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Amnoranis. B pamrax mumepHol TepMoanHaMidHOT Teopil 30ypennb Bep-
TXelMa, JO0C/TiKeHo (a30By IMOBEIIHKY JIAHITIONOBOI PiIMHU OKaBiB-
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Phase coexistence in the hard-sphere Yukawa chain fluid with
chain length polydispersity: Dimer thermodynamic perturba-
tion theory

S.P. Hlushak, Yu.V. Kalyuzhnyi

Abstract. An extension of the dimer version of Wertheim’s thermody-
namic perturbation theory is proposed and used to treat polydisperse
mixture of the hard-sphere Yukawa chain fluid with chain length poly-
dispersity. The structure and thermodynamic properties of the refer-
ence system of Yukawa hard-sphere dimers, are described using polymer
mean spherical approximation. Analytical expressions for the Helmholtz
free energy, chemical potential and pressure in terms of the two chain
length distribution function moments are derived. Full liquid-gas phase
diagram, including critical binodal, cloud and shadow curves and distri-
bution functions of the coexisting phases were calculated.
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1. Introduction

This is our second paper on the thermodynamic properties and phase
behaviour of the polydisperse hard-sphere Yukawa chain mixture. In the
previous paper [1] the mixture was studied using high temperature ap-
proximation based on the recently derived analytical expression for the
Laplace transform of the site-site radial distribution function for the
polydisperse hard-sphere chain fluid [2].

Thermodynamic properties of the monodisperse hard-sphere Yukawa
chain fluid were studied recently using statistical associating fluid theory
for the potentials of variable range (SAFT-VR) [3]. The theory is based
on Wertheim'’s first-order thermodynamic perturbation theory (TPT1)
of polymerization [4,5] with the reference system represented by the
Yukawa hard-sphere fluid. Later the structure and thermodynamical
properties of the monodisperse Yukawa hard-sphere chain fluid were in-
vestigated using first-order liquid state perturbation theory [6], polymer
mean spherical approximation (PMSA) [7-10] and dimer version of the
thermodynamic perturbation theory (TPTD) [10]. In the firs-order per-
turbation theory of Wang and Chiew [6], which appears to be equivalent
to the HTA utilized in our previous study [1], the perturbation inte-
gral was decomposed and coefficients of the corresponding series were
calculated numerically using integral equation theory of Chiew [11]. The
PMSA corresponds to the MSA version of the product-reactant Ornstein-
Zernike approach (PROZA) [12-16], which in turn originates from the
multidensity integral-equation theory for associating fluids developed by
Wertheim [4,17]. TPTD was originally developed by Ghonasgi and Chap-
man [18] and independently by Chang and Sandler [19]. The concept of
the theory is similar to that of Wertheim’s TPT1 [5] with the reference
system represented by the fluid of dimers. In the previous study [10]
thermodynamical properties and contact value of the site-site radial di-
stribution function (RDF) for the reference system of Yukawa dimers
were obtained in the frames of the PMSA

In this paper we extend TPTD to treat polydisperse mixture of
Yukawa hard-sphere chains. The theory is used to study the liquid-gas
phase behavior of the mixture with chain length polydispersity. The pa-
per is organized as follows: In Sec. II we present the model and in Sec. III
we discuss details of the TPTD. Closed form analytical expressions for
the thermodynamic properties and contact value of the site-site RDF of
the reference system are derived in Sec. IV and in Sec. V we present and
discuss our results for the phase behavior of the model. Our conclusions
are collected in Sec. VI.
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2. The model

We consider a multi-component mixture of freely-jointed tangent hard-
sphere Yukawa chain molecules with a total number density p = N/V.
The molecules of species m with a number density p, = N, /V are
represented by m tangentially bonded hard-sphere Yukawa monomers of
equal hard-core diameter o. The system is characterized by the chain
length distribution function f(m) = p,,/p. Here

P=> pm (2.1)

Nonbonded monomers, regardless of whether they belong to the same
molecule or to the different molecules, interact directly via the hard-
sphere potential ®(**) () and Yukawa potential &) (r),

o(r) =" (r) + @) (r), (2.2)

where %
BeY) (r) = —767““, (2.3)
B = 1/kT and r is the center-to-center separation between the two

monomer beads.

