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Профiлi густини мономерiв полiмерних ланцюжкiв в обме-
жених середовищах: Метод масивної теорiї поля

З.Є.Усатенко

Анотацiя. Проаналiзовано унiверсальне спiввiдношення густина-
сила i отримано вiдповiдну унiверсальну амплiтуду Breal використо-
вуючи метод масивної теорiї поля при фiксованiй вимiрностi просто-
ру d = 3. З точнiстю до однопетлевого наближення отримано профiлi
густини мономерiв для iдеальних ланцюжкiв та реальних полiмер-
них ланцюжкiв з ефектом виключеного об’єму в доброму розчинi
мiж двома паралельними вiдштовхуючими поверхнями та для ви-
падку вiдштовхуючої та iнертної поверхонь. Крiм того, розрахова-
но профiлi густини мономерiв для розведених полiмерних розчинiв
обмежених в напiв-обмеженому середовищi, що мiстить мезоскопi-
чну сферичну частинку великого радiусу. Отриманi результати до-
бре узгоджуються з попереднiми теоретичними дослiдженнями та з
результатами Монте Карло розрахункiв.

Monomer density profiles for polymer chains in confined ge-
ometries: Massive field theory approach

Z.E.Usatenko

Abstract. The universal density-force relation is analyzed and the cor-
respondent universal amplitude ratio Breal is obtained using the massive
field theory approach in fixed space dimensions d = 3. The monomer den-
sity profiles of ideal chains and real polymer chains with excluded volume
interaction in a good solvent between two parallel repulsive walls, one
repulsive and one inert wall are obtained in the framework of the mas-
sive field theory approach up to one-loop order. Besides, the monomer
density profiles for dilute polymer solution confined in semi-infinite space
containing mesoscopic spherical particle of big radius are calculated. The
obtained results are in qualitative agreement with previous theoretical
investigations and with the results of Monte Carlo simulations.
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The investigation of polymer solution near the surfaces and in film
geometries or mesoscopic particles dissolved in the solution is a task of
great interest from theoretical and application point of view.

The monomer density profiles of dilute polymer solution bounded
by a planar repulsive wall has a depletion region of mesoscopic width of
order of the coil size Rx ≈ Nν (where N is the number of monomers per
chain), and for the distances z̃ from the wall that are small compared
to this width but bigger than microscopic lengths of monomer size l̃ the
profile increases as

ρ(z̃) ∼ z̃
1

ν

with Flory exponent ν (ν is 1/2 for ideal polymer chains and ν ≈ 0.588
for polymer chains with excluded volume interaction (EVI)). This re-
markable theoretical predictions was proposed by Joanny, Leibler and de
Gennes [1]. They also mentioned that the monomer density close to the
wall is proportional to the force per unit area which the polymer solution
exerts on the wall. But, for the first time a complete quantitative expres-
sion for the universal density-force relation was obtained by Eisenriegler
on the basis of ǫ-expansion up to first order in [2]. As was mentioned
in [2], the correspondent density-force relations with the same universal
amplitude B are valid for the different cases: 1) a single polymer chain
with one end (or both ends) fixed in the half space bounded by the wall;
2) a single chain trapped in the slit of two walls; 3) for the case of dilute
and semi-dilute solution of free polymer chains in a half space; 4) for the
case of polymer chain in a half space containing a mesoscopic particle of
arbitrary shape. The verification of the universal density-force relation
was performed by simulation techniques using an off-lattice bead-spring
model of a polymer chain trapped between two parallel repulsive walls [3]
and by the lattice Monte Carlo algorithm on a regular cubic lattice in
three dimensions [4]. Unfortunately, the obtained results of Monte Carlo
simulations in [3] are much higher BMC > 2.48 than theoretical pre-
dictions Bǫ ≈ 1.85 obtained in [2]. As it was mentioned in [3], there is
a systematic decrease of Beff with increasing the distance L between
the walls. In accordance with it some rough linear extrapolation with
plotting Beff versus 1/

√
L which yields an extrapolated result B ∼ 1.4

was performed in [3]. Recent numerical results based on the lattice Monte
Carlo algorithm on a regular cubic lattice gives the value B ≈ 1.70±0.08
which is smaller than previous theoretical predictions. This all indicates
that the above mentioned task still have a lot of open questions and the
present paper tries to give answers for some of them.

