′

ff ′

Jff ′(qq′)
〈σqf 〉
2

〈σq′f ′〉
2

− (4.3)
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−1

2
T
∑

q

4
∑

f=1

lnZ1f − T
∑

q

lnZ4 −Nv(σ4ε4 + σ6ε6),

where Z1f = Spe−βĤ
(1)
qf , Z4 = Spe−βĤ

(4)
q are the single-particle and four-

particle partition functions. The single-particle Ĥ
(1)
qf and four-particle

Ĥ
(4)
q deuteron Hamiltonians of deformed KD2PO4 crystals are given by

the expressions

Ĥ
(1)
qf (j) =

x̄fj
β

σqf
2
, (4.4)

Ĥ(4)
q = (−δs6ε6−2δ16ε6)× (4.5)

×
(σq1

2

σq2
2

σq3
2

+
σq1
2

σq2
2

σq4
2

+
σq1
2

σq3
2

σq4
2

+
σq2
2

σq3
2

σq4
2

)

+

+2(δa4ε4 − δ14ε4)
(σq1

2

σq2
2

σq4
2

− σq2
2

σq3
2

σq4
2

)

+

+(Vs + δa6ε6)
(σq1

2

σq2
2

+
σq3
2

σq4
2

)

+

+(Vs − δa6ε6)
(σq2

2

σq3
2

+
σq4
2

σq1
2

)

+

+Us

(σq1
2

σq3
2

+
σq2
2

σq4
2

)

+Φs
σq1
2

σq2
2

σq3
2

σq4
2

−

−1

4
(δs6ε6 − 2δ16ε6)

4
∑

f=1

σqf
2

− 1

2
(δa4ε4 + δ14ε4)

(σq1
2

− σq3
2

)

−

−
4
∑

f=1

xfj
β

σqf
2
.

In (4.4), (4.5) we used the following notations

x1
3j

= β[−∆j + 2ν1
3
η
(1)
1 (j) + 2ν3

1
η
(1)
3 (j) + 2ν2η

(1)
2 (j) + 2ν2η

(1)
4 (j) +

−2ψ6ε6 ± 2ψ4ε4 ± µ1 cos γE1 + µ3E3], (4.6)

x2
4j

= β[−∆j + 2ν2η
(1)
1 (j) + 2ν2η

(1)
3 (j) + 2ν1

3
η
(1)
2 (j) + 2ν3

1
η
(1)
4 (j) +

−2ψ6ε6 ± µ1 sin γE1 + µ3E3], j = 4, 6.

x̄fj = −β∆+ xfj .

Here η
(1)
f (j) = 〈σqf 〉;

ν1 =
J11
4
, ν2 =

J12
4
, ν3 =

J13
4

;
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Jff ′ =
∑

Rq−Rq′

Jff ′(qq′) is the Fourier transform of the long-range inter-

action constants; ψ4, ψ6 are the so-called deformation potentials;

Vs = −w1

2
, Us =

w1

2
− ε, Φs = 4ε− 8w + 2w1,

р ε = εa− εs, w = ε1− εs, w1 = ε0− εs are the so-called Slater energies;
∆ is the effective cluster field created by the neighboring bonds from
outside the cluster.

If the crystal is free from external electric field and stress, the equa-
tion for the mean pseudospin value η(1) is

η(1) =
sh(2x+ βδs6ε6) + 2b sh(x − βδ16ε6)

ch(2x+ βδs6ε6) + 4b ch(x − βδ16ε6) + 2a+ d
,

where

x =
1

2
ln

1 + η(1)

1− η(1)
+ βνcη

(1) − βψ6ε6 = z6, νc = ν1 + 2ν2 + ν3,

a = exp−βε, b = exp−βw, d = exp−βw1 , β = 1/kBT.

6. Dielectric, piezoelectric, and elastic characteristics
of the MD2XO4 ferroelectrics

Let us find first the dynamic characteristics of the MD2XO4 crystals,
namely, the frequency dependent dielectric susceptibilities of mechani-
cally free and clamped crystals; then the expressions for the static di-
electric, piezoelectric, and elastic characteristics at ω → 0 will be given.

6.1. Longitudinal dynamic dielectric susceptibility

The dynamic properties of the MD2XO4 crystals in presence of the stress
σ6 will be considered using the dynamic model of deuterated ferroelectric
crystals of this type,nd based on the stochastic Glauber model. Using
the procedure developed in [113,114], we obtain the following system of
equations for the time dependent deuteron distribution functions

− α
d

dt
〈
∏

f

σqf 〉 =
∑

f ′







〈
∏

f

σqf

[

1− σqf ′ tanh
1

2
βεzqf ′(t)

]

〉







, (5.1)

where ε
z
qf ′(t) is the local field acting on the f ′th deuteron in the q-

th cell that can be determined from the Hamiltonian (4.5). Expanding



60 Препринт

tanh 1
2βε

z
qf ′(t) is series over the pseudospin operators entering the cluster

Hamiltonains and taking into account the fact that σ2
qf = 1 and the

symmetry of the deuteron distribution functions in the KD2PO4 type
crystals in present of the electric field E3

η(1)z(6) = 〈σq1〉 = 〈σq2〉 = 〈σq3〉 = 〈σq4〉, (5.2)

η(3)z(6) = 〈σq1σq2σq3〉 = 〈σq1σq3σq4〉 = 〈σq1σq2σq4〉 = 〈σq2σq3σq4〉,
η
(2)z
1 (6)=〈σq2σq3〉=〈σq1σq4〉, η

(2)z
2 (6)=〈σq1σq2〉=〈σq3σq4〉,

η
(2)z
3 (6)=〈σq1σq3〉=〈σq2σq4〉,

we obtain a closed system of equations for the time-dependent single-
particle, three-particle, and two-particle deuteron distribution functions.

We consider vibrations of a thin square plate of a MD2XO4 crystal
cut in the (001) plane with sides l, induced by external time-dependent
electric field E3t = E3e

iωt. The dynamics of the deformational processes
in MD2XO4 will be described using the classical equation of motions of
an elementary crystal volume, which read

ρ
∂2ui
∂t2

=
∑

k

∂σik
∂xk

, (5.3)

where ρ is the crystal volume; ui are the displacements of the elementary
volume along the axis xi; σik is the mechanical stress. The sheat strain
ε6 is determined by the displacements ux = u1, uy = uz, that is

ε6 = εxy =
∂u1
∂y

+
∂u2
∂x

.

The dynamic properties of the MD2XO4 crystals will be studied at
small deviations from equilibrium. Let us present these systems as sums
of the static and dynamic parts. To do so, we write the distribution
functions, effective fields, displacements u1, u2, and the strains as sums
of the equilibrium functions and their deviations from equilibrium values

η(1)(6) = η̃(1)(6) + η
(1)
t (6), η(3)(6) = η̃(3)(6) + η

(3)
t (6), (5.4)

η
(2)
i (6) = η̃

(2)
i (6) + η

(2)
t (6), (i = 1, 2, 3),

ε6 = ε̃6 + ε6t, u1,2 = ũ1,2 + u1,2t,

zz6 = z̃6 + z6t = −β∆̃ + 2βνcη̃
(1)(6)− 2βψ6ε̃6 −

−β∆̃t + 2βνcη̃
(1)
t (6)− 2βψ6ε̃6t + βµ3E3t.
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In the result, we obtain the following system of equations for the
time-dependent parts of the distribution functions

d

dt















η
(1)
t (6)

η
(3)
t (6)

η
(2)
1t (6)

η
(2)
2t (6)

η
(2)
3t (6)















=











c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55

























η
(1)
t (6)

η
(3)
t (6)

η
(2)
1t (6)

η
(2)
2t (6)

η
(2)
3t (6)















−

−1

2
βµ3E3t











c1
c2
c3
c4
c5











+βψ6ε6t











c1
c2
c3
c4
c5











−βδs6ε6t











c1s
c3s
c2s
c2s
c2s











+

+βδa6ε6t











c1a
−c1a
c2a
−c2a
c3a











−βδ16ε6t











c̃11
c̃21
c̃31
c̃41
c̃51











. (5.5)

The coefficients c11, ..., c̃51 are given in [150].
We write the equations for the displacements u1t, u2t in the following

form

ρ
∂2u1t
∂t2

=c16
∂ε6t
∂y

+c26
∂η

(1)
t (6)

∂y
, ρ

∂2u2t
∂t2

=c16
∂ε6t
∂x

+c26
∂η

(1)
t (6)

∂x
, (5.6)

expressions for c16, c26 given in [150].
Solving the systems (5.5), (5.6), we finally obtained the following

expression for the longitudinal dynamic susceptibility of a mechanically
free KD2PO4 type crystal [113]:

χσ33(ω) = χε33(ω) +
1

R6(ω)

e236(ω)

cE66(ω)
, (5.7)

where
1

R6(ω)
=

2

k6l
tan

k6l

2
, k6 =

ω
√
ρ

√

cE66(ω)
. (5.8)