3. TPTD

According to the TPTD Helmholtz free energy of the multi-component
chain fluid ATPTDP) can be written in the following form:

A(TPTD) Alid) AAtres) 1
= dim . p 9dim (U) <§Pmon - p) ) (3-1)

g \% - \%4 + |4
where A04 is the ideal gas contribution to the Helmholtz free energy,
AA&TZ.;f) denotes the excess Helmholtz free energy of the reference system,
represented by the fluid of Yukawa hard-sphere dimers, ggim (o) is the
site-site RDF of Yukawa dimers at the contact and p,,, represents the

monomer density of the system, i.e.

Pron = Z MP, - (3.2)

Thus TPTD yields Helmholtz free energy of the chain fluid (3.1)
provided that thermodynamic and structure properties of the reference
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system are given. Expressions for the chemical potential and pressure
follows from (3.1):

U P = gl 4 gmBAug - mmaidi@ (ip men =P )

10 guinn (o) <%m - 1> , (3.3)

re 1 Oln im \O
3p(TPTD) _ ﬁpd(imf) _ (§pmon — p) (1 + pmonaidi()) , (3.4)

where u%d) is the ideal gas chemical potential, Augfifnf) is the excess

chemical potential of the reference system and Pé;if ) is the reference
system pressure.

4. Reference system properties

In this study the properties of the reference system, represented by the
Yukawa hard-sphere dimer fluid with the number density pgim = pmon/2
are described using two-density theory for the site-site interaction [17,
20, 21]. For the Yukawa hard-sphere dimer fluid the theory consists of
the Ornstein-Zernike equation

~

h(k) = &(k) + pmont(k)ah(k), (4.1)

supplemented by the polymer MSA (PMSA) closure conditions

c(r)=E—e™*", r>0 (4.2)
r

o(r —o)

A2 pmon

h(r)=-E+ (1 —-E) , r<o. (4.3)

Here h(k), &(k), 1, o and E are the following matrices:

o (hoo(k)  ho(k) ~ o (Coo(k)  cor(k)
h( )‘(ﬁfg(i«) hfl(m)’ ‘“'”“”‘(ef&m efluf))’

10 11 10
o) sl mh0)

where the matrix components f,s(k) and é.s(k) are Fourier transforms
of the total hag(r) and direct cog(r) correlation functions, respectively.
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Here the lower indices o and (8 denote the bonding state of the corre-
sponding particle and take the values 0 (non bonded) and 1 (bonded).
The relation between the site-site radial distribution function ggim (r)
and the partial radial distribution functions is

9ap(r) = has(r) + Soados and gaim(r) =Y gap(r).  (44)
af

The PMSA theory discussed above represents a particular case of
more general associative MSA (AMSA) theory for associative fluids
[22,23] in the complete association limit (CAL) [21]. The solution of the
AMSA has been derived earlier for the general case of a multi-component
mixture of Yukawa dimerizing hard-sphere fluid [24,25]. Recently this so-
lution was used to derive explicit analytical expressions for the thermo-
dynamical properties of the model in question [25,26]. For this reason
we omit the details of derivation here and only present the final ex-
pressions relevant to our model, i.e. one-component dimerizing Yukawa
hard-sphere fluid in the CAL. The solution of the AMSA can be reduced
to the solution of one single nonlinear algebraic equation for the scaling
parameter I' as introduced by Ginoza [27]. For our model the equation
for T" takes the following form:

2A
2420 + 1K X2 <1 + —§> Prmon =0 (4.5)
To
where A = 1 — Tppmono>/6 and
2An5
Xo=-A—Ap— 2 ¢ (4.6)
The other quantities are
B e3%0 032291 (z0) - 7 o2po(z0)
1+ go(zo)ol’ T wo(z0)ol’ - 2A 1+ @o(zo)ol”’
IO O (L2 L T
nB _ A (22 A ) (47)

