
Препринти Iнституту фiзики конденсованих систем НАН України
розповсюджуються серед наукових та iнформацiйних установ. Вони
також доступнi по електроннiй комп’ютернiй мережi на WWW-сер-
верi iнституту за адресою http://www.icmp.lviv.ua/

The preprints of the Institute for Condensed Matter Physics of the Na-
tional Academy of Sciences of Ukraine are distributed to scientific and
informational institutions. They also are available by computer network
from Institute’s WWW server (http://www.icmp.lviv.ua/)

Вiкторiя Богданiвна Блавацька
Христина Аркадiївна Гайдукiвська
Юрiй Васильович Головач

Конформацiйнi переходи в напiвгнучких полiмерах:

числовi симуляцiї

Роботу отримано 15 лютого 2011 р.

Затверджено до друку Вченою радою IФКС НАН України

Рекомендовано до друку вiддiлом статистичної теорiї
конденсованих систем

Виготовлено при IФКС НАН України
c© Усi права застереженi

Нацiональна академiя наук України

���������	
� IНСТИТУТ

ФIЗИКИ

КОНДЕНСОВАНИХ

СИСТЕМ

'

&

$

%

V.Blavatska, K.Hajdukivska∗, Yu.Holovatch

CONFORMATIONAL TRANSITIONS
IN SEMIFLEXIBLE POLYMERS:

NUMERICAL SIMULATIONS

∗Ivan Franko National University of Lviv, Faculty of Physics

79005 Lviv, Kyrylo and Mefodiy Str. 8

ICMP–11–01E

ЛЬВIВ



УДК: 538.91

PACS: 36.20.-r,07.05.Tp,05.40.Fb

Конформацiйнi переходи в напiвгнучких полiмерах: числовi

симуляцiї

В.Блавацька, Х.Гайдукiвська, Ю.Головач

Анотацiя. Ми дослiджуємо конформацiйнi властивостi напiвгну-
чких полiмерiв в рамках граткової моделi випадкових блукань без
самоперетинiв (self-avoiding walks – SAW) iз енергiєю згинання ε,
залежною вiд взаємоорiєнтацiї послiдовних крокiв. Застосовується
алгоритм Розенблюта iз збiдненням та збагаченням (PERM). Аналi-
зуються випадки, коли згини енергетично вигiднi (ε < 0) та невигiднi
(ε > 0), i обговорюються деталi переходу “клубок-стержень” та пере-
ходу в “надгнучкий” стан.

Conformational transitions in semiflexible polymers: numerical

simulations

V.Blavatska, K.Haydukivska, Yu.Holovatch

Abstract. We study the conformational properties of semiflexible poly-
mers within the lattice model of self-avoiding random walks (SAW) with
bending energy ε dependence on orientation between successive steps.
We apply the pruned-enriched Rosenbluth method (PERM). Both the
cases of bending preference (ε < 0) and unfavorableness (ε > 0) are
analyzed, and details of “coil-to-rod" transition as well as transition into
the “superflexible” state are discussed.
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1. Introduction

Many polymers in chemical and biological physics are characterized by
linear chemical architecture and thus behave as flexible chains. Typical
examples of flexible polymers are synthetic polymers with a carbon back-
bone, such as polyethylene, where the carbon bonds along the backbone
can easily rotate against each other. The statistical properties of flexi-
ble polymers under good solvent conditions are thoroughly studied by
now [1,2]. In particular, it was found, that typical long flexible polymer
chains in good solvents form crumpled coils with the size measure such
as mean-squared end-to-end distance 〈R2〉 obeying the scaling law with
the number of monomers N :

〈R2〉 ∼ N2ν , (1)

where ν is a universal exponent, depending on space dimension d only
(ν(d = 3) = 0.5882± 0.0011 [3]).

Recently, much interest was paid to semiflexible polymers, mostly
since important biopolymers such as DNA and some proteins belong to
this class [4,5]. Typically, these polymers are supramolecular assemblies
with a relatively large monomer diameter. Also some synthetic polymers
exhibit some stiffness over short distances along the chain. The compe-
tition between thermal energy and the bending energy of the polymer
sets a characteristic length scale, the persistence length lp.

The theoretical efforts to properly include the stiffness of the chain
into calculations, including so-called wormlike chain model [6, 7], have
not succeeded, however, in incorporating the exclude-volume effects fully.
Halley et al. [8] proposed to treat the problem of semiflexible polymers in
the language of lattice model of biased self-avoiding walks (BSAW) with
different statistical weights for “trans” steps (straight joins between two
neighbour monomers) and “gauche” steps (those leading to bending of a
polymer chain). The persistence length was thus introduced as inversely
proportional to probability of a “gauche” step, and the scaling form for
〈R2〉 was proposed:

〈R2〉 = N2f

(

N

lp

)

. (2)

Here, f(N/lp) is the scaling function, describing crossover between
two main regimes: on the chain length much larger than lp, any polymer
behaves as a flexible chain obeying scaling law (1), whereas for the chain
length much smaller then the persistence length, the polymer attains the
limit of a rigid rod with 〈R2〉 ∼ N2. The scaling properties of BSAW
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were studied both numerically [9–14] and within analytical approaches
[15–17].