In (5.7) the longitudinal dynamic susceptibility of a mechanically
clamped crystal is

χε33(ω) = χε033 +
βµ2

3

2v
F (1)(ω), (5.9)
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e36(ω) = e036 + (5.10)

+
βµ3

v

[

−ψ6F
(1)(ω) + δs6F

(1)
s (ω) + δ16F

(1)
1 (ω)− δa6F

(1)
a (ω)

]

,

cE66(ω) = cE0
66 +

4βψ6

vD6
f6 +

2β

vD2
6

(−δs6Ms6 + δ16M16 + δa6Ma6)
2+(5.11)

+
4βψ6

v

[

−ψ6F
(1)(ω) + δs6F

(1)
s (ω) + δ16F

(1)
1 (ω)− δa6F

(1)
a (ω)

]

−

−4ϕ3f6
vD6

β
[

−ψ6F
(1)(ω) + δs6F

(1)
s (ω) + δ16F

(1)
1 (ω)− δa6F

(1)
a (ω)

]

−

− 2β

vD6

[

δ2s6 cosh(2z̃ + βδs6ε̃6) + 4bδ216 cosh(z̃ − βδ16ε̃6) +

+δ2a62a coshβδa6ε̃
2
6

]

,

where we use the following notations

F (1)(ω) =
p(4)(iω)4 + p(3)(iω)3 + p(2)(iω)2 + p(1)(iω) + p(0)

(iω)5 + p4(iω)4 + p3(iω)3 + p2(iω)2 + p1(iω) + p0
, (5.12)

F (1)
s (ω) =

p
(4)
s (iω)4 + p

(3)
s (iω)3 + p

(2)
s (iω)2 + p

(1)
s (iω) + p

(0)
s

(iω)5 + p4(iω)4 + p3(iω)3 + p2(iω)2 + p1(iω) + p0
,

F (1)
a (ω) =

p
(4)
a (iω)4 + p

(3)
a (iω)3 + p

(2)
a (iω)2 + p

(1)
a (iω) + p

(0)
a

(iω)5 + p4(iω)4 + p3(iω)3 + p2(iω)2 + p1(iω) + p0
,

F
(1)
1 (ω) =

p
(4)
1 (iω)4 + p

(3)
1 (iω)3 + p

(2)
1 (iω)2 + p

(1)
1 (iω) + p

(0)
1

(iω)5 + p4(iω)4 + p3(iω)3 + p2(iω)2 + p1(iω) + p0
.

Expressions for p4, . . . , p0, p(4), . . . , p(0), p
(4)
s , . . . , p

(0)
s , p

(4)
a , . . . , p

(0)
a ,

p
(4)
1 , . . . , p

(0)
1 in(5.12) are given in [150].

6.2. Transverse dynamic dielectric susceptibility

Performing analogous calculations for the case of the transverse electric
field E1, applied to the KD2PO4 type crystal, we obtain the transverse
dielectric susceptibility of a mechanically free crystal [114]:

χσ11(ω) = χε11(ω) +
1

R4(ω)

e214(ω)

cE44(ω)
, (5.13)

where
1

R4(ω)
=

2

k4l
tanh

k4l

2
, k4 =

ω
√
ρ

√

cE44(ω)
.
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In (5.13) the transverse dynamic susceptibility of a mechanically clamped
crystal is

χε11(ω) = χε011 + v̄
(µ1 cos γ + µ2 sin γ)

2

v2
1

4T
F

(1)
+ (ω) + (5.14)

+v̄
(µ1 cos γ − µ2 sin γ)

2

v2
1

4T
F

(1)
− (ω).

e14(ω) = e014 + (5.15)

+
µ1 cos γ + µ2 sin γ

v

1

4T

[

ψ̃4F
(1)
4+ (ω) + δ̃a4F

(1)
a4+(ω) + δ̃14F

(1)
14+(ω)

]

+

+
µ1 cos γ − µ2 sin γ

v

1

4T

[

ψ̃4F
(1)
4− (ω) + δ̃a4F

(1)
a4−(ω) + δ̃14F

(1)
14−(ω)

]

,

c444(ω) = cE0
44 +

2ψ̃4

v̄DT
(δ̃a4κ

a
1 + δ̃142κ

b)− 2

v̄DT
(δ̃2a4κ

a
1 + δ̃2142κ

b)− (5.16)

−2ψ̃4

v̄

1

4T

{

ψ̃4

[

F
(1)
4+ (ω) + F

(1)
4− (ω)

]

+

+δ̃14

[

F
(1)
14+(ω) + F

(1)
14−(ω)

]

+ δ̃a4

[

F
(1)
a4+(ω) + F

(1)
a4−(ω)

]}

+

+
4ϕηa
v̄DT

(δ̃a4aa6 + δ̃14κ
b)
{

ψ̃4F
(1)
4+ (ω) + δ̃a4F

(1)
a4+(ω) + δ̃14F

(1)
14+(ω)

}

+

+
4ϕηa
v̄DT

(δ̃a4
a

a6
+ δ̃14κ

b)
{

ψ̃4F
(1)
4− (ω) + δ̃a4F

(1)
a4−(ω) + δ̃14F

(1)
14−(ω)

}

.

where we use the following notations

F
(1)
± (ω) =

(iω)2m
(2)
± + (iω)m

(1)
± +m

(0)
±

(iω)3 + (iω)2m2± + (iω)m1± +m0±
, (5.17)

F
(1)
4± (ω) =

(iω)2m
(2)
4± + (iω)m

(1)
4± +m

(0)
4±

(iω)3 + (iω)2m2± + (iω)m1± +m0±
,

F
(1)
14±(ω) =

(iω)2m
(2)
14± + (iω)m

(1)
14± +m

(0)
14±

(iω)3 + (iω)2m2± + (iω)m1± +m0±
,

F
(1)
a4±(ω) =

(iω)2m
(2)
a4± + (iω)m

(1)
a4± +m

(0)
a4±

(iω)3 + (iω)2m2± + (iω)m1± +m0±
.

The expressions for m
(2)
± , ..., m

(0)
a4± are given in [151].



64 Препринт

6.3. Static dielectric, piezoelectric, and elastic characteristics

In the static limit ω → 0 in (5.9)-(5.11), (5.14)-(5.16) we obtain the
isothermic static dielectric susceptibilities of a clamped crystal

χε33 = χ0
33 + v̄

µ2

v2
1

T

2κ6

D6 − 2κ6ϕ
η
6

, (5.18)

χε11 = χε011 +
(µ1 cos γ + µ2 sin γ)

2

v

β

2

aa6 + κb

D − 2(aa6 + κb)ϕηa
+ (5.19)

+
(µ1 cos γ − µ2 sin γ)

2

v

β

2

a
a6

+ κb

D − 2( aa6 + κb)ϕηa
.

where

κ6 = ch(2z6 + βδs6ε6) + b ch(z6 − βδ16ε6)− η(1)(6)m6,

ϕη6 =
1

1− (η(1)(6))2
+ βνc;

κb = b ch(x− βδ16ε6), ϕηa =
1

1− η(1)2
+ βνa νa = ν1 − ν3.

isothermic coefficients of piezoelectric stress

e36 = e036 +
2µ3

v

βθ6
D6 − 2ϕη6κ6

, (5.20)

e14 = e014 + β
µ1 cos γ+µ2 sin γ

v

ψ4(aa6 + κb)− δa4aa6 − δ14κ
b

D − 2(aa6 + κb)ϕηa
+

+β
µ1 cos γ − µ2 sin γ

v

ψ4(
a
a6

+ κb)− δa4
a
a6

− δ14κ
b

D − 2( aa6 + κb)ϕηa
, (5.21)

where

θ6 = −2κc6ψ6 + f6, f6 = δs6 ch(2z6 + βδs6ε6)−
−2bδ16 ch(z6 − βδ16ε6) + η(1)z(6)(−δs6Ms6 + δa6Ma6 + δ16M16);

isothermic elastic constants at constant field

cE66 = cE0
66 +

8ψ6

v
· β(−ψ6κ

c
6 + f6)

D6 − 2ϕη6κ6
− 4βϕη6f

2
6

vD6(D6 − 2ϕη6κ6)
− (5.22)

− 2β

vD6
[δ2s6 ch(2z6 + βδs6ε6) + δ2a62a chβδa6ε6 +

+δ2164b ch(z6 − βδ16ε6)] +
2β

vD2
6

(−δs6Ms6 + δa6Ma6 + δ16M16)
2.