O (21 + Zpono? + 2 +298) + 2 (22 4+ 22Qn) (1 - ©9)’

A 20* (05 — 1) — [2T + Zpmono? + z + 20°] ©* (48)
LT 01 (20 + Zppon0® + 2 +208) + 2 (22 + ZQ) (1-0¢)

A 1 A
= —y <—§ + —) Pmon, ©OY = —0oy (F‘i + 1) Pmon- (4.9)

o2 2
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Here y represents &, n or A, and

1—e* l—xz—e"%

polz) = —  pil@) = .~

¢1(x) = % [1 —~ %x— <1+ %x) e—;v:| '

The T formalism, used above to solve the set of the PMSA equations
(4.1)-(4.3), provides closed expressions for the structure and thermody-
namic properties of the system. For the reference system Helmholtz free
energy we have:

3

BAAGED = BAATS) 4 GAAPMSA), (4.10)

dim
where Carnahan-Starling expression [28] was chosen to represent the
hard sphere contribution

ﬁAA(hS) B 7Tp,2n0n03( 1)

v = oA \!T3:a

(4.11)

and AAPMSA) represent contributions from the Yukawa interaction and
dimerization and calculated [25,26] using PMSA theory

AAPMSA) AEPMSA) 1 [(T)? )2 AAMAL mon
=0 +— @) z( ) +=0 X2
\%4 \%4 T 3 2 \%4 20
(4.12)
Here AAMAL
Pmon CS) Kpmon
p=r— = 5" g (o) - =5 XG (4.13)
is the mass action law contribution to the free energy and
AE(PMSA) —za/2 A
67 = _Kpmonei XO 1 + —5 - UAl - e—za/2
1% 0w (z0) wo?

(4.14)
is the contribution to the internal energy due to the Yukawa interaction.

In (4.13) g}(gs) (o) is the Carnahan-Starling expression for the contact
value of the RDF for the fluid of hard spheres

(CS) ( ) _ i + meona3 + 7T2p12n0n06

hs A 4A?2 T2A3
Chemical potential of the reference system is obtained differentiating

the free energy (4.10) with respect to the dimer density paim = pmon/2-

We have:

(4.15)

ﬁAN(Tef) — 26Au(hs) + ﬁAM(PMSA), (416)

dim dim
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where
3 2 2 6
(hs) _  TPmonC L L T Pmen 2
BApR A 1—1—3A + TOA2 1—1—3A 4.17)
(CS)
PMSA cs dlng,.” (o)
6A:u“((iim ) = - hlg}(w ) (U) — Pmon ) hs 177
Pmon
o AE(PIL{SA) vV
+5 ( / ) , (4.18)
8pfnon
rs
89}255) (U) _ 57T03 + 7T2pm0n06 Trgp%nonag (4 19)
Opmon  12A2 9A3 144A4 '
The internal energy derivative, which appears in above expression, reads
0 (AEPMSA) Jy i A
( M| Z gt Xo + 2£ x,
Opmon log%ly) (ZO’) To2
rs
zo mon -7 6X A
—of — e T | - e 0 14 28
oo (zo OPmon s To2
0A
—0 [ ! } , (4.20)
8pfnon rg
where [ aaxo ] is
pmon FB
X A 2A B
S e £
apmon rg aprnon rg ™ aprnon rg

mon. 9pmon

B
and expressions for [ 8?A1 } and [ﬂ—} are given in the Appendix.
rg3 rg3

Finally, for the reference system pressure we have:

BEG) = ppte) 4 pAPPMSA) (4.22)
where
1 T2 g% w2pd g6 pph 59
P(hs) - = on mon mon mon 23
b A {p T oA T oAz taeaz 4B

is the pressure of the hard-sphere fluid and

(4.24)

cS)
BAP(PMSA) _ _Pn;on l monaln gl(zs (o) 1

1

™

B (AE(PMSA)/V) AE(PMSA)

