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New proof of Holder continuity of solutions to second order
differential equations

D.V. Portnyagin

Abstract. We propose new and, to our mind, a somewhat simpler proof
of Holder continuity of solutions to Dirichlet and Cauchy-Dirichlet prob-
lems for second order elliptic and parabolic equations in divergent form.
A conditions on the right-hand sides of equations were somewhat lessen.
The idea is to obtain L* —estimates for a certain function constructed
from the solution.
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1. Introduction.

Ennio De Giorgi was the first to obtain the results on Holder continuity
of solutions of the equation (2.1) for p = 2 in [2]. Nash and Moser gave an
alternative proofs [9], [7]. They had also extended the results to parabol-
ic equations [10], [8]. For elliptic equation and p > 2 Ladyzhenskaya and
Ural’tseva generalized the results of DeGiorgi [6]. The question of reg-
ularity remained open for degenerate (p > 2) parabolic case (3.1) until
DiBenedetto come up with his idea of intrinsic scaling [3].

In the present paper we propose a new, alternative proof of Holder
continuity of solutions of the equations (2.1) and (3.1). We think that
our proof is simpler. Our method allows to estimate not only the Holder
norm, but also the value of the Holder exponent a.

We have reduced the hypotheses on the right-hand sides to f €
Lr/(p=1) (u € WLP). Usually it is imposed on the boundary of the do-
main the condition (A), or the condition of a positive geometrical density,
which reads:

the boundary 0 of the domain  is said to satisfy condition (A)
provided that there are two positive numbers ag and 6y such that for
any ball K, with the origin on 9 and radius p < ag the inequality

mesK, NQ < (1 —6y)meskK,,. (A)

takes place.

In our approach we don’t impose any conditions on the boundary of
the domain.

There is no crucial difference in our proof between degenerate and
non-degenerate cases for parabolic equation.

Although we restrict ourselves to the model equations in divergent
form, our results can be easily generalized to the general equations and
equations in non-divergent form. We left it to the reader.

2. Elliptic case.
We shall consider the equation of the form:
div (|VulP72Vu) = f(z), z €. (2.1)

Q is a bounded domain in R™ (here n is any natural number) and 052 its
boundary; n>p>2;

f(@) e L"), n=—= (2.2)
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The boundary conditions of the Dirichlet type are assigned:
(u—g)(x) € Wy (). (2.3)

Definition 2.1. A measurable vector function u is called a weak solution
of problem (2.1)-(2.3) if
u e WHP(Q)

and

/|Vu|p72Vqupd:c = /fgad:c
Q Q
for all testing functions
€ Wy (Q).
The boundary condition in (2.3) is meant in the weak sense.

On the function g(z)in boundary data (2.3) we assume
g(x) € H*(09Q),

where H is a Holder space.
We also assume that the modulus of the solution |u| is bounded by
constant M:
lu| < M a. e.in Q.

We construct the function w:
w(@,2') = (u(x) —u(@))/|lz —2'|*,  (z,2") € Q. (2.4)
Our proof hinges upon the following self-evident theorem:

Theorem 2.2. If w(z) = (u(z) — u(z’))/|x — 2'|* € L®(Q) for a. e.
z' € Q then u(z) € H*(Q).

Instead of working with nested balls we establish the boundedness of
function w:

Theorem 2.3. For the function w as a function of z, defined by (2.4),
the following estimate is valid

W||oo.0 < C for almost all ' € Q,
[wlloo,

where were C depends only on the data of the problem, and not on the
w and x'.
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In order to prove Theorem 2.3 we need the following auxiliary Lem-
ma:

Lemma 2.4. Let the origin O € 00 and w be any function such that
w =0 on 0N, a be positive real, then

/uwwWWSamnm/MWWMﬂ (2.5)

Q Q
provided the integral on the right exists.

