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Двостанова модель Бозе-Хаббарда в границi жорстких
бозонiв

I.В.Стасюк, О.В.Величко

Анотацiя. Проведено дослiдження переходу у фазу з бозе-
конденсатом (БК-фазу) у гратковому бозе-газi у випадку, коли кван-
товi перескоки частинок вiдбуваються мiж збудженими локальними
станами. В основу покладено модель Бозе-Хаббарда (яка застосовує-
ться у теорiї оптичних граток з ультрахолодними атомами та iонних
провiдникiв, а також при описi квантової делокалiзацiї адсорбованих
частинок) у границi жорстких бозонiв. Показано, що рiд фазового
переходу може змiнюватися з другого на перший, залежно вiд зна-
чень енергiї збудження, хiмiчного потенцiалу частинок та темпера-
тури. Встановлено умови, при яких вiдбувається розшарування на
нормальну та БК фази.

Two-state Bose-Hubbard model in the hard-core boson limit

I.V.Stasyuk, O.V.Velychko

Abstract. Appearance of the Bose-Einstein condensate (BEC) in the
lattice Bose gas is investigated for the case of particle quantum hopping
between the local excited states. The present study is performed on the
basis of the Bose-Hubbard model (widely used in the theory of optical
lattices with ultracold atoms and ionic conductors as well as for descrip-
tion of quantum delocalization of adsorbed particles) in the hard-core
boson limit. It has been proved that the order of the phase transition
can change from the second to the first one depending on values of the
excitation energy, the particle chemical potential and temperature. Con-
ditions of the phase separation into normal and BEC phases have been
also established.
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1. Introduction

During the recent years Bose-Hubbard model (BHM) is proved to be a
valuable tool in the theory of systems of strongly correlated particles.
The model achieves a wide recognition due to a successful description of
thermodynamics and dynamics of ultracold Bose atoms in optical lattices
where a phase transition to the phase with the Bose-Einstein (BE) con-
densate (so called Mott insulator (MI) – superfluid state (SF) transition)
occurs at very low temperatures. Experimental evidences of BE conden-
sation in optical lattices were found for the first time in works [1,2] while
theoretical predictions of such an effect were given earlier [3]. Starting
from the 90-ies of the past century a series of papers was devoted to
the theory of this phenomenon. Among the first key articles on the sub-
ject one should mention the work [4] where BHM was studied in the
mean field approximation. Calculated thereat phase diagrams demon-
strate that in the simplest case (hopping of Bose particles in the presence
of a single-site Hubbard repulsion) the MI-SF transition is of the sec-
ond order. Therewith it is supposed that particles reside in the ground
state of local potential wells in the lattice. Forthcoming theoretical in-
vestigations in this field were performed with the use of various techni-
ques, e.g. the random phase approximation (RPA) in the Green function
method [5,6], a strong-coupling perturbation theory [7,8], the dynamical
mean field theory (Bose-DMFT) [9,10] as well as quantum Monte-Carlo
calculations [11, 12] and other numerical methods.

The Bose-Hubbard model is also intensively used for a theoretical
description of a wide range of phenomena: quantum delocalization of
hydrogen atoms adsorbed on the surface of transition metals [13, 14],
quantum diffusion of light particles on the surface or in the bulk [15,16],
thermodynamics of the impurity ion intercalation into semiconductors
[17, 18].

In the last mentioned applications, there is usually a restriction on
the position occupation number (ni 6 1), what for the considered model
corresponds to the limit of an infinite Hubbard repulsion. Such a model
of hard-core ions (where particles are described by the Pauli statistics)
is known also as the fundamental one for investigation of a wide range
of problems, e.g. superconductivity due to a local electron pairing [19]
or ionic hopping in ionic (superionic) conductors [20, 21].

Study of a quantum delocalization or diffusion reveals an important
role of excited vibrational states of particles (ions) in localized (intersti-
tial) positions with a much higher probability of ion hopping between
them [15, 22, 23]. A similar issue of a possible BE condensation in the
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excited bands in optical lattices is also considered but the condition of
their sufficient occupation due to the optical pumping (see, e.g. [24]) is
imposed. An orbital degeneration of the excited p-state is accompanied
by anisotropy of hopping parameters and results in the appearance of
variously polarized bands in the one-particle spectrum. Such bands cor-
respond by convention to different sorts (so called “flavours”) of bosons
and their number correlates with the lattice dimensionality. In the frame-
work of the necessary generalization of the Bose-Hubbard model a pos-
sibility of the MI-SF transition to the phase with BE condensate in the
pumping-induced quasi-equilibrium long-living state of the system has
been established [25].