+ pmonﬁ 5p - 6 Vv )

0, @
3 T
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represent contributions due to the Yukawa interaction and due to the
dimerization. It is straightforward to show that
B (AE(PIMSA)/V) AE(PMSA)

men 8pm0n V

2 o=
— _KPmon® * (1+A_§2> { 9Xo } —a[ 041 } .(4.25)
oo (z0) o OPmon s OPmon s

TPTD expressions for Helmholtz free energy (3.1), chemical potential
(3.3) and pressure(3.4) involve the contact value of the Yukawa dimer
site-site RDF g4im (o). Following the earlier study [10] we will use here
extension of the approximation, suggested by Hgye and Stell [29]. We
have [10,25, 26]

hs PY Xg A¢ ’
Gaim () = gl (0) + K g ’<0>70<1+m)
1 (K 206\* K X3 A
(2 xa 142 014+ => )42
+ 2<0> 0<+7r02) 20 o <+7T02>( K

(hs)

where for the hard-sphere dimer site-site RDF g, (0) we have used

expression of Ghonasgi and Chapman [18]

(hs) (0) = 1+ TPmon/3 + Ca (71'pm(m/6)c3
dim 2A2 :

Here Cy = 26.45031, C5 = 6.17, and g,(llzy)(o) is Percus-Yevick expressi-

on for the hard-sphere RDF at the contact, i.e.

(4.27)

3
(PY) _ 1 T PmonT
s (O) =K+ 7 (4.28)
To calculate the full chemical potential (3.3), we require gg:i deriva-
tive, which is given by
0gain (9) _ 994im (0) 1 Ogns (0) X3 (1 AEN?
= L K — |1+ — 4.29
aprnon apmon * aprnon g * o2 ( )
2K gps A 0X A
s o 26)[22] 1+2)
o o OPmon 3 o

2 2
oy (A [ or 1] Knotm o ( ac
o3 T OPmon 3 16A2 To?

CEXo [ 0Xo ] (,, AL\ Xo (AT or
6pmon ﬁ 7TU2 0-3 ™ apmon B ’

Ao
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where {6?)%}5 derivative reads
(] _[o) p]re%] g,
Pmon Ié; T pm B Pmon Ié; Pmon rg

with

0X 2A 0A 2AE [onP

720 :——gXo—n bt _ 288 1o~ . (4.31)

ar pmB o ar pmbB d 61—‘ pmpB

{ 8Xo }FB defined by (421)7 [BAFI

dpmon F) and {%} given in the Ap-

] pm B

pmB

pendix and {apa_r} obtained differentiating equation (4.5) with respect
mon | 3

to Pmon*

_ 47TKpmonX02 g ? + 27TKpmonXO (1+
2 +z2)o3 \ «w 2+ 2

2A€\ [9X, oar |1
+25) [ﬂm} T, 32

KX, 2AE 0Xo
- 14+ 2= Xo + 27 pmon | ——2 :
2I‘+z< +7T0,2){7T 0+ 27p [8pmon .

Now one can easily see that our model, treated in the frames of the
TPTD, belongs to the family of the so-called truncatable free energy
models [30], since its thermodynamical properties are defined by the
finite number of the chain length distribution function moments, i.e. by
p and ppon. This feature allows us to use a scheme developed earlier [1,31]
and to map the phase equilibrium conditions for the model at hand onto
a set of nonlinear algebraic equations for these moments. As a result
the full phase diagram of the model, including cloud and shadow curves,
binodals and chain-length distribution functions of the coexisting phases
can be calculated. Since this scheme is very similar to that, used in
our previous study [1], we will not present it here and proceed to the
discussion of the numerical results. For the details we refer the readers
to the original publication.