A slight modification of BSAW model was proposed by Giacometti
and Maritan [18] by introduction a bending energy ε associated to each
step away from the direction of the previous step, so that each “turn”
of trajectory is associated with statistical weight e−ε (see Fig. 1). The
case when ε ≫ 0 corresponds to stiff chain limit, whereas at ε ≪ 0
the bends become energetically favorable and very fuzzy “superflexible”
chains having a turn associated at each step appear. Whereas the former
limit is deeply related to “coil-to-rod” transition mentioned before, less
is known about the latter case, when bending is favorable. In particular,
an interesting question about the typical shape of such a “super-flexible”
polymer chain is still unresolved.

In the present paper, we consider the lattice model of semiflexible
polymers with bending energy ε, distinguishing the stiff and flexible li-
mits. Applying numerical simulations, we evaluate the explicit bending
dependence on the parameter ε and analyze the properties of “superflex-
ible” state.

2. The method

To study the configurational properties of self-avoiding random walks
on the regular lattice, we use the pruned-enriched Rosenbluth method

Figure 1. The schematic presentation of SAW trajectory in d = 2
with bending energy ε associated with each turn. The number of bends
(“gauche”-steps) equals 7. The bending energy ε = 0 is implied at each
straight join (“trans”-step).
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(PERM) [19], combining the original Rosenbluth-Rosenbluth algorithm
of growing chains [20] and population control [21]. Each n-th monomer
is placed at a randomly chosen neighbor site of the last placed (n −
1)th monomer (n ≤ N , where N is total length of the polymer). If this
randomly chosen site is already visited by a chain trajectory, it is avoided
without discarding the chain and a weight Wn is given to each sample
configuration at the nth step:

Wn =

n
∏

l=1

mle
−εl(1−cos θl), (3)

where ml is the number of free lattice sites to place the lth monomer, θl
is an angle between steps l and l − 1 and εl is a bending energy of lth
step orientation different relating to the preceding step (corresponding
to the case θ = π/2.)

The growth is stopped when the total length N of the chain is reached
(or, at n < N , the “dead end” without possibility to make the next step
is reached), then the next chain is started to grow from the same starting
point.

The configurational averaging for any quantity of interest then has
the form:

〈(. . .)〉 =
1

ZN

M
∑

k=1

W k
N (. . .), ZN =

M
∑

k=1

W k
N , (4)

where the summation is performed over the ensemble of all constructed
N -step SAWs (M ∼ 105 in our case).

The weight fluctuations of the growing chain are suppressed in PERM
by pruning configurations with too small weights, and by enriching the
sample with copies of high-weight configurations. These copies are made
while the chain is growing, and continue to grow independently of each
other. Pruning and enrichment are performed by choosing thresholds
W<

n and W>
n , which are continuously updated as the simulation pro-

gresses. If the current weight Wn of an n-monomer chain is less than
W<

n , the chain is discarded with probability 1/2, otherwise it is kept
and its weight is doubled. If Wn exceeds W>

n , the configuration is dou-
bled and the weight of each identical copy is taken as half the original
weight. Otherwise, the chain is simply continued without enriching or
pruning the sample.

For updating the threshold values we apply similar rules as in [22,23]:
W>

n = C(Zn/Z1)(cn/c1)
2 and W<

n = 0.2W>
n , where cn denotes the

number of created chains having length n, and the parameter C controls
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Figure 2. Number of bends in the polymer chain as a function of bending
energy ε at different number of monomers N in d = 2.

the pruning-enrichment statistics; it is adjusted such that on average 10
chains of total length N are generated per each tour [23].

3. Results and Discussion

Applying the PERM algorithm, we analyze the peculiarities of confor-
mational transitions under varying the bending energy ε in space dimen-
sions d = 2 and d = 3. Numerical simulations were performed for the
chain length up to 1000 monomers in d = 2 and up to 600 in d = 3. The
bending energy in both cases was varied in the limits −10, . . . , 10.