In the equilibrium case, the issue of BE condensation involving the
excited states in the framework of ordinary Bose-Hubbard model was
not considered in practice. The exception is the system of spin-1 bosons
[26,27] where a hyperfine splitting gives rise to multiplets of local states
resulting in closely-spaced excited levels. As demonstrated in [28,29], the
MI-SF phase transition could be of the first order when a single-site spin
interaction is of the “antiferromagnetic” type. A similar change of the
phase transition order takes place also for multicomponent Bose systems
in the optical lattices [30].

In the present work we consider an equilibrium thermodynamics of
the Bose-Hubbard model taking into account only one nondegenerated
excited state on the lattice site besides the ground one. On the one hand,
such a model corresponds to 1D or strongly anisotropic (quasi-1D) opti-
cal lattice, and on the other, it is close to situation that is characteristic
of system of light particles adsorbed on the metal surface. For example,
excited states of hydrogen atoms on the Ni(111) surface are sufficiently
distant [22] so only the lowest one could be taken into account. We shall
investigate a condition of instability of a normal state of the Bose system
with respect to BE condensation considering a criterion of divergence of
the susceptibility (χ ∼ 〈〈cl|c+p 〉〉ω|q=0,ω=0) characterizing the system re-
sponse with respect to the field related to a spontaneous creation or
annihilation of particles. We shall also study the behaviour of the order
parameter 〈c0〉 (〈c+0 〉) as well as the grand canonical potential in the
region of the MI-SF transition and shall build relevant phase diagrams.
Special attention will be given to a change of the phase transition or-
der and localization of tricritical points at different values of excitation
energy, particle hopping parameter and temperature.

We shall limit ourselves to the hard-core boson (HCB) limit where a
limitation on occupation numbers is present: no more than one particle
per site regardless of state (excited or ground) which it occupies. Thus
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the single-site problem is a three-level one (contrary to the two-level
ordinary HCB case). For this reason, it is convenient to use the formalism
of Hubbard operators [31] (standard basis operators [32]).

2. Two-state Bose-Hubbard model in RPA: normal

phase

The Bose-Hubbard model is used for description of the system of Bose
particles which are located in a periodic field and can reside in lattice
sites. Taking into account only the ground and the first excited vibra-
tional levels in the potential well on the site one can express the model
Hamiltonian as:

Ĥ = (ε− µ)
∑

i

b+i bi + (ε′ − µ)
∑

i

c+i ci + Ubc

∑

i

nb
in

c
i

+
Ub

2

∑

i

nb
i (n

b
i − 1) +

Uc

2

∑

i

nc
i(n

c
i − 1)

+
∑

ij

tbijb
+
i bj +

∑

ij

tcijc
+
i cj +

∑

ij

tbcij (b
+
i cj + c+i bj), (2.1)

where bi and b+i (ci and c+i ) are Bose operators of annihilation and
creation of particles in the ground (excited) state, ε and ε′ are respective
energies of state and µ is the chemical potential of particles. Such a
Hamiltonian includes the single-site Hubbard repulsions with energies
Ub, Uc and Ubc as well as the particle hopping between ground (tb),
excited (tc) and different (tbc) states. Hereinafter we assume Ub = Uc =
Ubc for simplicity.

Let us define a single-site basis |nb
i , n

c
i 〉 ≡ |i;nb

i , n
c
i 〉 (which is formed

by particle occupation numbers in the ground and the excited states, i.e.
eigenvalues of operators nb

i = b+i bi and nc
i = c+i ci) as well as introduce

Hubbard operators (standard basis operators)

Xn,m;n′,m′

i ≡ |i;n,m〉〈i;n′,m′|. (2.2)

Annihilation and creation Bose operators may be written as

bi =
∑

n

∑

m

√
n+ 1Xn,m;n+1,m

i , b+i =
∑

n

∑

m

√
n+ 1Xn+1,m;n,m

i ;

ci =
∑

n

∑

m

√
m+ 1Xn,m;n,m+1

i , c+i =
∑

n

∑

m

√
m+ 1Xn,m+1;n,m

i .

(2.3)
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Corresponding occupation numbers look as follows

nb
i =

∑

n

∑

m

nXn,m;n,m
i , nc

i =
∑

n

∑

m

mXn,m;n,m
i , (2.4)

where summation indices n,m = 0, . . . ,∞ in both (2.3) and (2.4) for-
mulae.

In the X-operator representation the single-site part of Hamiltonian
(2.1) can be written as

Ĥ0 =
∑

i

∑

n

∑

m

λnmXn,m;n,m
i , (2.5)

where

λnm = n(ε− µ) +m(ε′ − µ) +
U

2
(n+m)(n+m− 1). (2.6)

Terms describing an inter-site transfer in Hamiltonian (2.1) are trans-
formed in the similar way.