5. Results and discussion

To illustrate our theory we present here numerical results for the phase
behavior of polydisperse Yukawa hard-sphere chain mixture with Yukawa
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screening parameter zo = 1.8 and species distributed according to the
distribution function f©(m),

FO(m) = FO(m)/ Yy FO(m), (5.1)
where for F(9)(m) we have chosen Beta distribution
1 m\ a—1 m\B—1
(0) = = - =
FR ) =505 (M) (1 M) ’ (5:2)
m = 1.M is the chain length (and species index), B(a, () is

the beta function, o and [ are related to the mean chain length
(m)© = >, mf©@(m) and the mean square chain length <m2>(0) =

> m2f O (m) by

o =

M= (m)© (1+ D)) (M= (m)© .
7 o o LI

and Dg% = <m2>(0) / (<m>(0))2 — 1. The distribution function f©) (m)

is normalized, i.e.

S 1O =1 (5.9

m

and the number density of the chains of the length m is pﬁﬁ) =

p0) £ (m), where p© is the overall number density of the system.
Our distribution function is characterized by the average chain length
(m)(©) = 8, maximal chain length M = 100 and polydispersity parameter
DE% = 0.5. At a sufficiently high temperature the mixture is stable as
a single phase, called the parent phase. As the temperature is decreased
this phase will separate into two daughter phases with the number den-
sities p(V) and p(® and chain length distribution functions f(Y)(m) and
FO(m).

In Fig. 1 we show the phase diagram of the system in the (T* vs
p* = po?) (Fig. 1a) and (T* vs n = np*/6) (Fig. 1b) planes, calculated
using the present TPTD approach and recently developed HTA approach
[1]. It contains the cloud and shadow curves and the critical binodals.
The cloud curve represents the terminal points of the phase with the den-
sity equal to the parent phase density p(°) and the shadow curve consists
of the points in equilibrium with the corresponding cloud-curve points.
Thus the cloud and shadow curves form an envelope for the binodals.
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Critical binodal, cloud and shadow curves intersect at the critical point.

For the critical point we find TC*T(TPTD) =2.729 (TC*T(HTA) = 2.676) and
pZ(«TPTD) =0.0219 (pZ(«HTA) = 0.0270). For the reference we have added

the phase coexistence curves for a one-component fluid with the chains of
the fixed chain length m = 8, treated as well in the TPTD and HTA. In

the one-component case we have: TC*T(TPTD) = 2.48 (TC*T(HTA) = 2.531)
and pﬁSTPTD) = 0.0226 (pzﬁHTA) = 0.0266). The comparison of the

phase diagrams for monodisperse and polydisperse versions of the mod-
el shows that polydispersity extends the region of the phase instability
, shifting the critical point to a higher temperature and slightly lower
density. More detailed information on this effect can be extracted from
Fig. 2, where position of the critical point at different values of the poly-
dispersity parameter o, is presented. We observe that TPTD predicts
higher critical temperature and lower critical density in comparison with
HTA predictions (Fig. 1). At the same time TPTD critical temperature
for the monodisperse case is lower than corresponding HTA critical tem-
perature. Thus, in comparison with HTA TPTD predicts larger critical
temperature shift caused by the polydispersity of the system. Since in
the one-component case TPTD appears to be more accurate then SAFT-
VR [10], which in turn is more accurate then the first-order perturbation
theory [6] (which is equivalent to our HTA), we expect that similar holds
in the case of polydisperse system, i.e. TPTD gives more accurate pre-
dictions then HTA. However this conclusion has to be verified by the
comparison of the theoretical predictions with corresponding comput-
er simulation predictions. We find that the overall shape of the phase
diagrams, obtained using both theories, are similar to those found in
the case of polydisperse mixture of Yukawa hard spheres [1,32], except
that the shadow curves are more narrow and the density of the liquid
branch of the shadow phase is lower then the density of the gas branch.
However from Fig. 1b, where we present the phase diagrams in the (T*
vs 1) plane, we observe that both cloud and shadow curves have the
usual symmetric shape. Thus, while the densities of both gas and liquid
branches of the shadow phase are close (see Fig. 1a), according to Fig.
1b their packing fractions are rather different and the packing fraction
of the liquid branch is higher then that of the gas branch. This is the
consequence of the fractionation effects, which cause the long chain par-
ticles to move to the liquid phase and the short chain particles to move
to the gas phase.