ICMP–11–13E 65

cE44 = cE0
44 − 2ψ4

v
β[
ψ4(aa6 + κb)− δa4aa6 − δ14κ

b

D − 2(aa6 + κb)ϕηa
+ (5.23)

+
ψ4(

a
a6

+ κb)− δa4
a
a6

− δ14κ
b

D − 2( aa6 + κb)ϕηa
] +

+
4ϕηa
vD

β(δa4aa6 + δ14κ
b)
ψ4(aa6+κb)−δa4aa6−δ14κb

D − 2(aa6 + κb)ϕηa
+

+
4ϕηa
vD

β(δa4
a

a6
+ δ14κ

b)
ψ4(

a
a6
+κb)−δa4aa6−δ14κb

D − 2( aa6 + κb)ϕηa
+

+
2ψ4

vD
β(δa4κ

a
1 + δ14κ

b)− 2

vD
β(δ2a4κ

a
1 + δ214κ

b).

where

Ma6 = 2a shβδa6ε6, Ms6 = sh(2z6 + βδs6ε6),

M16 = 4b sh(z6 − βδ16ε6), κa1 = aa6 +
a

a6
.

Using the known relations between the elastic, dielectric, and piezo-
electric characteristics, we find the isothermic constants of piezoelectric
stress

h36 =
e36
χε33

, h14 =
e14
χε11

; (5.24)

isothermic elastic constants at constant polarization

cP66 = cE66 + e36h36; cP44 = cE44 + e14h14; (5.25)

isothermic coefficients of piezoelectric strain

d36 =
e36
cE66

; d14 =
e14
cE44

; (5.26)

isothermic constants of piezoelectric strain

g36 =
h36

cP66
; g14 =

h14

cP44
; (5.27)

isothermic dielectric susceptibilities at σ = const:

χσ33 = χε33 + e36d36; χσ11 = χε11 + e14d14. (5.28)
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7. Comparison of the results of numerical calculations
with experimental data. Discussion.

Let us analyze the results of numerical calculations of dielectric, piezo-
electlric, and elastic characteristics of the KH2PO4 type crystals and
compare them with the corresponding experimental data for these crys-
tals. Let us note that the developed theory is valid, strictly speaking for
the KD2PO4 crystals. The experimental data, on the other hand, are for
the K(H1−xDx)2PO4 type crystals at different deuterations x.

For numerical calculations of the temperature dependences of the
physical characteristics of the K(H1−xDx)2PO4 type crystals obtained
in the previous section, we need to set the values of the following param-
eters:

- energies of proton and deuteron configurations ε(x), w(x), w1(x);

- long-range interaction parameters νc(x), νa(x);

- effective dipole moments µ3(x), µ1(x);

- deformational potentials ψ6(x), ψ4(x), δs6(x), δa6(x), δ16(x),
δa4(x), δ14(x);

- “seed” dielectric susceptibilities χε033, χ
ε0
11;

- “seed” coefficients of piezoelectric stress e036(x), e
0
14(x);

- “seed” elastic constants cE0
66 , cE0

44 .

- parameter α that sets the time scale of the relaxational processes.

The energy w1(x) of proton configurations with four protons and
without any proton is much larger than the energies of ε and w. There-
fore, we take w1 = ∞ and d = 0.

The fitting procedure is discussed in details in [95,101,150,151]. Thus,
on the first stage, the parameters ε, w are determined [95] from the
condition of the best fit of experimental data for the temperature curves
of spontaneous polarization and specific heat, and to find the parameter
νc we fit the calculated phase transition temperature to the experimental
values. The values of µ3− are obtained by fitting the theoretical results to
the experimental values of saturation spontaneous polarization, whereas
to obtain µ3+ we use the values of ε33(ω). On the second stage, with
taking into account the piezoelectric coupling, the optimum values of ε,
w, µ3+, µ3+, as well as the deformational potentials ψ6, ψ4, δs6, δa6,
δ16, δa4, δ14 and the parameter νa are found from the condition of the
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best fit for the temperature dependences of polarization, specific heat,
longitudinal and transverse static permittivities of mechanically clamped
crystals, dynamic longitudinal and transverse permittivities of clamped
crystals, piezoelectric coefficients, and elastic constants. Let us note that
taking into account the piezoelectric coupling leads to a small increase
of w and νc, as compared to their values of [95], where the piezoelectric
coupling is not considered. The obtained optimum values of the model
parameters for these crystals are given in Table 1.

To describe properly the temperature dependences of the dielectric
permittivity εTσ11 [144] we should take µ1(x) to increase slightly with tem-
perature as µ1(x) = µ0

1(x) + kµ(T − Tc). To describe the temperature
curves of polarization and static dielectric permittivity in the paraelec-
tric phase the values of µ3 must be different, with µ+

3 > µ−
3 . In [152] the

deviation of the ratio
µ+
3

µ−
3

from unity is ascribed to existence of under-

damped soft mode.
The parameter αH was determined by fitting the theoretically calcu-

lated ε33(ω) curves to the experimental points. It was assumed that α is
temperature dependent

α = [P +R|∆T |] · 10−14, ∆T = T − Tc.

The primitive cell volume of the K(H1−xDx)2PO4 crystals consisting
of two PO4 groups was taken to be equal to v = 0, 1936 · 10−21 cm3 at
x = 0, v = 0, 1954 · 10−21 cm3 at x = 0, 88, v = 0, 2090 · 10−21 cm3 for
RbH2PO4, v = 0, 2052 ·10−21 cm3 for KH2AsO4, and v = 0, 2065 ·10−21

cm3 for KH2AsO4.
Let us analyze the results of numerical calculations of the physical

characteristics of the K(H1−xDx)2PO4 type crystals and compare them
with the corresponding experimental data for these crystals.

7.1. Static dielectric, piezoelectric, and elastic characteristics

The calculated temperature dependences of isothermic inverse static
dielectric permittivities of free εσ33(0, T ) and clamped εε33(0, T )
K(H1−xDx)2PO4 crystals at different x, as well as of RbH2PO4,
KH2AsO4, and KD2AsO4 crystals along with the experimental data are
given in fig. 25. When approaching the transition temperature Tc in
the paraelectric phase, the magnitude of εσ33 increases according to the
hyperbolic law, reaching very high values at T = Tc. With increasing
x the value of εσmax

33 decreases. Below the transition temperature εσ33
drops very fast. At x = 0, 88 (εσ33)

−1 obeys the Curie-Weiss law in a
wide temperature range. At x = 0, 00 this range is narrower; a notable
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Table 5. Sets of the optimum values of the model parameters for the
K(H1−xDx)2PO4 type crystals.

x Tc
ε
kB

w
kB

νc
kB

νa
kB

(K) (K) (K) (K) (K)
0.00 122.5 56.00 422.0 17.91 7.00
0.88 211.0 88.60 815.0 34.90 17.00
RDP 147.6 60.00 440.0 29.13 28.00
KDA 97.0 35.50 385.0 17.43 20.00

x µ3−, 10
−18 µ3+, 10

−18 µ
(0)
1 , 10−18 kµ, 10

−21 χ0
33 χ0

11

(esu · cm) (esu · cm) (esu · cm) ( esu·cmK )
0.00 1.46 1.71 4.27 5.7 0.73 0.80
0.88 1.79 2.05 5.52 4.2 0.39 0.65
RDP 1.50 2.00 3.68 5.7 0.40 1.25
KDA 1.61 1.65 4.85 6.4 0.70 0.70

x ψ6

kB
δs6
kB

δa6

kB
δ16
kB

ψ4

kB
δa4

kB
δ14
kB

(K) (K) (K) (K) (K) (K) (K)
0.00 -150 82 -500 -400 124.0 92.0 80.0
0.88 -140 50 -1000 -400 188 95 300
RDP -130 50 -500 -300 152.0 80.0 5.0
KDA -170 130 -500 -500 370.0 70.0 30.0

x c066 · 10−10 c044 · 10−10 e036 e014
(dyn/cm2) (dyn/cm2) (esu/cm2) (esu/cm2)

0.00 7.10 13.00 1000 500
0.88 6.40 12.85 2000 500
RDP 5.90 10.60 3000 2000
KDA 7.50 10.80 3000 2000

x P− R− P+ R+ P R
(s) ( sK ) (s) ( sK ) (s) ( sK )

0.00 0.35 0.0100 0.43 0.0160 0.46 0.0130
RDP 0.55 0.0080 0.93 0.0140 0.56 0.0107
KDA 0.47 0.0160 0.61 0.0190 3.20 0.0140

nonlinearity of the temperature dependence of (εσ33)
−1 is observed. The

dielectric permittivity of ε33 in KH2PO4 calculated without taking into
account the piezoelectric coupling coincides with εσ33 at ∆T < 50 K and
is smaller than εσ33(T ) at larger values of ∆T.
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Figure 25. The temperature dependences of inverse static dielectric per-
mittivities of clamped (εε33)

−1 (1) and free (εσ33)
−1 (2) K(H1−xDx)2PO4

crystals: x=0.0 – 1, 1’, , [139], [153], [154], [131], [155],
[156], [144], × [157]; x=0.88 – 2, 2’, [140], ((εσ33-1)/4π [158]-

d236 [158]/sE66)4π+1; x=1.0 – 3, 3’, , [159], [154], [160];
RbH2PO4 – 4, 4’ [140], ((εσ33-1)/4π [158]- d236 [158]/sE66)4π+1,

[132], [131]; KH2AsO4 – 5, 5’ [155]; KD2AsO4 – 6, 6’
[161], [162]. Lines are the theoretical results; dashed lines are the re-
sults of [93] for KH2PO4.