Proof. Let’s change to the spherical coordinates (r,ws,...,wn—1), fix 7,
and use the representation

w(r,w ]6

1) =
0
0

for smooth functions w approximating w. After raising this equality to
the p-th power, applying Hélder inequality, multiplying both sides of it
by r*P~P integrating over the domain €2, and passing to the limit by all
such smooth functions, we shall get (2.5). O

Proof of Theorem 2.3. Without loss of generality we may assume that
2’ =0 and u(z’") = 0.

Step 1. On the first step we shall assume that O € 9. Sub-
stituting (2.4) into equation (2.1) and using sgn w|z|*(|w| — ko),

where kg = sup |g(z) — g(a')|/|z — 2'|*  sup |r — a/|% " =
(z,z")€0Q (z,2)€0Q2
(dist Q)*~* sup |g(z)—g(@)|/|x—2'|*, a < a4, as a testing func-

(z,z")€02
tion, after integrating over the domain €2, and applying Young’s inequal-
ity, we get:

[laleIvatop < arcup) [ laprrtor

+O2(p;04)kg/|;17|(0171)(P*1)X{|w| > kO} +03(p,04)/(|f||17|170‘)ﬁ,
Q

Q

where w = (Jw| — k)4 and x{|w| > ko}— characteristic function of
the set {z € Q||w| > ko}. After applying Lemma 2.4, choosing a@ = o
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such that ofCy < 1/2, this yields:
(k — ko)Pmes {w > k}(dist Q)P <

< /|x|ap*p(wko)p <
Q
< Cu(p, ) [ el |90 < Capy o R 2 o), (20)
Q

where mes {w > k} is a Lebesgues measure of the set {x € Q||w| > k},
k > ko. The existence of all integrals can be proven in a conventional
way approximating by smooth functions and then passing to the limit.
Set

d
km=k+d—2—m, m=1,2,3,..., (2.7)
where d is any real > 0, k > kg is to be determined later. We shall show

that
mes {w > k,} — 0, asm — oo.

We have

mes {w > kp,11}
(mes {w >k, })?
< mes 2 (

(mes {w > kp, })?

mes {w > kpi1}t = (mes {w > k,,})% <

mes {w >k, })2.

There are two alternatives. Either (the first alternative)

mes <
(mes {w > kn})2 —

m

for all m > m1, for some m1 < oo, i. e. there exists such number m; < oo;
or (the second alternative) for any m, whatever large it be, there exist
m > m, such that

mes

> (mes {w > ky})?.

In the latter case the subsequence mes {w > k;} — 0 as m — oo, and it
is easy to see that by the well-known theorem form calculus, the sequence
being nonincreasing, that the whole sequence mes {w > k,,} — 0 as
m — 00. In the former case we have that there exists m; such that

mes {w > k1) < m(mes {w >k, })? (2.8)
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for all m > my. We shall prove by induction that

Q
mes {w >k} < fmes

(2.9)

for m > m; > m; in this case. Really, assume for m. From (2.8) we have

mes Q\?  2mmes Qmes ©  mes Q
mes {w > kpi1}t <m =

om om 2m+1 — 2m+1 ?

. - _o. 2mimes €2 .
provided that m > my, where my is such that —om = 1. It remains
to check for unit. From (2.6) we have

Oﬁ(pao‘anHfH flka) mes ()
mes {w > kvﬁl} <mes {w >k} < T = ko) <

provided that

1/p
, (2.10)

27 Co(p, @, , [|f ]|z, + ko)

p—1

k>k
= Ko+ mes )

where m; = max[m1,n,]. So, for m > m; we have (2.9). Now we are
able to get the following estimate

(mes Q)/2 . mes O

Jm = om

> mes {w > ks }

es 0)1/2 es
for m > m*, where m™* is such that (m ) . -

vm* 2m
that the first alternative can take place only for m < m*. Hence we get
that mq in (2.10) is estimated from above by m*. Since d is any positive,

we can put d = 0 in (2.7) to obtain

. And it is seen

2maX[7ﬁ1-,m*]06(p, o, Q7 HfHL;kO) 1/p
[wlloo,0 < ko + < =Cq, (2.11)

mes )
2m Q 1
where m; is such that w = 1, and m* is such that — =
2m1 N
(mes Q)1/2
2m* ’
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Step 2. On this step we assume that 2’ ¢ 9. We have