The present paper is devoted to investigation of the universal density-
force relation and calculation of the universal amplitude B in the frame-
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work of the massive field theory approach. The massive field theory ap-
proach gives better agreement with the experimental data and the results
of Monte Carlo calculations as it was shown in the case of infinite [5,6],
semi-infinite [7] systems, and specially in the case of dilute polymer so-
lutions in semi-infinite geometry [8] and confined geometry [9]. As was
mentioned above, the knowledge of the universal amplitude B allows to
obtain the monomer density profiles for whole class of different systems
(cases 1)-4)). Besides, it should be mentioned that the universal density-
force relation is valid not only for the case of polymer chains trapped in
between two repulsive walls but also for the mixed case of one repulsive
and one inert wall.

We consider a dilute polymer solution, where different polymer chains
do not overlap and the behavior of such polymer solution can be de-
scribed by a single polymer chain. As it is known, the single polymer
chain can be modeled by the model of random walk and this corre-
sponds to the ideal chain at θ-solvent or self-avoiding walk for the real
polymer chain with EVI for temperatures above the θ-point. Taking in-
to account the polymer-magnet analogy developed by [10], their scaling
properties in the limit of an infinite number of steps N may be derived
by a formal n → 0 limit of the field theoretical φ4 O(n)- vector model
at its critical point. It should be mentioned that 1/N plays the role of a
critical parameter analogous to the reduced critical temperature in mag-
netic systems. The role of a second critical parameter plays the deviation
from the adsorption threshold (c ∝ (T −Ta)/Ta) (where Ta is adsorption
temperature). The value c corresponds to the adsorption energy divided
by kBT (or the surface enhancement constant in field theoretical treat-
ment). The adsorption threshold for long-flexible polymer chains, where
1/N → 0 and c → 0 is a multicritical phenomenon.

In order to obtain the universal amplitude B in universal monomer-
density relation let’s consider the single polymer chain with one end fixed
fluctuating near the repulsive wall such that (l̃ << z̃ << z << Rx).

The correspondent layer monomer densities ρλ(z̃) defined by [2] is:

ρλ(z̃)dz̃ =
(Rx)

1/ν

N
dNλ(z̃), (1)

where dNλ(z̃) is the number of monomers in the layer between z̃ and
z̃ + dz̃, Rx is the projection of the end to end distance R onto the
direction of x axis. Besides, ρλ is obtained from monomer density ρ(r̃, z̃)
after integration over the d − 1 components parallel to the wall. The
scaling dimension of ρ(r̃, z̃) is l1/ν−d and equals the ordinary dimensions
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of the quantity

Ψ(x̃) =
R

1/ν
x

2L0
Φ

2(x̃), (2)

where L0 is the conjugate Laplace variable which has the dimension of
length squared and is proportional to the total number of monomers N
of the polymer chain. Following the description of the problem as given
in [2], the monomer density in this case is

< ρ(x̃) >=
IL < Ψ(x̃) · ~φ(x)~φ(x′) >w

IL < ~φ(x)~φ(x′) >w

(3)

in the limit n → 0. The average < · >w in (3) denotes a statistical
average for a Ginzburg-Landau field in semi-infinite geometry. The dot
in (3) means a cumulant average. The correspondent Ginzburg-Landau
Hamiltonian describing the system in semi-infinite (j = 1) or confined
geometry of two walls (j = 1, 2) is:

H[~φ] =

∫

ddx

{

1

2

(

∇~φ
)2

+
µ0

2

2
~φ2 +

v0
4!

(

~φ2
)2

}

+

2
∑

j=1

cj0
2

∫

dd−1r~φ2, (4)

where ~φ(x) is an n-vector field with the components φi(x), i = 1, ..., n
and x = (r, z), µ0 is the "bare mass", v0 is the bare coupling con-
stant which characterizes the strength of the excluded volume interaction
(EVI). The surfaces of the system is characterized by a certain surface
enhancement constant cj0 , where j = 1, 2. The interaction between the
polymer chain and the walls is implemented by the different boundary
conditions.