The values of the longitudinal static permittivity increase with re-
placing K → Rb at all temperatures and decrease with P → As.

In figure 26 we depict the temperature curves of εσ11(0) in KH2PO4,
K(H0,12D0,88)2PO4, RbH2PO4, and KH2AsO4.

In the KH2PO4, K(H0,12D0,88)2PO4, RbH2PO4 crystals the values
of transverse permittivities of mechanically free and clamped crystals
practically coincide. For the case of KH2AsO4 the curve 4 corresponds
to εσ11(0), whereas the curve 4’ to εε11(0). The theory does not reproduce
the dome-shaped curve of the permittivity εσ,ε11 at small ∆T. The values
of εσ11 hardly depend on the deuteron concentration x. At the transition
point εσ11 has a jump, which increases with x. The calculated difference
εσ11(+) - εσ11(-) is 3,25 at x = 0 and 30,9 at x=0,88, which accords with
the experimental 4,0 and 34,6 [144].

At isomorphic replacement K → Rb the permittivity εσ11(0) slight-
ly decreases in the paraelectric phase and increases in the ferroelectric
phase. At replacing P → As the value εσ11(0) strongly increases in the
paraelectric phase.
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Figure 26. The temperature dependence of the transverse permittivity
of the ferroelectric crystals: KH2PO4 – 1, [144]; K(H0.12D0.88)2PO4

– 2, [144], [140]; RbH2PO4 – 3, [140]; KH2AsO4 – 4, [118].
Symbols are experimental points; solid lines are the theoretical values.

In figures 27 and 28 we plot the temperature dependences of the
coefficients of piezoelectric strain d36 and stress e36 of the KH2PO4,
K(H0,12D0,88)2PO4, RbH2PO4, and KH2AsO4 crystals. Using the ex-
perimental points for d36, ε

σ
33, and cE66 (sE66), we find e36, also shown in

fig. 28 as the experimental points.
The temperature dependences of the coefficients of piezoelectric

strain d14 and stress e14 are shown in figs. 29 and 30 along with the
experimental data. It should be mentioned that the piezoelectric coeffi-
cients d14, e14 do not have any anomalies in their temperature behavior.
At T → Tc the values of d36 and e36 increase. With increasing ∆T from
0 to 170 K in KH2PO4 the values d36 decreases by 88 times, whereas
e36 by 44,5 times. With increasing the deuteration level x the longitudi-
nal piezoelectric coefficients decrease, whereas the transverse coefficients
decrease.

The calculated temperature dependences of the piezoelectric con-
stants h36 and g36 of the M(H1−xDx)2XO4 crystals are given in [101],
whereas the dependences of h14 and g14 in [151].

The calculated temperature dependences of the isothermic elastic
constants cEjj along with the experimental data are given in fig. 31 for

K(H1−xDx)2PO4 crystals, whereas the temperature curves of cE66 and cP66
of KH2PO4, K(H0,12D0,88)2PO4, RbH2PO4, KH2AsO4, and KD2AsO4

are shown in fig. 32. At the transition temperature the elastic constant
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Figure 27. The temperature dependence of the coefficient of piezo-
electric strain d36 of KH2PO4 – 1, [139], [163], [164];
K(H0.12D0.88)2PO4 – 2, [140]; RbH2PO4 – 3, [140]; KH2AsO4

– 4, [165]; KD2AsO4 – 5, [165]. Lines are the theoretical results;
dashed lines are the theoretical curves of [93] for KH2PO4.
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Figure 28. The temperature dependence of the coefficient of piezoelectric
stress e36 of KH2PO4 – 1, [139]; K(H0.12D0.88)2PO4 – 2, –d36
[140]/sE66 [166]; RbH2PO4 – 3, –d36 [140]/sE66 [166]; KH2AsO4 – 4, –
d36/s

E
66 [165]; KD2AsO4 – 5, –d36/s

E
66 [165]. Lines are the theoretical

results; dashed lines are the theoretical curves of [93] for KH2PO4.



72 Препринт

100 150 200 250 300

10
−8

10
−7

10
−6

d
14

, esu/dyn 

T, K 

4 

1 

3 

2 

Figure 29. The temperature dependence of the coefficient of piezoelectric
strain d14 of KH2PO4 – 1, [167], K(H0,12D0,88)2PO4 – 2, [140],
RbH2PO4 – 3, [140], KH2AsO4 – 4, [165].
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Figure 30. The temperature dependence of the coefficient of piezoelectric
stress e14 of KH2PO4 – 1, – d14 [167]/sE44 [139], K(H0,12D0,88)2PO4

– 2, – d14 [140]/sE44 [132], RbH2PO4 – 3, – d14 [140]/sE44 [132],
KH2AsO4 – 4, – d14/s

E
44 [165].

cE66 goes to zero in KH2PO4 and RbH2PO4 and have some finite val-
ues in other crystals. The temperature dependence of cE44 does not have
anomalies at the transition point. With increasing x the values of the
elastic constants slightly decrease.

Hence, the proposed theory, as see in figs. 25-32 well describes the
experimental data for the static dielectric, piezoelectric, and elastic char-
acteristics of the KH2PO4 type crystals.
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Figure 31. The temperature dependences of the elastic constants cEjj of
KH2PO4 (1) and K(H0,12D0,88)2PO4 (2): [139], [168], [169],

1/sE66 [166], [139], [166].
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Figure 32. The temperature dependence of the elastic constants cE66
of different crystals: KH2PO4 – 1, [139], [168], [169];
K(H0.12D0.88)2PO4 – 2, –1/sE66 [166]; RbH2PO4 – 3, –1/sE66 [166];
KH2AsO4 – 4, –1/sE66 [165]; KD2AsO4 – 5, –1/sE66 [165]. Lines are
the theoretical results; the dashed line is the theoretical curve of [93] for
KH2PO4.

7.2. Dynamic longitudinal and transverse dielectric permittivi-
ties

Let us calculate the longitudinal dynamic characteristics of the me-
chanically free crystals of the KH2PO4 type cut as square plates l × l
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(l = 1 mm) in the (0,0,1) plane.
In figures 33-36 we showed the frequency dependences of the real
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Figure 33. The frequency dependences of the real and imaginary parts
of the dielectric susceptibilities of free and clamped KH2PO4 crystals at
different ∆T ,K: 1 – 5, 2 – 10, 3 – 50.

and imaginary parts of the dielectric susceptibilities of free and clamped
MH2XO4 crystals in the paraelectric phase at different temperatures.
In the frequency range 3 · 105–3 · 108 Hz the susceptibility of MH2XO4

has a resonant dispersion, with numerous peaks at frequencies where
Re(R6(ω)) = 0 or Re(k6l/2) = π/2(2n + 1). Taking into account the
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Figure 34. The frequency dependences of the real and imaginary parts
of the dielectric susceptibilities of free and clamped KD2PO4 crystals at
different ∆T ,K: 1 – 5, 2 – 10, 3 – 50.

dispersion law (5.8), we find an equation for the resonant frequencies

ωn =
π(2n+ 1)

l

√

cE66
ρ
,

where it has been taken into account that in the frequency range 5 ·105–
5 · 108 Hz cE66(ω) is practically frequency independent. The resonant fre-
quencies are inversely proportional to the sample dimensions. The dashed
lines in figs. 33-36 correspond to the low-frequency limit of the clamped
susceptibility. With increasing frequency and temperature ∆T the am-
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Figure 35. The frequency dependences of the real and imaginary parts
of the dielectric susceptibilities of free and clamped RbH2PO4 crystals
at different ∆T ,K: 1 – 5, 2 – 10, 3 – 50.

plitudes of the resonant peaks decrease. With increasing temperature
∆T the last resonant peak shifts to higher frequencies. A similar multi-
peak resonant dispersion is observed in the ferroelectric phase. Above
the resonant frequencies the crystal is clamped by the high-frequency
field; the permittivity of a clamped crystal has a relaxational dispersion
above 109 Hz. At ω → 0 we get the static dielectric permittivity of a free
crystal.

Let us analyze the calculated temperature and frequency de-
pendences of the dynamic characteristics of mechanically free
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Figure 36. The frequency dependences of the real and imaginary parts
of the dielectric susceptibilities of free and clamped KH2AsO4 crystals
at different ∆T ,K: 1 – 5, 2 – 10, 3 – 50.

M(H1−xDx)2XO4 crystals cut as square plates with sides l = 1 mm
in the (1, 0, 0) plane.