More specific information about the composition of the coexisting
phases can be extracted from the distribution functions of the two daugh-
ter phases, which give evidence of the effects of fractionation. For the
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points located on the cloud and shadow curves and on the binodal at two
selected values of the temperature T* = 2.0, 2.5, the daughter distribu-
tion functions, f()(m) and ) (m), along with the parent distribution
function £ (m), are shown in Figs 4 and 3. Distribution functions for
the two pairs of points located on the critical binodal at T* = 2.0, 2.5
(Fig. 3) show a moderate fractionation effects and a preference for the
longer chain particles for the liquid phase and shorter chain particles
for the gas phase. This effect becomes more pronounced with the tem-
perature decrease. In Fig.4 we show the distribution functions for the
points located on the shadow curve. In these points the system is in
equilibrium with the system in the points located either on the liquid
branch or on the gas branch of the cloud curve. Here we find a substan-
tial shift of the distribution function maximum towards the longer chain
particles in the case of the liquid branch. In the case of the gas branch
the corresponding shift in the direction of the shorter chains is smaller
but the distribution function substantially sharpens and forms a peak in
the region of shortest chains. As the temperature decreases these shifts
become stronger and distribution functions become narrower. Quanti-
tative insight into the fractionation effects can be extracted from the
analysis of the behavior of the mean chain length (m) and mean chain

length deviation o,, = 1/((m — (m))?) in the coexisting phases. These
quantities along the critical binodal curve and along the shadow curve
are plotted in Figs. 5 and 6. As the temperature decreases we see on
the shadow curve a strong increase of the mean chain length in the fluid
phase and small decrease in the gas phase. Corresponding changes of (m)
along the liquid branch of the critical binodal is much less pronounced
and the mean chain length here is only about two times larger then its
counterpart in the gas phase, which is almost coinciding with the mean
chain on the gas branch of the shadow curve. From the ¢, curves we
learn that the width of the distribution function on the gas branch of
the shadow curve decreases with the temperature decrease. Along the
liquid branch of the shadow curve o, first increases as the temperature
decreases up to T* ~ 2.5. Further decrease of the temperature causes
the distribution function to decrease its width. Corresponding changes
of the distribution function width along the critical binodal are similar
to those of the average chain length (m) with o, on the liquid branch
being only about twice larger in comparison with its value on the gas
branch.

In summary, our analysis shows, that the longer chain particles prefer
the liquid phase and shorter chain particles are predominantly encoun-
tered in the gas phase. This behavior is in qualitative agreement with the
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experimental results for the fractionation effects in polydisperse polymer
mixture in a single solvent [33]. In Figs. 7 and 8 we present a comparison
of the theoretical and experimental results for the molecular weight dis-
tribution function and for the mean chain length (m) and mean square
chain length (m?) in the coexisting phases of the polydisperse polymers
in a solvent, represented by the polystyrene+methylcyclohexane mix-
ture [33]. We assume that the polymer chain length m is proportional
to its molecular weight M,,. Otherwise we have not been making any
attempts to fit the model parameters to reproduce the properties of the
real system. However we find a reasonable qualitative agreement between
the theory and experiment. Both theory and experiment predict that the
maxima of the distribution functions, (m) and (m?) in the liquid and in
the gas phases are shifted in the direction towards the longer and short-
er chains, respectively. At the same time we observe, that the maximum
of the experimental distribution function in the liquid phase is higher
and the maximum of the theoretical distribution function is lower then
the corresponding parent distribution functions maxima. Note, however,
that experimental distribution functions are not normalized and upon
their normalization the liquid phase maximum will became lower and
the gas phase maximum will became higher. Thus, both theory and ex-
periment predict that upon phase separation longer polymers equilibrate
to the liquid phase and shorter polymers are predominantly encountered
in the gas phase.