In the case of two repulsive walls (where the segment partition func-
tion and thus the partition function for the whole polymer chain tends to
0 as any segment approaches the surface of the walls) Dirichlet-Dirichlet
boundary conditions (D-D b.c.) takes place:

c1 → +∞, c2 → +∞ or ~φ(r, 0) = ~φ(r, L) = 0, (5)

and for the mixed case of one repulsive and one inert wall Dirichlet-
Neumann boundary conditions(D-N b.c.) are:

c1 → +∞, c2 = 0 or ~φ(r, 0) = 0,
∂~φ(r, z)

∂z
|z=L = 0. (6)
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Taking into account that
∫

ddx̃ < ρ(x̃) >= R
1/ν
x the property

∫

ddx̃IL < Ψ(x̃) · ~φ(x)~φ(x′) >w= R1/ν
x IL < ~φ(x)~φ(x′) >w, (7)

takes place. It should be mentioned that near the repulsive wall the
short-distance expansion of Φ2 takes place and it assumes [11–14]

Ψ(r̃, z̃) → Bz̃1/ν
[Φ⊥(r̃)]

2

2
, (8)

for the distances l̃ << z̃, where l̃ is monomer size. The surface operator
[Φ⊥(r̃)]2

2 with Φ⊥ = ∂Φ(r̃,z̃)
∂z̃ |z̃=0 is the component of the stress tensor

perpendicular to the walls. Taking into account the shift identity [2, 15,
16] for the case of semi-infinite geometry

∫

dd−1
r̃ <

[Φ⊥(r̃)]
2

2
· ~φ(x)~φ(x′) >w= (

∂

∂z
+

∂

∂z′
) < ~φ(x)~φ(x′) >w (9)

and integrating it over
∫

ddx′ for the layer monomer density Eq.(1) in
accordance with Eqs.(3), (8) the universal density-force relation can be
obtained

< ρλ(z̃) >= Bz̃1/ν
f

kBT
, (10)

where
f

kBT
=

∂

∂z
ln[IL

∫

ddx′ < ~φ(x)~φ(x′) >w] (11)

is the force per area that the polymer chains exert on the wall. It should
be mentioned that the density-force relation (10) takes place for the
distances l̃ << z̃ << Rx, and B is universal amplitude. Following the
scheme of obtaining the universal amplitude B as it was proposed in
[13,16] the correspondent calculations based on the massive field theory
approach in fixed d = 3 dimensions were performed. Thus, for the layer
monomer density of ideal polymer chain takes place:

< ρλ(z̃) >G=
< R2

x >1/2ν

L0

ILG(; z, z̃)
∫∞

0
dz′G(; z̃, z′)

IL
∫∞

0
dz′G(; z, z′)

= 2
z̃2

z
. (12)

Taking into account the value of f/kBT ≈ 1/z for the force exerted by
ideal polymer chain on the wall from Eq.(10) the universal amplitude B
can be obtained:

Bid = 2. (13)
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The case of real polymer chain is more complicated, because EVI
with nonequal to zero the bare coupling constant v0 should be taken
into account. Taking into account Eq.(10) and Eqs.(3),(11) after renor-
malization of the mass

µ2
0 = µ2 − v0

3
J1(µ0) +O(v20), (14)

where J1(µ0) =
1

(2π)d−1

∫ dd−1q
2κq

with κq =
√

q2 + µ2
0, the renormalization

of the coupling constant v0 = vµ and including the correspondent UV-
finite renormalization factors (see [17]) in the limit n → 0 up to one-loop
order for the real polymer chain with EVI the universal amplitude Breal

can be obtained :

B = Breal = 2(1− ṽ

4
(1 +

ln 2

2
− γE)), (15)

where γE = 0.577 is Euler’s constant. Here we took into account that ν =
1
2 (1+

ṽ
8 )+O(v2) and the following definition v = bn(d)ṽ was introduced

with bn(d) =
6

n+8
(4π)d/2

Γ[ǫ/2] . The correspondent fixed point is equal: ṽ∗ = 1.