The frequency dependences of real and imaginary parts of the dielec-
tric permittivity εσ11 of KH2PO4, RbH2PO4, and KH2AsO4 at ∆T = 5 K
are shown in fig. 37. In the frequency range 106 − 108 Hz the suscep-
tibility has a resonant dispersion.At ω → 0 we get the static dielectric
permittivity of a free crystal. The dashed lines in fig. 37 correspond to
the low-frequency limit of the clamped susceptibility. Above the reso-
nant frequencies the crystal is clamped by the high-frequency field; the
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Figure 37. The frequency dependences of the real and imaginary parts of
the dielectric permittivity of free KH2PO4 (1), K(H0.07D0.93)2PO4 (2),
RbH2PO4 (3), KH2AsO4 (4) crystals at ∆T=5K.

permittivity of a clamped crystal has a relaxational dispersion above
109 Hz.

The dashed and solid lines in fig. 38 correspond to the tempera-
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ture dependences of ε′33(ω, T ) and ε′′33(ω, T ) calculated without and with
taking into account the piezoelectric coupling, respectively. It should be
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Figure 38. The temperature dependence of ε′33 and ε′′33 of KH2PO4 at
different frequencies ν (GHz): 9.2 – 1, [170]; 154.2 – 2, [171]; 372
– 3, [171]; 800 – 4. Symbols are experimental points; the lines are the
theoretical values.

mentioned that when the piezoelectric coupling is taken into account,
the minimal values of ε′33(ω) at ∆T = 0 and at different frequencies are
smaller than when the piezoelectric coupling is neglected; it accords with
the experiment.

8. Modified proton ordering model for the ND4D2PO4

type crystals

We consider a system of deuterons moving on O–D-. . .-O bonds in
deuterated crystals of the ND4D2PO4 type. primitive cell of such a crys-
tal is composed of two neighboring PO4 tetrahedra together with four
hydrogen bonds attached to one of them (”A” type tetrahedra). Hy-
drogen bonds going to another (”B” type) tetrahedron belong to four
nearest structural elements surrounding it (see fig. 39). The deuteron
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configuration of the ground state in ND4D2PO4 is shown. The sponta-
neous polarization in these crystals is zero due to antipolar ordering of
dipole moments of hydrogen bonds. If an external electric field is applied
along the crystallographic axes a, b, or c, then the different from zero net
polarizations are induced.

1

1 22
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4

1

1

1

2

2

2

y

x

Figure 39. The primitive cell of the ND4D2PO4: 1 , 2 , 3 , 4 are the
bonds numbers; 1,2 are the deuteron equilibrium sites. One of possible
antiferroelectric deuteron configurations is shown..

The model Hamiltonian of the deuteron subsystem of ND4D2PO4

with taking into account the short-range and long-range interactions, in
presence of mechanical stresses σ6 = σxy and σ4 = σyz , as well as ex-
ternal electric fields E3 and E1, directed along the crystallographic axes
c and a, consists of the “seed” and pseudospin parts. The “seed” energy
corresponds to the lattice of heavy ions, and it is not explicitly dependent
on the deuteron subsystem configuration. The pseudospin part takes in-
to account the long-range (Ĥlong) and short-range (Ĥshort) interactions
between the deuterons near the PO4 tetrahedra and the interaction with
the electric fields E1 and E3. Hence,

Ĥ = NUseed + Ĥlong + Ĥshort −
∑

qf

(µf1E1 + µf3E3)
σqf
2
, (8.1)

where N is the number of the primitive cells; σqf is the z-component
pseudospin operator, describing the state of a deuteron in the q-th cell
on the f-th bond. Two eigenvalues of the operator σqf = ±1 are assigned
to two equilibrium positions of a deuteron on the bond. Effective dipole
moments of the primitive cell along the crystallographic axes per one
deuteron bond have the following symmetry

µ3 = µ13 = µ23 = µ33 = µ43, µ1 = −µ11 = µ31, µ21 = µ41 = 0.
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The “seed” energy Useed is expressed in terms of the electric fields
E1 and E3, as well as strains εi, ε4, and ε6. It consists of the elastic,
piezoelectric, and dielectric contributions

Useed = v(
1

2
cE0
44 ε

2
4 +

1

2
cE0
66 ε

2
6 − e014ε4E1 − e036ε6E3 −

−1

2
χε011E

2
1 − 1

2
χε033E

2
3), (8.2)

where v is the primitive cell volume; cE0
ij , cE0

44 , cE0
66 , e014, e

0
36, χ

ε0
11, χ

ε0
33

are the “seed” elastic constants, piezoelectric coefficients, and dielectric
susceptibilities. The “seed” characteristics determine the temperature de-
pendences of the corresponding physical characteristics far from the tran-
sition temperature TN .

The dielectric, piezoelectric, and elastic characteristics of the
ND4D2PO4 type crystals will be explored using the thermodynamic po-
tential. Taking into accounts the peculiarities of the crystalline struc-
ture of ND4D2PO4, to find the thermodynamic potential we shall use
the four-particle cluster approximation [90]. In this approximation the
thermodynamic potential of ND4D2PO4 reads

G = NUseed +
1

2

∑

qq′

ff ′

Jff ′(qq′)
〈σqf 〉
2

〈σq′f ′〉
2

− (8.3)

−1

2
T
∑

q

4
∑

f=1

lnZ1f − T
∑

q

lnZ4 −Nv̄(σ4ε4 + σ6ε6),

where Z1f = Spe−βĤ
(1)
qf , Z4 = Spe−βĤ

(4)
q are the single-particle and four-

particle partition functions. The single-particle Ĥ
(1)
qf and four-particle

Ĥ
(4)
q Hamiltonians of strains ND4D2PO4 crystals are given by the ex-

pressions

Ĥ
(1)

q13
= ∓ 1

β
x̄q
σq13
2

∓ 1

β
x̄13

σq13
2

+
1

β
z̄
σq13
2
, (8.4)

Ĥ
(1)

q24
= ± 1

β
x̄q
σq24
2

± 1

β
x̄24

σq24
2

+
1

β
z̄
σq24
2
,

Ĥ(4)
q =

(

δa4
2

+
δ14
2

)

ε4

(

−σq1
2

+
σq3
2

)

+ (8.5)

+

(

−δs6
4

+
δ16
2

)

ε6

(σq1
2

+
σq2
2

+
σq3
2

+
σq4
2

)

+
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+2 (δa4 − δ14) ε4

(σq1
2

σq2
2

σq4
2

− σq1
2

σq3
2

σq4
2

)

+

+(−δs6 − 2δ16) ε6 ×
×
(σq1

2

σq2
2

σq3
2

+
σq1
2

σq2
2

σq4
2

+
σq1
2

σq3
2

σq4
2

+
σq2
2

σq3
2

σq4
2

)

+

+(Va + δa6ε6)
(σq1

2

σq2
2

+
σq3
2

σq4
2

)

+

+(Va − δa6ε6)
(σq2

2

σq3
2

+
σq4
2

σq1
2

)

+

+Ua

(σq1
2

σq3
2

+
σq2
2

σq4
2

)

+Φa
σq1
2

σq2
2

σq3
2

σq4
2

−

−1

β
xq

(

−σq1
2

+
σq2
2

+
σq3
2

− σq4
2

)

−

− 1

β
x13

(

−σq1
2

+
σq3
2

)

− 1

β
x24

(σq2
2

− σq4
2

)

−

− 1

β
z
(σq1

2
+
σq2
2

+
σq3
2

+
σq4
2

)

.

Here we use the following notations

Va =
1

2
ε′ − 1

2
w′

1, Ua =
1

2
ε′ +

1

2
w′

1, Φa = 2ε′ − 8w′ + 2w′
1,

ε′ = εs − εa, w′ = ε1 − εa, w′
1 = ε0 − εa,

where εs, εa, ε1, ε0 are the configurational energies of deuterons near a
PO4 tetrahedron, whereas ε′, w′, w′

1 are the antiferroelectric energies of
the extended Slater-Takagi model [90];

xq = β(−∆ae
ikz

aq + 2νa(k
z)η(1)eik

z
aq ),

x13 = β(−∆13 + 2νa(0)η
(1)x
13 + 2ψ4ε4 + µ1E1),

x24 = β(−∆24 + 2νa(0)η
(1)x
24 ),

z = β(−∆c + 2νc(0)η
(1)z − 2ψ6ε6 + µ3E3),

x̄q = −β∆ae
ikz

aq + xq,

x̄13
24

= −β∆13
24
+ x̄13

24
, z̄ = −β∆c + z,

where

4ν0a(k
z) = J11(k

z)− J13(k
z), Jff ′(kz) =

∑

aq−aq′

Jff ′(qq′)e−ik
z(aq−aq′ ),

4ν0a(0) = J11(0)− J13(0), 4ν0c (0) = J11(0) + 2J12(0) + J13(0),
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where k
z = 1/2(b1 + b2 + b3), b1, b2, b3 are vectors of the reciprocal

lattice; eik
z
aq = ±1, ψ4, ψ6 are the deformational potentials; ∆a, ∆13,

∆24, ∆c are the effective fields created by the neighboring bonds from
outside the cluster.