Our primary goal is to calculate the two-time temperature boson
Green’s functions 〈〈b|b+〉〉 and 〈〈c|c+〉〉, which describe an excitation
spectrum and give a possibility to investigate the conditions of the system
instability with respect to the spontaneous symmetry breaking and the
appearance of a BE condensate. As follows from definitions (2.3)

〈〈bl|b+p 〉〉ω =
∑

nm

∑

rs

√
n+ 1

√
r + 1 〈〈Xn,m;n+1,m

l |Xr+1,s;r,s
p 〉〉ω ,

〈〈cl|c+p 〉〉ω =
∑

nm

∑

rs

√
m+ 1

√
s+ 1 〈〈Xn,m;n,m+1

l |Xr,s+1;r,s
p 〉〉ω . (2.7)

We will use the equation-of-motion method for the evaluation of X-
operator Green’s functions. For the first one from relations (2.7) one
could write

~ω〈〈Xn,m;n+1,m
l |Xr+1,s;r,s

p 〉〉ω =
~

2π
〈Xn,m;n,m

l −Xn+1,m;n+1,m
l 〉δlpδnrδms

+ 〈〈[Xn,m;n+1,m
l , Ĥ ]|Xr+1,s;r,s

p 〉〉ω .

(2.8)
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Let us write the commutators

[Xn,m;n+1,m
l , Ĥ0] = (λn+1,m − λn,m)Xn,m;n+1,m

l , (2.9)

[Xn,m;n+1,m
l , b+i ] = δli

√
n+ 1

(
Xn,m;n,m

l −Xn+1,m;n+1,m
l

)
, (2.10a)

[Xn,m;n+1,m
l , bi] = δli

(√
n+ 2Xn,m;n+2,m

l −
√
nXn−1,m;n+1,m

l

)
,

(2.10b)

[Xn,m;n+1,m
l , c+i ] = δli

(√
mXn,m;n+1,m−1

l −
√
m+ 1Xn,m+1;n+1,m

l

)
,

(2.10c)

[Xn,m;n+1,m
l , ci] = δli

(√
m+ 1Xn,m;n+1,m+1

l −
√
mXn,m−1;n+1,m

l

)
.

(2.10d)

The latter are originated from the commutation of an initial X-operator
with the inter-site transfer terms of the Hamiltonian thus producing the
higher-order Green’s functions

〈〈X ···

l bj |Xr+1,s;r,s
p 〉〉ω , 〈〈X ···

l b+j |Xr+1,s;r,s
p 〉〉ω , . . . , (2.11)

where X ···

l stands for operators on the right-hand side of expressions
(2.10a)–(2.10d).

Decoupling of functions (2.11) in the random phase approximation
(RPA) is performed in the following way

〈〈X ···

l bj |Xr+1,s;r,s
p 〉〉ω ≈ 〈X ···

l 〉〈〈bj |Xr+1,s;r,s
p 〉〉ω+〈bj〉〈〈X ···

l |Xr+1,s;r,s
p 〉〉ω .

(2.12)
In the case of the normal phase (which will be studied here) 〈bj〉 = 〈b+j 〉 =
0. Thus, retaining only the averages 〈X ···

l 〉 of diagonal X-operators we
have

[Xn,m;n+1,m
l , Ĥ ] ≈ ∆nmXn,m;n+1,m

l

+
√
n+ 1Qnm

∑

j

tljbj +
√
n+ 1Qnm

∑

j

t′′ljcj (2.13)

and equation (2.8) can be rewritten as

〈〈Xn,m;n+1,m
l |Xr+1,s;r,s

p 〉〉ω =
~

2π
δlpδnrδms

Qnm

~ω −∆nm

+

√
n+ 1Qnm

~ω −∆nm

∑

j

tlj〈〈bj |Xr+1,s;r,s
p 〉〉ω

+

√
n+ 1Qnm

~ω −∆nm

∑

j

t′′lj〈〈cj |Xr+1,s;r,s
p 〉〉ω . (2.14)
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The following notations are introduced

Qnm = 〈Xn,m;n,m
l −Xn+1,m;n+1,m

l 〉, ∆nm = λn+1,m−λn,m , (2.15)

for the occupation difference of adjacent levels and the related transition
energies when the number of Bose particles in the ground state (with
the energy ε) on the site increases by one.

Going from X-operators in equation (2.14) to the Bose operators b
and b+ according to definition (2.3) we obtain

〈〈bl|b+p 〉〉ω =
~

2π
δlpg0(ω) + g0(ω)

(∑

j

tlj〈〈bj |b+p 〉〉ω +
∑

j

t′′lj〈〈cj |b+p 〉〉ω
)
,

(2.16)
where the function

g0(ω) =
∑

nm

Qnm

~ω −∆nm
(n+ 1) (2.17)

has a meaning of the unperturbed Green’s function for bosons residing
in the single-site ground state.