At d = 3 Eq.(15) leads to:

Breal ≈ 1.62. (16)

The obtained result Eq.(16) is in agreement with the result ob-
tained by Eisenriegler [2] for real polymer chains in the framework of

ǫ-expansion at d = 3: B = B
(ǫ)
real = 2(1 − bǫ) ≈ 1.85, where ǫ = 4 − d

and b = (ln 2 + γE − 2/3)/8. As it is easy to see, the result obtained in
the framework of the massive field theory approach is slightly smaller
than result of ǫ-expansion [2,13] and is in agreement with the numerical
result Breal ≈ 1.70 ± 0.08 of Monte Carlo simulations [4] and with the
result of rough linea extrapolation Bextr ∼ 1.4 obtained on the basis of
plotting Beff versus 1/

√
L in [3].

As it was shown in [2], the density-force relation (10) is also valid for
the case of dilute and monodisperse solution of free chains in semi-infinite
space. The polymer density far from the wall is fixed and the pressure
on the wall f/A (where A is the area of the wall) equals the pressure in
the bulk nBkBT . Thus, the monomer density of dilute polymer solution
of free chains in semi-infinite space according to Eq.(10) is

< ρ(x̃) >f= Bz̃1/νnB, (17)

where nB is the polymer density in bulk far from the wall.
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In the case of a spherical particle with radius R much larger than
the distance of its closest point a to the surface and much larger than
radius of gyration Rg the Derjaguin approximation, which describes the
sphere by a superposition of fringes with local distance from the wall
L(r‖) = a+ r

2
‖/(2R), should be applied [18].

Taking into account the depletion interaction potential between the
particle and the wall which we obtained in [9](see Eq.(7.12)):

φdepl(a)

nBkBT
= 2πRR2

x

∫ ∞

a/Rx

dyΘ(y), (18)

and the correspondent scaling function for the free energy of interaction
for the slit geometry Θ(y) (see Eqs.(5.6),(5.8) and Eqs.(6.4),(6.8) in [9])
the layer monomer density of dilute polymer solution in semi-infinite
space containing spherical particle of big radius for A = 1 and nB =
1/(LA) can be obtained:

< ρλ(z̃) >wp=
Bz̃1/ν

L
(1 − 2πRa2Θ(

a

Rx
)). (19)

As it is easy to see from Eq.(19), the layer monomer density depends
not only on Rx, but also on the shape of the mesoscopic particle and its
distance from the wall.

The density-force relation in the case of single polymer chain trapped
in the slit of two walls can be shown in the same way, because the Eq.(7)
and Eq.(8) take place not only for the averages of the type < · >w, but
also for the averages < · >ww. More detailed calculations can be found
in [17]. As it was mentioned in [2], the monomer density in the case of
dilute polymer solution between two repulsive walls has a maximum in
the center z̃ = L/2 of the slit. If the distant wall at z̃ = L is inert or in
another words is at the adsorption threshold, the density-force relation
Eq.(10) again takes place with the same values of B (see Eqs.(13),(16)),
as it was mentioned by Eisenrieglier [2]. In this last mentioned case the
polymer chain prefers the distant inert wall and the monomer density
maximum is at z̃ = L. The results of calculations of the layer monomer
density profiles for the case of ideal polymer chain and real polymer chain
with EVI confined between two repulsive walls (D-D b.c), one repulsive
and one inert wall (D-N b.c.) in accordance with Eq.(10) and taking
into account the correspondent values of Bideal and Breal (see Eqs.(13),
(16)) are presented on Fig.1 and Fig.2, respectively. Besides, Fig.1 and
Fig.2 present results for the case of ideal and real polymer chains in
semi-infinite space containing spherical particle of big radius. The last
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Figure 1. The dimensionless value of the layer monomer density <
ρλ(z) > L1−1/ν profiles for: ideal and real polymer chains in the case
of two repulsive walls (D-D b.c)(ww) with y = 10, and dilute polymer
solution (Rx = 0.1µm) of ideal and real polymer chains in semi-infinite
space containing repulsive spherical particle of big radius R = 10.0µm
on the distance a = 1.0µm from the repulsive wall (a = L) (pw). The
maximum is at L/2.

mentioned situation is analyzed for both cases when wall and particle
are repulsive and for the mixed case of repulsive wall and inert particle.