If the crystal is free from external fields and stresses, then

η(1) = −〈σ1〉 = 〈σ2〉 = 〈σ3〉 = −〈σ4〉 =
1

D
(sh 2x+ 2b shx), (8.6)

фх

D = a+ ch 2x+ d+ 4b chx+ 1, x =
1

2
ln

1 + η(1)

1− η(1)
+ βνa(k

z)η(1).

a = e−βε
′

, b = e−βw
′

, d = e−βw
′
1.

In contrast to the ferroelectric KD2PO4 type crystals, where the en-
ergy of the up/down configurations εs is the lowest configurational en-
ergy of deuterons around a PO4 group, in the ND4D2PO4 type crystals
the lowest is the energy of the lateral configurations εa. In addition, in
these crystals the character of deuteron ordering and symmetry of their
distribution functions are also different.

9. Dielectric, piezoelectric, and elastic characteristics
of the ND4D2PO4 type antiferroelectrics

9.1. Longitudinal dynamic dielectric susceptibility

The procedure that can be used to find the dynamic characteristics of the
ND4D2PO4 type crystals is analogous to the presented above procedure
for the KD2PO4 type crystals [113, 114]. Therefore, here we give only
the find results.

The expression for the longitudinal dynamic susceptibility of a me-
chanically free ND4D2PO4 type crystal reads [115]:

χσ33(ω) = χε33(ω) +
1

R(ω)

e236(ω)

cE66(ω)
. (9.1)

where
1

R(ω)
=

2

k6l
tan

k6l

2
, k6 =

ω
√
ρ

√

cE66(ω)
,

In (9.1) longitudinal dynamic susceptibility of a mechanically
clamped crystal is

χε33(ω) = χε033 +
βµ2

3

v
F (1)(ω), (9.2)
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e36(ω) = e036+

+
βµ3

v

[

−2ψ6F
(1)(ω)+δs6F

(1)
s (ω)−δa6F (1)

a (ω)+δ16F
(1)
1 (ω)

]

, (9.3)

cE66(ω) = cE0
66 + (9.4)

+
4βψ6

vD

[

−2ψ6F
(1)(ω) + δs6F

(1)
s (ω) + δ16F

(1)
1 (ω)− δa6F

(1)
a (ω)

]

−

−4ϕηcf6
vD

β
[

−2ψ6F
(1)(ω) + δs6F

(1)
s (ω) + δ16F

(1)
1 (ω)− δa6F

(1)
a (ω)

]

+

+
4βψ6

vD
f6 −

2β

vD

[

δ2s6a+ δ2164b+ δ2a6(1 + cosh 2x)
]

,

where we use the following notations

F (1)(ω) =
(iω)2r(2) + (iω)r(1) + r(0)

(iω)3 + (iω)2r2 + (iω)r1 + r0
, (9.5)

F (1)
s (ω) =

(iω)2r
(2)
s + (iω)r

(1)
s + r

(0)
s

(iω)3 + (iω)2r2 + (iω)r1 + r0
,

F (1)
a (ω) =

(iω)2r
(2)
a + (iω)r

(1)
a + r

(0)
a

(iω)3 + (iω)2r2 + (iω)r1 + r0
,

F
(1)
1 (ω) =

(iω)2r
(2)
1 + (iω)r

(1)
1 + r

(0)
1

(iω)3 + (iω)2r2 + (iω)r1 + r0
,

whereas the expressions for r2, ..., r
(0)
1 are given in [172].

9.2. Transverse dynamic dielectric susceptibility

The transverse dynamic susceptibility of mechanically free ND4D2PO4

crystal reads [173]:

χσ11(ω) = χε11(ω) +
1

R4(ω)

e214(ω)

cE44(ω)
, (9.6)

фх
1

R4(ω)
=

2

k4l
tanh

k4l

2
, k4 =

ω
√
ρ

√

cE44(ω)
,

In (9.6) the transverse dynamic susceptibility of a mechanically clamped
crystal is

χε11(ω) = χε011 + v̄
µ1

v2
1

4T

[

F
(1)
+ (ω) + F

(1)
− (ω)

]

. (9.7)
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e14(ω) = e014 +
µ1

v

1

2T

{

ψ̃4

[

F
(1)
+ (ω) + F

(1)
− (ω)

]

+ (9.8)

+δ̃14

[

F
(1)
14+(ω) + F

(1)
14−(ω)

]

+ δ̃a4

[

F
(1)
a4+(ω) + F

(1)
a4−(ω)

]}

,

cE44(ω) = cE0
44 +

2ψ̃4

v̄DT

[

δ̃a4(κ + 1) + δ̃14(κ
b
2 + κb)

]

+ (9.9)

+

{

−2ψ̃4

v̄T
+

2ϕηa(0)

v̄DT

[

δ̃14(κ
b
2 + κb) + δ̃a4(κ + 1)

]

}

×

× 1

2T

{

ψ̃4

[

F
(1)
+ (ω) + F

(1)
− (ω)

]

+

+δ̃14

[

F
(1)
14+(ω) + F

(1)
14−(ω)

]

+ δ̃a4

[

F
(1)
a4+(ω) + F

(1)
a4−(ω)

]}

+

+
2ϕηa(0)

v̄D

[

δ̃a4(κ − 1) + δ̃14(κ
b
2 − κb)

]

×

× 1

2T

{

ψ̃4

[

F
(1)
+ (ω)− F

(1)
− (ω)

]

+

+δ̃14

[

F
(1)
14+(ω)− F

(1)
14−(ω)

]

+ δ̃a4

[

F
(1)
a4+(ω)− F

(1)
a4−(ω)

]}

+

+
2

v̄D2T

(

δ̃a4 sinh 2x+δ̃142b sinhx
)2

−

− 2

v̄DT

[

δ̃2a4(cosh 2x+ 1)+δ̃2142b coshx
]

.

Here we use the following notations

F
(1)
+ (ω) =

(iω)4n(4) + (iω)3n(3) + (iω)2n(2) + (iω)n(1) + n(0)

(iω)5 + (iω)4n4 + (iω)3n3 + (iω)2n2 + (iω)n1 + n0
,

F
(1)
− (ω) =

(iω)2m(2) + (iω)m(1) +m(0)

(iω)3 + (iω)2m2 + (iω)m1 +m0
, (9.10)

F
(1)
14+(ω) =

(iω)4n
(4)
14 + (iω)3n

(3)
14 + (iω)2n

(2)
14 + (iω)n

(1)
14 + n

(1)
14

(iω)5 + (iω)4n4 + (iω)3n3 + (iω)2n2 + (iω)n1 + n0
,

F
(1)
14−(ω) =

(iω)2m
(2)
14 + (iω)m

(1)
14 +m

(0)
14

(iω)3 + (iω)2m2 + (iω)m1 +m0
,

F
(1)
a4+(ω) =

(iω)4n
(4)
a4 + (iω)3n

(3)
a4 + (iω)2n

(2)
a4 + (iω)n

(1)
a4 + n

(1)
a4

(iω)5 + (iω)4n4 + (iω)3n3 + (iω)2n2 + (iω)n1 + n0
,

F
(1)
a4−(ω) =

(iω)2m
(2)
a4 + (iω)m

(1)
a4 +m

(0)
a4

(iω)3 + (iω)2m2 + (iω)m1 +m0
,

whereas the expressions for n(4), ..., m0 are given in [173].



86 Препринт

9.3. Static dielectric, piezoelectric, and elastic characteristics

In the static limit ω → 0 in (9.2)-(9.4), (9.7)-(9.9), we obtain the isother-
mic static dielectric susceptibility of a mechanically clamped crystals,
piezoelectric coefficient, and elastic constant at constant field in the fol-
lowing form

χε33 = χε033 +
µ2
3

v
β

2κ6

D − 2κ6ϕ
η
c
, (9.11)

χε11 = χε011 + v̄
µ2
1

v2
1

2T

[

κb1

D − 2κb1ϕ
η
a(0)

+
κ2

D − 2κ2ϕ
η
a(0)

]

,(9.12)

e36 = e036 + 2
µ3

v
β
−2κ6 + f6
D − 2κ6ϕ

η
c
, (9.13)

e14 = e014 + (9.14)

+
µ1

v

1

T

[

ψ̃4κ
b
1 − δ̃a4 − δ̃14κ

b

D − 2κb1ϕ
η
a(0)

+
ψ̃4κ2 − δ̃a4κ − δ̃14κ

b
2

D − 2κ2ϕ
η
a(0)

]

,

cE66 = cE0
66 +

8ψ6

v

β(−ψ6κ6 + f6)

D − 2κ6ϕ
η
c

− 4βϕηcf
2
6

vD(D − 2κ6ϕ
η
c )

−

− 2β

vD
(δ2164b chx+ δ2s6a+ δ2a62 ch

2 x). (9.15)

cE44 = cE0
44 − 2ψ̃4

v̄T

ψ̃4κ
b
1 − (δ̃a4 + δ̃14κ

b)