Equations of motion for “mixed” Green’s functions 〈〈c|b+〉〉 are ob-
tained in the way similar to the described above scheme. Using decou-
pling (2.12) one can write

[Xn,m;n,m+1
l , Ĥ ] ≈ ∆′

nmXn,m;n,m+1
l

+
√
m+ 1Q′

nm

∑

j

t′′ljbj +
√
m+ 1Q′

nm

∑

j

t′ljcj , (2.18)

what results in the equation

〈〈cl|b+p 〉〉ω = g′0(ω)

(∑

j

t′′lj〈〈bj |b+p 〉〉ω +
∑

j

t′lj〈〈cj |b+p 〉〉ω
)
. (2.19)

Here, similarly to (2.15) and (2.17)

Q′

nm = 〈Xn,m;n,m
l −Xn,m+1;n,m+1

l 〉, ∆′

nm = λn,m+1 − λn,m ,

g′0(ω) =
∑

nm

Q′

nm

~ω −∆′

nm

(m+ 1), (2.20)

and the function g′0(ω) is the unperturbed Green’s function for bosons
residing in the excited state.

ICMP–10–12E 7

By means of the Fourier transform

〈〈bl|b+p 〉〉ω =
1

N

∑

q

eiq(Rl−Rp)〈〈b|b+〉〉q,ω , (2.21)

one can pass to the momentum representation obtaining a system of
equations

〈〈b|b+〉〉q,ω =
~

2π
g0(ω) + g0(ω)tq〈〈b|b+〉〉q,ω + g0(ω)t

′′

q 〈〈c|b+〉〉q,ω ,

〈〈c|b+〉〉q,ω = g′0(ω)t
′′

q 〈〈b|b+〉〉q,ω + g′0(ω)t
′

q〈〈c|b+〉〉q,ω , (2.22)

where tq, t
′

q and t′′q stand for the Fourier transforms of hopping param-
eters.

A pair of equations for other Green’s functions are obtained in a
similar way

〈〈b|c+〉〉q,ω = g0(ω)tq〈〈b|c+〉〉q,ω + g0(ω)t
′′

q 〈〈c|c+〉〉q,ω ,

〈〈c|c+〉〉q,ω =
~

2π
g′0(ω) + g′0(ω)t

′′

q 〈〈b|c+〉〉q,ω + g′0(ω)t
′

q〈〈c|c+〉〉q,ω .

(2.23)

Solutions of equations (2.22) and (2.23) look like

〈〈b|b+〉〉q,ω =
~

2π

1

Dq(ω)
g0(ω)(1 − g′0(ω)t

′

q),

〈〈c|c+〉〉q,ω =
~

2π

1

Dq(ω)
g′0(ω)(1 − g′0(ω)tq),

〈〈c|b+〉〉q,ω =
~

2π

1

Dq(ω)
g0(ω)g

′

0(ω)t
′′

q = 〈〈b|c+〉〉q,ω , (2.24)

where

Dq(ω) = 1− g0(ω)tq − g′0(ω)t
′

q + g0(ω)g
′

0(ω)
[
tqt

′

q − (t′′q )
2
]
. (2.25)

The equation Dq(ω) = 0 gives the excitation spectrum which is ob-
tained here in the RPA. On the other hand, the divergence of boson
Green’s functions (2.24) at the zero values of wave vector and frequency
is a criterion of instability with respect to BE condensation [5, 33] thus
giving the following condition

Dq=0(ω = 0) = 0, (2.26)



8 Препринт

which can be rewritten in the explicit form

1− g0(ω)tq − g′0(ω)t
′

q + g0(ω)g
′

0(ω)
[
tqt

′

q − (t′′q )
2
]
= 0, (2.27)

where

g0(0) = −
∑

nm

Qnm

(n+m)U − µ
(n+ 1),

g′0(0) = −
∑

nm

Q′

nm

(n+m)U + δ − µ
(m+ 1), (2.28)

and δ = ε′ − ε is the excitation energy.
We should point out that divergence of the 〈〈b|b+〉〉0,0 function cor-

relates with appearance of the BE condensate in the ground state while
at the divergence of the 〈〈c|c+〉〉0,0 function BE condensation takes place
in the excited state. In general, both condensates appear simultaneously
except the case t′′q = 0 (e.g. due to symmetry reasons) when these effects
become independent and only the one type of condensate arises in the
instability point.

Equation (2.27), relating mutually the chemical potential, hopping
parameters and temperature, allows to construct spinodal surfaces (or
lines) in the mentioned above coordinates and to find the temperature
of the phase transition to the phase with BE condensate (so called SF
phase) when such a transition is of the second order. Below, this problem
(especially the issue of the phase transition order) will be investigated
in more details.