The obtained results (see Fig.1) indicate that the layer monomer den-
sity profiles for ideal polymer chains are weaker then for real polymer
chains with EVI in the case of two repulsive walls (or D-D b.c.). Com-
pletely opposite behavior of monomer density profiles is observed for the
case of one repulsive and one inert wall (or D-N b.c.), as it is easy to see
from Fig.2. Besides, the layer monomer densities for curvature surfaces
are smaller then for planar surfaces.

In order to test the reliability of the obtained analytical results it will
be interesting to compare them with the recent results of Monte Carlo
calculations obtained by [4] for the single polymer chain trapped inside
the slit of two repulsive walls.

In Ref. [4] the lattice Monte Carlo algorithm on a regular cubic lattice
in d = 3 dimensions, with D lattice units in z-direction and impenetrable
boundaries was applied (L = uD with u denoting the lattice spacing).
The other directions obeyed periodic boundary conditions. The corre-
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 ideal chain (pw)
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Figure 2. The dimensionless value of the layer monomer density <
ρλ(z) > L1−1/ν profiles for: ideal and real polymer chains in the case
of one repulsive one inert wall (D-N b.c.) (ww) with y = 10, and di-
lute polymer solution (Rx = 0.1µm) of ideal and real polymer chains
in semi-infinite space containing inert spherical particle of big radius
R = 10.0µm on the distance a = 1.0µm from the repulsive wall (a = L)
(pw). The maximum is near the distant inert wall.

spondent reduced force in accordance with ( [4]) can be written in the
form:

f

kB T
=

ã

ν µ∞L

√
3

1

ν

(

L

Rx

)− 1

ν

, (20)

where parameter ã is a universal amplitude, µ∞ is the critical fugacity
per monomer. Taking into account Eq.(10) and the value Bideal from
(13), the monomer density near the wall for ordinary RW is scaled as:

< ρλ(z) >G=
2π2z2

L

(

L

Rx

)−2

, (21)

where the universal amplitude ã for the case of ideal chains was found
as ã ≈ 0.2741(2) (see Ref. [4] ), which is very close to the exact value,

computed analytically in [2] and equal to ã = π2

36 . For the ideal chain
takes place: ν = 0.5, χd = 1 and µ∞ = 1

6 . In Fig.3 this asymptotic
behaviour for narrow slits is clearly recovered by our results for ideal
chains, where the narrow slit limit is valid.
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Figure 3. Comparison of theoretical results with Monte Carlo simulations
for the layer monomer density < ρλ(z) > profiles for: ideal chain and real
polymer chain with EVI (MFT) in the case of two repulsive walls (D-D
b.c). RW(MC) and SAW(MC) are the results obtained in Ref. [4] for
random walks and self avoiding walks. The comparison of results are
performed for the case: D = 80, N = 3500 and y ≈ 2.34 (RW); D = 120,
N = 3500 and y ≈ 1.73 (SAW) .

In the case of SAW in Ref. [4] the value ã ≈ 0.448 ± 0.005 was
obtained. Taking into account the values for ν ≈ 0.588, χ2

3 ≈ 0.960
(e.g. [19]) and µ∞ ≈ 0.2135, Breal = 1.70 ± 0.08 (see Ref. [4]), the
correspondent monomer density for SAW can be written as

< ρλ(z) >EV I ≈
15.44 z1.7

L

(

L

Rx

)−1.7

. (22)

The result Eq.(22) is presented in Fig.3 and compared to our theoretical
results for a trapped chain with EVI, which are valid for the wide slit
regime y & 1. In order to compare the obtained analytical results with
recent results of MC simulation we performed extrapolation of the MC
results for ã and µ∞ which are valid for the narrow slit regime to the
region of y & 1. As it possible to see from Fig.3, the results Eq.(21) and
Eq.(22) correspond very well to our theoretical predictions in the wide
slit limit. One of the possible reasons for remaining deviations with the
results of Ref. [4] is that the chain in the MC simulation is too short
in order to compare with the results of the field-theoretical RG group
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approach. Unfortunately, at the moment no simulations concerning one
repulsive and one inert wall exist.
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