To describe quantitatively the extent of chain flexibility or stiffness,
let us evaluate the number of bends in polymer chain of length N , cor-
responding to the number of time when the SAW trajectory change it’s
direction. Figs. 2 and 3 present our simulation results. The case ε = 0
corresponds to the regime of flexible polymer coil with averaged size mea-
sure given by Eq. (1). For negative values of ε, the bendings becomes
more and more favorable. In the limit ε ≪ 0 we receive the “superflex-
ible” polymer chain with turning at each step, so that the the number
of bends equals N − 1 for an N -step SAW. In both 2 and 3 dimensi-
ons, we can estimate the marginal value of ε ≃ −3.5, below which the
conformational transition to “superflexible” state occurs. For positive ε,
when each bending of a trajectory gain an energy penalty, the limit of
completely stiff rod-like polymers should be gradually approached. The
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Figure 3. Number of bends in the polymer chain as a function of bending
energy ε at different number of monomers N in d = 3.

limitations of our method, however, enable to catch this tendency only
for rather short chain length N ≤ 100.

Whereas in the most of previous investigations the behavior of semi-
flexible polymers under increasing stiffness (corresponding to the case
ε > 0 in our model) was of interest, less attention was paid to the oppo-
site situation of “superflexible” polymers (ε < 0). An interesting question

Figure 4. Schematic presentations of SAW trajectories in d = 2 with
number of nearest neighbor contacts p = 0 (rod-like configuration), p = 1
(zigzag configuration), p = 2 (compact globule).
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Figure 5. Number of contacts with nearest neigbours in a SAW trajectory
in d = 2 as function of chain length N at different value of bending energy
ε.

arises, what is a typical shape of such a configuration? One could in pri-
nciple expect the zigzag configuration as shown in the middle of the
Fig. 4.

We can shed light into this question by studying the averaged num-
ber of nearest neighbor contacts p (i.e., number of cases when two near-
est neighbour sites are occupied but connected by a bond) of a typical
polymer chain. It is obvious, that for completely stretched, rod-like con-
figuration we will have p = 0, whereas for expected zigzag-like structure
p = 1 (in d = 2), as sketched in Fig. 4. Our numerical results for p
values as function of bending energy ε for SAWs in d = 2 are presented
in Fig. 5. At ε = 0, corresponding to ordinary SAW problem, the value
of nearest neigbour contacts in d dimensions can be estimated from the
empirical relation:

p = 2d− 1− z(d), (5)

where z(d) is a SAW fugacity (averaged number of possibilities to make
the next step in a growing trajectory). Indeed, for a simplified case when
the trajectory is allowed to cross itself (so-called Random Walks), in
(hyper)cubic lattice in d dimensions it is easy to show that z(d) = 2d.
Taking into account the self-avoidance effect, first of all the “turning
back” at each step is forbidden, which reduced the fugacity to the value
2d−1. Finally, one noticed that another factor which reduces the fugacity
due to the self-avoidance effect are the nearest neighbour contacts p.
Substituting in d = 2 the known value z(d = 2) = 2.6385± 0.0001 [24]
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Figure 6. Probability distribution of number of nearest neighbor contacts
in N = 40-step SAW trajectory in d = 2 at different values of bending
energy ε.

into (5), we receive an estimate for the ordinary SAW: p = 0.361. Our
result for the case ε = 0, obtained by least-square fitting of the data
gives p = 0.354± 0.009 and is thus nicely supported.

At positive values of ε, as expected, the averaged nearest neigbour
contact tends to 0. For negative ε, the p value gradually increases un-
til we reach the already mentioned marginal value of bending energy,
below which the crossover to “supeflexible” phase occurs. In this limit,
we estimate p = 0.690 ± 0.009, which can describe a “smeared” zigzag
configuration (cf. Fig. 4). The probability distribution of p at different
values of bending parameter ε is given in Fig. 6.

4. Conclusions

We studied the conformational properties of semiflexible polymers within
the lattice model of self-avoiding walks with additional bending param-
eter ε, which is negative for “gauche” step preference (step which is not
in the same direction as preceding step) and positive for “trans" step
preference. An important characteristics of the the semiflexible poly-
mers with “trans” step preference is the persistence length lp. At scales
smaller then lp, polymer attain the limit of rigid rod, whereas on the
chain length much larger than persistent length, any polymer behaves
as a flexible chain consisting of independent segments of the size lp. An-
other interesting case is “gauche” step preference (ε < 0), describing
the situation when bendings are favorable and in the limit ε → −∞ a
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“superflexible” chain with turning at each step is predicted.
We considered the properties of both “coil-to-rod” transition and

transition into “superflexible” state by studying the averaged number
of bendings in typical SAW configuration as function of ε. The existence
of marginal value of ε ≃ −3.5 is obtained, below which the polymer
chain consisting of N monomers, has N − 1 bendings and thus is in a
“superflexible” state. This is also confirmed by studying the averaged
nearest contact number p, which characterizes the topological properties
of polymer configuration. Whereas for the polymer chain in the flexible
coil regime (ε = 0) this value equals p = 0.354± 0.009, it is found to in-
crease in the bending preference case and is estimated to be 0.690±0.009
at ε ≤ −3.5.
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