3. NO phase instability in HCB limit

Let us consider now a simple special case of the HCB limit when occupa-
tion numbers in the |n,m〉 state are restricted by a condition n+m 6 1.
In the framework of the model it formally means U → ∞.

In this case the model becomes a three-level one with the local ener-
gies

λ00 = 0, λ01 = δ − µ, λ10 = −µ (3.1)

and the following transition energies

∆00 = −µ, ∆′

00 = δ − µ. (3.2)

Thus, equation (2.27) can be rewritten in the form

1− Q00

µ
t0 −

Q′

00

µ− δ
t′0 +

Q00Q
′

00

µ(µ− δ)

[
t0t

′

0 − (t′′0 )
2
]
= 0, (3.3)
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Figure 1. Lines of the NO phase in-
stability (spinodals) with respect to
the appearance of BE condensate in
the (Θ, µ) plane in the HCB limit at
various excitation energies (t0 = 0,
|t′0| = 1, t′′0 = 0).

where

Q00 =
1− eβµ

1 + eβµ + eβ(µ−δ)
,

Q′

00 =
1− eβ(µ−δ)

1 + eβµ + eβ(µ−δ)
(3.4)

in the zero approximation with re-
spect to hopping.

We take into account (accord-
ing to estimations made in [15,
25]) that boson wave functions
in adjacent potential wells over-
lap in greater extent in the excit-
ed states compared to the ground
ones. Accordingly, we shall put
here t0 = 0. For a centrosymmet-
ric lattice and in the case of dif-

ferent parity of wave functions of ground and excited states we have also
t′′0 = 0. Finally, we follow a usual convention of the BH model for optical
lattices taking t′0 < 0. In this way equation (3.3) can be reduced to

|t′0|
δ − µ

1− eβ(µ−δ)

1 + eβµ + eβ(µ−δ)
= 1. (3.5)

Its solutions determine the stability region boundaries of the normal
(NO) phase. Respective lines of spinodals are numerically calculated and
presented in figure 1 (here and below the energy quantities are given in
units of |t′0|).

As illustrated in figure 1, at δ < |t′0| spinodals surround an asymmet-
ric area in the (Θ, µ) plane which is located between the points µ = δ−|t′0|
and µ = 0 of the abscissa axis. In this region the NO phase is unstable;
it is connected with an appearance of BE condensate. At δ < |t′0|/2 and
µ > 0 the backward path of spinodal is observed and a lower tempera-
ture of the NO phase instability appears, thus suggesting a possibility of
the SF phase existence in the intermediate temperature range (so called
“re-entrant transition”). However, as will be shown further, in the menti-
oned region a real thermodynamic behaviour is even more complicated.
The order of the NO-SF transition can change to the first one and the
SF-phase remains stable up to the zero temperature.
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4. Phase diagrams in MFA

For a more detailed treatment of the NO-SF transition issue let us study
thermodynamics of the considered system in the HCB limit thus reducing
the problem to a three-state model with the Hamiltonian

Ĥ =
∑

ip

λpX
pp
i +

∑

ij

tijX
10
i X01

j +
∑

ij

t′ijX
20
i X02

j

+
∑

ij

t′′ij(X
10
i X02

j +X20
i X01

j ), (4.1)

where the shorthand notations are used

|0〉 ≡ |00〉, |1〉 ≡ |10〉, |2〉 ≡ |01〉; λ0 = λ00, λ1 = λ10, λ2 = λ01 .
(4.2)

Possibility of BE condensation will be studied in the MFA. Aver-
age values of creation (annihilation) operators for Bose particles in the
ground or excited local state

η = 〈X10
i 〉 = 〈X01

i 〉 (≡ 〈bi〉), ξ = 〈X20
i 〉 = 〈X02

i 〉 (≡ 〈ci〉) (4.3)

play the roles of order parameters for the SF-phase. Hence the mean-field
Hamiltonian looks like

ĤMF = −N(t0η
2 + t′0ξ

2 + 2t′′0ηξ) +
∑

ip

λpX
pp
i +

∑

i

[
t0η(X

10
i +X01

i )

+ t′0ξ(X
20
i +X02

i ) + t′′0ξ(X
10
i +X01

i ) + t′′0η(X
20
i +X02

i )
]
. (4.4)

Self-consistency equations for parameters η and ξ

η = Z−1 Sp(X10
i exp(−βĤMF)), ξ = Z−1 Sp(X20

i exp(−βĤMF))
(4.5)

are equivalent to the condition of minimum of the grand canonical po-
tential Ω = −Θ lnZ, where Z = Sp exp(−βĤMF).