6. Concluding remarks

In this paper we propose extension of the TPTD for the polydisperse
mixture of the hard-sphere Yukawa chain fluid with chain length poly-
dispersity. It is demonstrated that in the frames of the TPTD the model
belongs to the class of the so-called truncatable free energy models with
thermodynamical properties defined by the finite number of the chain
length distribution function moments. This feature enables one to map
the phase coexistence relations for the model at hand onto a coupled set
of algebraic equations for these moments. We derive explicit analytical
expressions for the Helmholtz free energy, chemical potential and pres-
sure in terms of the two distribution function moments. These expres-
sions are used to calculate the full liquid-gas phase diagram, including
critical binodal, cloud and shadow curves and distribution functions of
the coexisting phases. Comparison of the theoretical results for the di-
stribution functions, mean chain length and mean square chain length
with corresponding experimental results, carried out for the polydisperse

ICMP-08-08E 13

polymer mixture in a single solvent [33], shows reasonable qualitative
agreement. We have analyzed the behavior of the distribution functions
and their first two moments at different temperatures along the critical
binodal and shadow curves. According to our analysis and in agreement
with experimental findings the longer chain particles prefer to move to
the liquid phase and shorter chain particles are predominantly encoun-
tered in the gas phase.
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In above expressions y can take values £,n or A.
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where S is given by (1.5), ©% and QX are found from (4.9) with y
replaced by Xo:

o* =—0 (1 + AL > Xo, or = - (l + = ) Xo- (2.3)

pmon 2 men 2 7TO—2

o

ICMP-08-08E 15

Jlireparypa

1. S. P. Hlushak and Yu. V. Kalyuzhnyi, Chem. Phys. Letters 285,
285(2007).
2. S. P. Hlushak and Yu. V. Kalyuzhnyi, J. Phys. Stud. 11, 1(2007).
A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson,
and A. N. Burgess, J. Chem. Phys. 106, 4168(1997).
M. S. Wertheim, J. Stat. Phys. 42, 459;477(1986).
M. S. Wertheim, J. Chem. Phys. 87, 7323(1987).
X.Y. Wang, Y. C. Chiew, J. Chem. Phys. 115, 4376(2001).
Yu. V. Kalyuzhnyi, C.-T. Lin, G. Stell, A. Yethiraj, J Mol. Liq. 92,
85(2001).
8. C. McCabe, Yu. V. Kalyuzhnyi, P. T. Cummings, Fluid Phase Eq.
194, 185(2002).
9. Yu. V. Kalyuzhnyi, C. McCabe, P. T. Cummings, G. Stell, Mol.
Phys. 100, 2499(2002).
10. Yu. V. Kalyuzhnyi, C. McCabe, E. Whitebay, P. T. Cummings, J.
Chem. Phys. 121, 8128(2004)
11. Y. C. Chiew, Mol. Phys. 73, 359(1991).
12. Yu. V. Kalyuzhnyi, Mol. Phys. 94, 735(1998).
13. Yu. V. Kalyuzhnyi and P. T. Cummings, J. Chem. Phys. 103,
3265(1995).
14. Yu. V. Kalyuzhnyi, C.-T. Lin, and G. Stell, J. Chem. Phys. 106,
1940(1997).
15. C.-T. Lin, Yu. V. Kalyuzhnyi, and G. Stell, J. Chem. Phys. 108,
6513(1998).
16. Yu. V. Kalyuzhnyi, C.-T. Lin, and G. Stell, J. Chem. Phys. 108,
6525(1998).
17. M. S. Wertheim, J. Stat. Phys. 35, 19;35(1984).
18. D. Ghonasgi, W. G. Chapman, J. Chem. Phys. 100, 6633(1994).
19. J. Chang, S. I. Sandler, Chem. Eng. Sci. 49, 2777(1994).
20. P. J. Rossky, R. A. Chiles, Mol. Phys. 51, 661(1984).
21. Yu. V. Kalyuzhnyi, P. T. Cummings, J. Chem. Phys. 104,
3325(1996).
22. M. F. Holovko, Yu. V. Kalyuzhnyi, Mol. Phys. 73, 1145(1991).
23. Yu. V. Kalyuzhnyi, M. F. Holovko, Mol. Phys. 80, 1165(1993).
24. Yu. V. Kalyuzhnyi, P. T. Cummings, Mol. Phys. 87, 249(1996).
25. Yu. V. Kalyuzhnyi, L. Blum, J. Rescic, G. Stell, J. Chem. Phys.
112, 2843(2000).
26. S. P. Hlushak, Yu. V. Kalyuzhnyi, arXiv:0805.0688v1 [cond-mat.soft]
(2008); J. Chem. Phys.(in preparation).