D − 2κb1ϕ
η
a(0)

− (9.16)

−4ϕηa(0)

v̄T

(δ̃a4 + δ̃14κ
b)(δ̃a4κ + δ̃14κ

b
2)

D[D − 2κb1ϕ
η
a(0)]

−

−2ψ̃4

v̄T

ψ̃4κ2 − (δ̃a4κ + δ̃14κ
b
2)

D − 2κ2ϕ
η
a(0)

−

−4ϕηa(0)

v̄T

(δ̃a4 + δ̃14κ
b)(δ̃a4κ + δ̃14κ

b
2)

D[D − 2κ2ϕ
η
a(0)]

−

− 2

v̄DT

[

δ̃2a4(ch 2x+ 1) + δ̃2142bb1 chx
]

+

+
2

v̄D2T
(δ̃a4 sh 2x+ δ̃142bb1 shx)

2,

κ6 = a+ b chx, κb1 = 1 + b chx,

κb = b chx, f6 = δs6a− δ162b chx;

κ2 = κ + κb2 = ch 2x− η(1) sh 2x+ b chx− η(1)2b shx,

ϕηa(0) =
1

1− η(1)2
+ βνa(0), ϕηc =

1

1− η(1)2
+ βνc(0).
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Using the known relations between the elastic, dielectric, and piezo-
electric characteristics of the ND4D2PO4 crystal, we find, just like we
did for KD2PO4, the other thermodynamic quantities, such as χσ33, χ

σ
11,

h36, h14, d36, d14, g36, g14, c
P
66, c

P
44.

10. Comparison of the numerical results with experi-
mental data

Let us analyze the results of numerical calculations of dielectric,
piezoelectric, and elastic characteristics of the NH4H2PO4 (ADP) and
ND4D2PO4 (DADP) crystals and compare them with the corresponding
experimental data. It should be noted that the developed in the previous
sections theory, strictly speaking, is valid for the DADP crystals only.
But taking into account the effect of tunneling suppression by the short
range correlations, we shall assume that the proposed in the two previous
sections theory is valid for ADP as well.

In order to calculate the temperature dependences of the physical
characteristics of ADP and DADP crystals in the paraelectric phase,
obtained within the developed theory, we need to set the values of the
following parameters:

- energies of proton and deuteron configurations ε′0H , w′0
H , ε′0D, w′0

D;
- long-range interaction parameters ν0cH(0), ν0cD(0), ν

0
aH(0), ν0aD(0);

- deformational potentials ψ6, δs6, δ16, δa6, δ1i; ψ4, δa4, δ14;
- effective dipole moments µ3H , µ3D, µ1H , µ1D;
- “seed” static dielectric susceptibility χε033, χ

ε0
11, piezoelectric coeffici-

ents e036, e
0
14, elastic constants cE0

66 , cE0
44 .

In order to determine the listed above parameters we used [172,173]
the experimental data for the temperature dependences of the calculat-
ed physical characteristics of the ADP and DADP crystals. The fitting
procedure is analogous to that for the KH2PO4 crystals. The optimum
set of the parameters used in numerical calculations of the physical char-
acteristics of the considered crystals is given in Table 2.

In calculations the primitive cell volume v was taken to be equal to
0,2110·10−21 cm3 for ADP [174], and v = 0,213·10−21 cm3 for DADP
[175].

Since most of experimental data for the calculated physical character-
istics of the DADP type antiferroelectrics are available only for the para-
electric phase, the numerical calculations will be performed for T > TN
only.
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Table 6. The sets of the optimum model parameters for ADP and DADP

TN
ε
′0

kB
w

′0

kB

ν0
a(0)
kB

ν0
c

kB
, µ1, 10

−18 µ3, 10
−18, χ0ε

11 χ0ε
33

(K) (K) (K) (K) (K) (esu·cm) (esu· cm)
ADP 148 20 490,0 -40,00 -10,00 6,45 2,10 0,70 0,23

DADP 240 78,8 715,4 -54,70 -17.35 7.29 2,75 0,58 0,34
ψ4

kB
δa4

kB
δ14
kB

e014, 10
4 cE0

44 · 10−10

(K) (K) (K) (esu·cm2) (dyn/cm2)
ADP 120 94 82 250 8.9

DADP 225 100 100 3000 9.0
ψ6

kB
, δs6

kB
, δa6

kB
, δ16
kB

, e036 c066 · 10−10

(K) (K) (K) (K) (esu/cm2) (dyn/cm2)
ADP -160 1400 100 -300 10000 7.9

DADP -200 2000 200 -100 28000 7.6

Plong Rlong Ptransv Rtransv
(s) (s/k) (s) (s/k)

ADP 0,38 0,0090 0,95 0,0110
DADP 6,72 0,0090 5,90 0,0032

10.1. Static dielectric, piezoelectric and elastic characteristics

Let us discuss now the results of calculations of the physical charac-
teristics of ADP and DADP crystals within the proposed theory and
compare the obtained results with the corresponding experimental data.
In figure 40 along with the available experimental data we plot the calcu-
lated temperature dependences of the transverse and longitudinal static
dielectric permittivities of ADP (a) and DADP (b) antiferroelectrics. It
can be seen, that the calculated εσ11 and εε11 practically coincide (the
difference is less than 0.02%), that agrees with the experimental data.
At the same time εσ33 is by ∼ 18% larger than εε33; this difference does
not depend on temperature.

In figure 41 we plot the temperature dependences of the piezoelectric
coefficients of the ADP and DADP crystals along with the experimental
data. The coefficients d36 and e36 are finite at T = TN and decrease with
further increase of temperature. It should be noted that with increasing
temperature ∆T from 0 up to 170 K the coefficient d36 of ADP becomes
2.1 times smaller, whereas e36 halves. The values of the piezoelectric
coefficients d14, e14 of N(H1−xDx)4(H1−xDx)2PO4 are of the same order
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Figure 40. The temperature dependence of the the transverse and lon-
gitudinal static dielectric permittivities of ADP (a) and DADP (b): ×
– [141]; – [22]; – [142]; – [133]; , – [139]; , , – [135].
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Figure 41. The temperature dependence of the piezoelectric coefficients
of ADP (1) and DADP (2) crystals: , – [135]; , – [139];
– [176].

as these characteristics of K(H1−xDx)2PO4.

The calculated temperature dependences of the elastic constants cE,P44
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and cE,P66 of ADP (a) and DADP (b) along with the available experimen-
tal data are shown in fig. 42.
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Figure 42. The temperature dependence of the elastic constants of ADP
(c) and DADP (d) crystals: , – [135]; , – [139]; – [176].

As one can see in figs. 40-42, the proposed theory provides a good
agreement with experiment for the thermodynamic characteristics of
ADP and DADP crystals.

10.2. Dynamic longitudinal and transverse permittivities

Let us analyze now the temperature and frequency dependences of the
calculated dynamic characteristics of mechanically free ADP and DADP
crystals, cut as thin square plates with sides l = 1 mm in the plane
(0,0,1). Due to the lack of available experimental data, we are not able
to make a quantitative comparison of the theoretical temperature and
frequency dependences of the characteristics of a mechanically free crys-
tal in the piezoelectric resonance region with experiment. Depending on
the relation between the frequency ν from the piezoelectric resonance
region and temperature ∆T , the temperature curves of the real and
imaginary parts of the dielectric permittivity of mechanically free ADP
and DADP crystal, one can observe one, two, or more resonance peaks.

In figure 43 for ADP at ∆T = 28 K and in figure 44 for DADP at
∆T = 64 K we depict the calculated frequency curves of the real and
imaginary parts of the dielectric permittivity ε33(ω, T ) along with the
experimental data of [177]. At 106 − 108 Hz the permittivity has the
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Figure 43. The frequency dependences of the real and imaginary parts of
the dynamic dielectric permittivity of a free and clamped (dashed line)
ADP crystal at ∆T = 28 K; � – [177].
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Figure 44. The frequency dependences of the real and imaginary parts of
the dynamic dielectric permittivity of a free and clamped (dashed line)
DADP crystal at ∆T = 64 K; △ – [177,178].

resonance dispersion. At ω → 0 we obtain the static dielectric permit-
tivity of a free crystal. The dashed line corresponds to the low-frequency
limit of the clamped permittivity. Above the resonances the permittivity
corresponds to a crystal clamped by the high-frequency field and has a
relaxational dispersion.

Let us analyze now the temperature and frequency dependences of
the calculated dynamic characteristics of mechanically free ADP and
DADP crystals, cut as square plates with sides l = 1 mm in the plane
(1,0,0).