Limiting our consideration to the case of particle hopping only
through excited states (t′0 6= 0, t0 = t′′0 = 0) we can diagonalize Hamil-
tonian (4.4) by a rotation transformation




|0〉
|1〉
|2〉


 =




cosϑ 0 − sinϑ
0 1 0

sinϑ 0 cosϑ







|0̃〉
|1̃〉
|2̃〉


 , (4.6)
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where

cos 2ϑ =
λ2 − λ0√

(λ2 − λ0)2 + 4(t′0ξ)
2
,

sin 2ϑ =
2|t′0|ξ√

(λ2 − λ0)2 + 4(t′0ξ)
2

(4.7)

and λ2 − λ0 = δ − µ. In terms of operators X̃rs = |r̃〉〈s̃|

ĤMF = N |t′0|ξ2 +
∑

ip

λ̃pX̃
pp
i . (4.8)

New energies of single-site states are

λ̃0,2 =
δ − µ

2
∓

√(
δ − µ

2

)2

+ (t′0ξ)
2, λ̃1 = −µ. (4.9)

In the new basis

X02
i +X20

i = −(X̃22
i − X̃00

i ) sin 2ϑ+ (X̃20
i − X̃02

i ) cos 2ϑ, (4.10)

what gives after averaging

ξ =
1

2
〈X̃00 − X̃22〉 sin 2ϑ. (4.11)

Taking into account that 〈X̃pp〉 = Z−1 exp(−βλ̃p), Z =
∑

p exp(−βλ̃p)
we come to the equation for the order parameter ξ:

ξ =
1

Z

|t′0|ξ√
(δ − µ)2 + 4(t′0ξ)

2

(
e−βλ̃0 − e−βλ̃2

)
. (4.12)

Solution ξ = 0 corresponds to the NO phase. A nonzero solution describ-
ing the BE condensate is obtained from the equation

1

Z

|t′0|√
(δ − µ)2 + 4(t′0ξ)

2

(
e−βλ̃0 − e−βλ̃2

)
= 1. (4.13)

In the limit ξ → 0 this equation determines the line where the order
parameter for the SF phase tends to zero. One can readily see that it
coincides with spinodal equation (3.5) thus defining the line of the second
order NO-SF phase transition (when just the transition of such an order
takes place).
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Figure 2. Dependences of the or-
der parameter ξ on the chemical
potential µ for the reduced three-
level (HCB) model at various tem-
peratures indicating the possibility
of the first order phase transition at
low enough temperatures (δ = 0.1,
|t′0| = 1).

Numerical solutions of equati-
on (4.13) allow to study the be-
havior of the order parameter ξ
depending on chemical potential
µ at various temperatures as il-
lustrated in figure 2. In the main,
at negative values of chemical po-
tential the parameter ξ changes
smoothly and the phase transiti-
on to the SF phase is of the sec-
ond order. But at µ & 0 and
low enough temperatures the ξ(µ)
dependence has an S-like bend.
In this case the first order phase
transition with an abrupt change
of the parameter ξ takes place.
This phase transition occurs at a
certain value of the chemical po-
tential which could be calculated
using the Maxwell rule or considering the minimum of the grand canon-
ical potential Ω(µ) as function of the chemical potential (see below).
Obviously, the point of ξ nullification does not correspond here to the
phase transition anymore.

Similar behaviour of the parameter ξ holds even at zero excitation
energy (δ = 0) where the first order phase transition remains for nonzero
temperatures whereas at T = 0 its order changes to the second one
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Figure 3. Low-temperature behaviour of the order parameter ξ for the
reduced three-level (HCB) model at zero and negative excitation energies
δ and various temperatures (|t′0| = 1).
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(figure 3). At negative values of δ (what corresponds to inversion of ε
and ε′ levels and to hopping between ground states) the second order
of the transition preserves in the low-temperature region close to T =
0 transforming to the first order one at the temperature increase and
recovering henceforth (figure 3).

Changes of the NO-SF phase transition order and localization of the
corresponding tricritical points are depicted in figure 4, where phase dia-
grams are given for various values of the excitation energy δ. At temper-
atures lower than the tricritical one, spinodal lines and phase transition
curves come apart as one can see comparing figures 1 and 4. At small
values of δ the discrepancy is quite significant (figure 5). In the case of
δ < 0 two critical points appear at a certain distance; the latter tends
to zero at δ = δcrit ≈ −0.12|t′0| and the first order phase transitions at
the further increase of δ (figure 6) is suppressed.

Phase diagrams in the (|t′0|, µ) plane at various temperatures for δ > 0
are depicted in figure 7 with indication of tricritical points. In distinction
to the standard two-level HCB model [34] (where the SF phase transition
is of the second order) the diagrams are asymmetric. In the limit T → 0
for µ > 0 the first order transition occurs at µ = (

√
δ −

√
|t′0|)2 (see the

next section) whereas for µ < 0 they are of the second order on the line
µ = δ − |t′0|.
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Figure 4. Lines of the NO-SF
phase transition in the (Θ, µ)
plane at various excitation ener-
gies δ (|t′0| = 1).