@

NS o




16 IIpenpunT ICMP-08-08E 17

27. M. Ginoza, J. Phys. Soc. Japan 55, 95(1986).

28. N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635(1969). 2.9
29. J. S. Hgye and G. Stell, J. Chem. Phys. 67, 439(1977). 2.8 1
30. P. Sollich, J. Phys.: Condens. Matter 14, R79(2002).

31. L. Bellier-Castella, H. Xu, M. Baus, J. Chem. Phys. 113, 8337(2000). 2.71
32. Yu. V. Kalyuzhnyi, G. Kahl, J. Chem. Phys. 119, 7335(2003). 2.6-
33. R. S. Shresth, R. C. McDonald, J. Chem. Phys. 117, 9037(2002).

2.51
2.4
2.31
2.21
2.11

2

2.9
2.81
2.71
2.61
2.51
2.4
2.31
2.21
2.11

e
2 - T T T T T
0 0.05 0.1 0.15 0.2 0.25

Puc. 1. Phase diagram of polydisperse hard-sphere Yukawa chain mi-
xture with chain length polydispersity in 7™ vs p* (upper panel) and
T* vs n (lower panel) coordinate planes. Here TPTD and HTA results
are represented by the thick and thin lines, respectively, with cloud and
shadow curves plotted by the solid and dashed lines, respectively, crit-
ical binodals by the dashed-dotted lines and binodals for monodisperse
version of the model by dotted lines. Critical points are denoted by filled
circles.
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Puc. 4. Distribution functions of the parent phase (solid line) and gas
(dotted line) and liquid (dashed lines) daughter phases on the shadow

Puc. 2. Position of the critical point on T* vs ) plane (filled circles) at dif-
curve at T* = 2.0, 2.5.
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Puc. 5. Average chain length (m) along the shadow curve (thick solid
and dashed lines) and along the critical binodal (thin solid and dashed
lines). Liquid phases are denoted by the solid lines and gas phases are

denoted by the dashed lines.

Puc. 3. Distribution functions of the parent phase (solid line) and coex-
isting gas (dotted lines) and liquid (dashed lines) phases on the critical

binodal at T* = 2.0, 2.5.
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Puc. 7. Weight fraction molecular weight distribution w(M) of the
polystyrene+methylcyclohexane mixture for the parent phase (solid line)
and lower (dashed line) and upper (dotted line) daughter phases [33]
and chain length distribution function f(m) = mf(m)/(m) of the hard-
sphere Yukawa chain mixture for the parent phase (solid line) and lig-
uid (dashed line) and gas (dotted line) daughter phases on the experi-
mental (upper panel) and theoretical (lower panel) critical binodals at
T/T.. = 0.984, where T, is either experimental or theoretical critical
temperature. Theoretical calculations are carried out for the parent dis-
tribution function with (m)(® =17 and Dy, = 0.2.
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and weight average molecular weight M,, (filled squares) of the
polystyrene+methylcyclohexane mixture and mean chain length (m)
(solid line) and mean square chain length (m?)/(m) (dotted line) of the
hard-sphere Yukawa chain mixture for the coexisting daughter phases on
the experimental (upper panel) and theoretical (lower panel) critical bin-
odals. Theoretical calculations are carried out for the parent distribution
function with (m)(©® =17 and D(,,) = 0.2.
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