In figures 45 and 46 we show the frequency dependences of the real
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and imaginary parts of the dynamic dielectric permittivity ε11 of ADP
at ∆T = 35 K and DADP at ∆T = 62 K. In the frequency range

10
4

10
6

10
8

10
10

10
12

79.6

79.62

79.64

79.66

79.68

79.7

10
4

10
6

10
8

10
10

10
12

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ε’
11

 ε’’
11

ν, Hz ν, Hz 

Figure 45. The frequency dependences of the real and imaginary parts
of the dynamic dielectric permittivity ε11 of a free and clamped (dashed
line) ADP crystal at ∆T = 35 K, [177].
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Figure 46. The frequency dependences of the real and imaginary parts
of the dynamic dielectric permittivity ε11 of a free and clamped (dashed
line) DADP crystal at ∆T = 62 K, [177,178].

106 − 108 Hz the resonance dispersion is observed. At ω → 0 we ob-
tain the static dielectric permittivity of a free crystal. The dashed line
corresponds to the low-frequency limit of the clamped permittivity. The
resonance peaks of εσ11 are also very small. Above the resonances, the
crystal clamping by the high-frequency field is observed; the dielectric
permittivity of the clamped crystal has a relaxational dispersion above
109 Hz.
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11. Electromechanical coupling coefficient

In figure 47 we show the temperature dependence of the electromechani-
cal coupling coefficient k23 = (εσ33 − εε33)/ε

σ
33 for different crystals of the

KDP family. k23 has a maximum at the transition point and drops at
moving away from Tc, especially in the ferroelectric phase. In ADP and
DADP k23 has a maximum at T = TN at decreases slowly with increas-
ing temperature. At ∆T ≈10K the magnitude of k23 in ADP is much
larger than in RDP. The frequency dependence of the real part of the
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Figure 47. The temperature dependence of the electromechanical cou-
pling coefficient k2 = (εσ − εε)/εσ of KDP (1), DKDP (2), RDP (3),
KDA (4), DKDA (5), ADP (6), DADP (7) crystals.

electromechanical coupling coefficient k23(ν) = (εσ33(ν)−εε33(ν))/εσ33(ν) of
KDP at ∆T=5K is shown in fig. 48 At frequencies below the piezoelectric
resonance frequency, where the crystal is mechanically free, k23(ν) ≈ 0.4,
whereas at frequencies where the crystal is clamped, k23(ν) ≈ 0.

To estimate the piezoelectric coefficients and elastic constants of the
KDP family crystals, we calculate the presented in fig. 49 tempera-
ture dependence of the difference εσ33 − εε33 = 4πe36d36 = 4πe236/c

E
66 =

4πd236c
E
66.

The results of this section indicate that the presence of piezoelec-
tric coupling in the KH2PO4 family crystals gives rise to the difference
between the dielectric permittivities of mechanically free and clamped
crystals, non-zero piezoelectric coefficients, and piezoelectric resonance.
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Figure 48. The frequency dependence of the real part of the electrome-
chanical coupling coefficient k2 = (εσ(ω) − εε(ω))/εσ(ω) of KDP at
∆T=5K.
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Figure 49. Temperature dependence of the difference εσ − εε of KDP
(1), DKDP (2), RDP (3), KDA (4), DKDA (5), ADP (6), DADP (7)
crystals.
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Unfortunately, there was no similar theoretical or experimental studies
carried out for the disordered compounds of the Rb1−x(NH4)xH2PO4

type. Principally important is to explore the permittivities ε′33(νT ) and
ε′′33(νT ) in wide temperature and frequency ranges, in order to estimate
the electromechanical coupling coefficient and the difference between the
permittivities of free and clamped crystals, which would indicate that the
piezoelectric coefficients in these systems are different from zero.

The measurements of dielectric, piezoelectric, and elastic characteri-
stics of the compounds of this type were carried out (by L.M. Korotkov
and his group). Below we give some of the obtained results for the lon-
gitudinal dielectric permittivity (fig. 50) and coefficients of piezoelectric
strain (fig. 51) d36 of the K1−x(NH4)xH2PO4 compounds. The obtained
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Figure 50. The temperature dependence of the dielectric permittivity of
clamped (εε33) (curves 1,5) and free εσ33 (1’,2’,3’,4’,5’) K1−x(NH4)xH2PO4

crystals at different x: 0.0 – 1, 1’, , [139], , [Коротков] 1’, [139];
0.09 – 2’, , [Коротков]; 0.12 – 3’, , [Коротков]; 0.24 – 4’, ,
[Коротков]; 1.0 – 5, • [139], 5’, ◦ [139], [133].

results along with the available structural data confirm our assumption
about non-centrosymmetric structure of the K1-х(NH4)хH2PO4 type
systems. They form a basis for development of a consistent statistical
theory of the K1-х(NH4)хH2PO4 type systems that takes into account
the piezoelectric coupling.
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Figure 51. The temperature dependence of the coefficient of piezoelectric
strain d36 of KDP – 1, [139], [163], [164]; ADP – 2, ◦, [139].
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12. Conclusions

In the framework of the four-particle cluster approximation for the short-
range interactions and the mean field approximation for the long-range
interactions, we explored the free energy, a system of equations for
variation parameters, expression for spontaneous polarization, Edwards-
Anderson parameter, molar specific heat, longitudinal and transverse
dielectric permittivities of the Rb1−x(NH4)xH2PO4 type compounds for
all compositions x. The theoretical results are compared with experi-
mental data.

In the ferroelectric phase composition region the spontaneous polar-
ization decreases with increasing x and vanishes at the transition to the
glass phase region. The molar specific heat of the Rb1−x(NH4)xH2PO4

type compounds in the regions of the ferroelectric and antiferroelectric
phases has jumps, which vanish at the transition to the glass phase. The
Edwards-Anderson parameter is different from zero at all compositions
0 < x < 1 and temperatures, which is explained by the internal random
deformational fields

For the Rb1−x(ND4)xD2PO4 mixture the proposed theory satisfacto-
rily describes the temperature curves of the real and imaginary parts of
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the longitudinal and transverse permittivities in the regions of “pure”
phases (x ∼ 1, 0.5, 0). At the same time, for Rb1−x(NH4)xH2PO4,
Rb1−x(NH4)xH2AsO4, K1−x(NH4)xH2PO4 at low temperatures in the
glass phase composition region the theory incorrectly describes the shape
of the imaginary part of the permittivity curves ε′′aa(T, ν) (the theo-
retical peak is too narrow and too high). This is partially caused by
the neglected within the Glauber approach tunneling of protons, which
plays an essential role in the dynamic processes in these systems at low
temperatures. It is established that in this model the dynamics in the
proton glass composition region is of the Debye relaxation type only at
high temperatures. In our model the temperature curves of the aver-
aged relaxation times for longitudinal and transverse permittivities for
proton-glass composition region at T → 0 are close to the Arrhenius law.
The phase diagrams constructed using the calculated dielectric charac-
teristics are close to the experimental ones.

Absence of reliable experimental data for the physical characteristics
of the Rb1−x(NH4)xH2PO4 type proton glasses in a wide composition
range creates large difficulties for verifying the validity of the proposed
theory. Possible further improvement of the theory of proton glasses
also requires reliable experimental data for the temperature dependences
of all calculated characteristics of these crystals in a wide composition
range.

Using the proposed modified proton ordering model with taking into
account linear over the ε6 and ε4 strains contributions into the ener-
gy of the proton system but without tunneling, within the framework of
the four-particle cluster approximation we calculate the dielectric, piezo-
electric, elastic, and dynamic characteristics of the KH2PO4 type ferro-
electrics and NH4H2PO4 type antiferroelectrics. A thorough numerical
analysis of the dependences of the calculated physical characteristics of
the crystals on the values of the model parameters is carried out. The op-
timal sets of the values of these parameters are found for the considered
crystals; it allowed us to properly describe the available experimental
data. The physical characteristics of partially deuterated crystals is per-
formed within the mean crystal approximation.

With taking into account the piezoelectric coupling we obtained the
expressions for the susceptibilities of mechanically free and clamped crys-
tals, piezoelectric coefficients, and elastic constants. The calculations of
the temperature dependences of these characteristics confirm the ex-
perimentally obtained significant difference between the values of εσ33
and εε33 in the K(H1−xDx)2PO4 type crystal and the very small differ-
ence between these quantities for ADP and DADP. On the other hand,
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the values of εσ11 and εε11 in the ferroelectric compounds of the KH2PO4

family almost coincide.
It has been shown that the minimal value of ε′33(ω) at different

frequencies is larger when the piezoelectric coupling is taken into ac-
count than when it is neglected, which is consistent with experiment.
The dispersion frequency of ε33(ω) in the ferroelectric compoundsof the
KH2PO4 family increases with incrasing ε6. The phenomena of crys-
tal clamping and piezoelectric resonance in the considered crystals have
been described for the first time.

It has been established [101–103, 179] that taking into account
the piezoelectric coupling weakly affects the spontaneous polarizati-
on and molar specific heat of partially deuterated ferroelectrics of the
K(H1−xDx)2PO4 type. It should be noted that tunneling hardly influ-
ences the dielectric, piezoelectric, and elastic characteristics of the consi-
dered crystals, but essentially changes the difference between the Curie
and Curie-Weiss temperatures of a free crystal.
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