Figure 5. An illustration of discrep-
ancy between the spinodal curve and
the real line of the first order phase
transition for δ = 0.01 (|t′0| = 1).
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Figure 6. Appearance of two tri-
critical points at zero and nega-
tive values of excitation energy δ
(|t′0| = 1).

Figure 7. Lines of the NO-SF phase
transition in the (|t′0|, µ) plane at
various temperatures Θ (energy
quantities are given in units of δ).

5. Phase separation at fixed boson concentration

Let us consider now thermodynamics of the model at a fixed concentra-
tion of Bose particles. We will utilize a connection between the concen-
tration and the chemical potential of bosons which can be established
using its definition in such a form

n ≡ 〈nb
i + nc

i〉 = 〈X11
i +X22

i 〉 (5.1)

or basing on the relationship

n = −∂(Ω/N)

∂µ
. (5.2)

In the first case similarly to equality (4.10) one can obtain a relation

X11
i +X22

i = X̃11
i +X̃00

i sin2 ϑ+X̃22
i cos2 ϑ+(X̃02

i +X̃20
i ) sinϑ cosϑ (5.3)

what results in

n = 〈X̃11
i 〉+ 〈X̃00

i 〉 sin2 ϑ+ 〈X̃22
i 〉 cos2 ϑ =

=
1

Z

{
e−βλ̃1 +

[
1

2
− δ − µ

2
√
(δ − µ)2 + 4(t′0ξ)

2

]
e−βλ̃0

+

[
1

2
+

δ − µ

2
√
(δ − µ)2 + 4(t′0ξ)

2

]
e−βλ̃2

}
. (5.4)
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In the second case, taking into account that

Ω/N = |t′0|ξ2 −Θ lnZ,

Z = eβµ + e−β(δ−µ)/2 coshβ

√(
δ−µ
2

)2
+ (t′0ξ)

2, (5.5)

and differentiating with respect to µ, one can come to (5.4).
There are different relationships between n and µ in NO and SF

phases; in the last case a nonzero value of ξ (a solution of equation
(4.13)) should be substituted into expression (5.4). Order parameter ξ
has a jump at the first order phase transition, so a stepwise change of
concentration n takes place. In the n = const regime (at the value of n
in the region of step) it means a phase separation into two phases with
different concentrations: the NO phase (ξ = 0 and a larger concentration
of bosons) and the SF phase (ξ 6= 0 and their smaller concentration).

The above-described situation is illustrated in figure 8, where the
numerically calculated (Θ, n) phase diagrams are presented. At δ > 0
phase separation region spans up to tricritical temperatures. When δ
goes to zero and finally reverses its sign, the shape of the separation
region changes in a peculiar way moving off abscissa axis (figure 8). Now
the phase separation begins at nonzero temperatures and vanishes at
δ < δcrit; the line of the second order phase transition remains only.
At the further increase of |δ| (in the µ < 0 region) the (Θ, n) diagram
becomes more and more symmetric, approaching by its shape to the
diagram known for the usual HCB model [35] (see also [36]).

Phase diagrams in the (|t′0|, n) coordinates are given in figure 9 where
the regions of NO, SF and separated phases are shown at various tem-
peratures.
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Figure 8. Lines of the NO-SF phase transition and the phase separation
region in the (Θ, n) plane at various excitation energies δ including the
case of small, zero and negative values of δ (|t′0| = 1).
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Figure 9. Phase diagram with the indication of possible phases (above)
and lines of the NO-SF phase transition in the (|t′0|, µ) plane at various
temperatures Θ (energy quantities are given in units of δ).

The case of the zero temperature can be studied in more details
in a pure analytic way. In this limit there are three branches of order
parameter ξ as a function of the chemical potential (see figure 2):

(1) : ξ =
1

2|t′0|

√
|t′0|2 − (µ− δ)2,

(2) : ξ =
√
µδ/|t′0|,

(3) : ξ = 0. (5.6)

After elimination of ξ parameter, one can obtain the grand canonical
potential Ω as follows

(1) : Ω/N =
(µ− δ + |t′0|)2

4|t′0|
,

(2) : Ω/N = (δ/|t′0| − 1)µ,

(3) : Ω/N =

{
0, µ < 0,

−µ, µ > 0.
(5.7)

Differentiating expressions (5.7) with respect to µ we have

(1) : n =
1

2
+

µ− δ

2|t′0|
,

(2) : n = 1− δ/|t′0|,

(3) : n =

{
0, µ < 0,

1, µ > 0.
(5.8)
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At the first order phase transition from the SF phase to the NO one
order parameter ξ jumps from branch (1) to branch (3). This occurs at
the µ = µ∗ ≡ (

√
|t′0| −

√
δ)2 value given by equality of respective grand

canonical potentials Ω(1) = Ω(3). Boson system then separates into SF
and NO phases with concentrations of bosons:

nSF =
1

2
+

µ∗ − δ

2|t′0|
, nNO = 1. (5.9)

6. Discussion and conclusions

As was shown in this work, the transition to the SF phase (the phase
with BE condensate) in the Bose-Hubbard model with two local states
(the ground and excited ones) on the lattice site can be of the first order
in the case, when the particle hopping takes place only in the excit-
ed band. Calculations and estimates for optical lattices give evidence
of significant distinction between hopping parameters t0 and t1 in the
ground and excited bands, respectively. It follows from estimates [25]
that t1/t0 ≈ 30− 50 depending on depth V0 of local potential wells (one
can influence on V0 changing the intensity of laser beams which create
an optical lattice). Similar results are obtained in studies of quantum
delocalization of the adsorbed hydrogen atoms. One can see from cal-
culations [22, 23] of energy spectrum of the H-atom subsystem on the
nickel surface that the ground-state band has a negligible band width.
At the same time, for excited bands the band width varies in the range
from 15 to 45 meV (depending on the excited state symmetry and on
the crystallographic orientation of metal surface), being mostly of the
order of half of corresponding excitation energy ∆εα = εα − ε0. There
are, however, the cases of strong delocalization (e.g. H on the Ni(110)
surface) when excited bands overlap, and the width of the lowest one is
of the same order as ∆εα [22].

The values of hopping parameters increase significantly at the de-
crease of V0; the distance between the local energy levels becomes small-
er in this case (see [37, 38]). It is one of the possible ways to change the
relation between the hopping parameters and excitation energy (|t′0| and
δ in our model). Another possibility (discussed in [39]) is connected with
an essential reduction of energy gap between local s- and p-levels due
to sufficiently strong interspecies Feshbach resonance in the presence of
Fermi atoms added to the Bose system in optical lattice.

Along with investigation of BE condensation in the excited band (or
bands px, py (px, py, pz) in two- (three-) dimensional case) on condition
that certain concentration of Bose-atoms has been created in the band by
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optical pumping [25,38], an attempt was performed in [40] to study the
influence of excited bands on physics of BE condensation in the lowest
(s-) band (when the s-band hopping is taken into account). The case of
finite values of the one-site interaction U was considered. The possibility
of the re-entrant behaviour of the MI-SF transition was claimed. Howev-
er, the order of phase transition was not investigated; the consideration
was restricted to the case of zero temperature. As we show in this work,
re-entrant type dependence on T or µ takes place only for spinodals and
return to the initial MI phase from the SF one could be possible only
in the case of the second order phase transitions. In reality, the order
of phase transition changes to the first one in this region. In the HCB
limit (no more than one particle per lattice site), it takes place mainly at
positive values of chemical potential of particles; at µ < 0 the transition
remains, for the most part, of the second order. Region of existence of SF
phase is restricted as a whole to the interval −|t′0| < µ < |t′0|, while exci-
tation energy must obey the inequality δ < |t′0|. We have constructed the
corresponding phase diagrams and established localization of tricritical
points, where the order of phase transition is changed. The separation
on SF and NO phases at the fixed particle concentration is investigated;
the conditions of appearance of phase-separated state are analyzed.

It should be mentioned that phase diagrams in figures 2–9 are close
by their shape to diagrams obtained in the framework of Bose-Hubbard
model for Bose atoms with spin S = 1 in optical lattices [29]. Excited
levels are formed in that case by the higher spin single-site states and
corresponding interactions of the “ferromagnetic” or “antiferromagnetic”
type (the Hund-rule-like splitting), while the hopping parameter is tak-
en the same for all bands. Similarity of the mentioned diagrams point
out to the fact that the role of excited states in the change of the phase
transition order in going to the phase with the BE condensate is analo-
gous in both cases. Distinction, however, consists in another genesis of
the single-site spectrum. In our model in the limiting case of HCB the
effects connected with the level splitting due to interaction, are absent;
the excited single-particle states are taken by us into account instead.

Consideration developed in this work can be extended on systems
with the close or degenerate excited local levels. Generalization of the
model by the addition of inter-site interactions is also important; it could
provide a possibility to have in view another phases (density-modulated
or supersolid) besides NO and SF ones.

We emphasize finally that hopping parameter t′ij in the excited band
can be positive; in particular, it concerns the p-bands [39]. In such a

situation the condensation takes place into states with wave vector ~Q
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on the boundary of the Brillouin zone and order parameters 〈cQ〉, 〈c+Q〉
describe the p-wave condensate. Because t′Q = −t′0, the obtained in this
works results are valid (with |t′Q| in place of |t′0|) also in that case.
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