lu(z") —u(x)| = |u(z’) — u(zo) + u(wo) — u(z)| <
< u(a') = u(zo)| + |u(z) — u(wo)| < Crla’ —x0|* + Crlr — 2o|* <
M) o — 2|7, (212)

|z — |

<20y (1—|—

where xq is a point on the boundary 0€2. Now we act as on the previous
step and consider the increasing set of levels

o = k4 d —

g m=123.., (2.13)

where d is any real > 0, k is to be determined later. As on the previous
step we consider two alternatives and argue by induction and prove that

Q
mes {w >k, } < 1ues

for m > ’n;L1 > mq, and estimate the value of m;. In order for the
statement in the induction argument to obtain on the outset we must
impose the condition

mes {w > Kmax[m+ ni,)} < mes {w >k} <mes B(z,2") = w(n)|z —z'",
(2.14)

and
mes

ll’ﬂ
— 9max[m*,m1]

mes B(z,z') = w(n)|z — z , (2.15)

where B(xz,2’) is a ball centered at z’ with radius |z — 2/|, w(n) is a
volume of a unit ball in n—dimensional space. In order for (2.15) to
happen |z — 2’| must be

, mes {2 1/n
22| < oo |-
9max[m 77711]('()(71)

In order for (2.14) to happen there must be

dist © \“
|w||aB($)m,) <2C, (1 + 7) =k.

|z — |

Substituting |z — 2’| we get

[e3%

)

: nomax[m™,mz] 1/n

mes )
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where m* and m; are as in (2.11). It is seen from (2.12) that for & such
that |& — 2’| > |x — «/| this estimate is also valid. So we have that

(dist Q)ramaxim™maly, () ) 1/n>

mes 2

lwloo,0 < k=2C7 (1 + (

3. Parabolic case.

In this section we shall consider the equation of the form:
up — div (|VulP7>Vu) = f(z,1), z € Q. (3.1)
Q= (0,T] xQ; §=0x(0,T]; 9Q = {Qx{0}}U{02 x (0,T7};

Q is a bounded domain in R" (here n is any natural number); x € Q;
te(0,T; T>0 n>p>2

f@0) € Q). n=Tg. (3:2)

The boundary conditions of the Dirichlet type are assigned:

{ (u—g)(z,t) e WEP(Q)  ae te(0,T), 53)
(u)(,0) = (uo)().

A solution to equation (3.1) with Dirichlet data (3.3) is understood
in the weak sense, as in [3].

Definition 3.1. A measurable vector function u is called a weak solution
of problem (3.1)-(3.3) if

u € C(0,T; L*(Q)) N LP(0, T; WHP(Q))
and for all t € (0,T]

/USD(% t)dz + // {~up, + |VulP2VuVldrdr =

Q Qx(0,]
= /uogo(:v,O)dx + / fedxdr
Q Qx(0,1]
for all testing functions
p € WH2(0,T: LA(€Q)) N LP(0, T; Wy "(€2)).

The boundary condition in (3.3) is meant in the weak sense.
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On the function g(z,t), ug(x) in boundary data (3.3) we assume
g(x,t) € H*P0(S), uf(x) € H*(Q x {0}),

where H is a Holder space.
We also assume that the modulus of the solution |u| is bounded by
constant M:
|lu] < M a.e. in Q.

We construct the function w:
w(e, o', t,t) = (u(z,t) —u(a’, 1)/ (Jz — 2'|* + [t = '),
(z,t), (@', 1) € Q. (3.4)
Our proof hinges upon the following self-evident theorem:

Theorem 3.2. If w(z,t) = (u(z,t) —u(a’,t))/(|lz —2'|* + |t —¥'|°) €
L>(Q) for a. e. (2',t') € Q then u(z,t) € HYP(Q).

Instead of working with nested cylinders we establish the bounded-
ness of function w:

Theorem 3.3. For the function w as a function of (z,t), defined by
(3.4), the following estimate is valid

lwlloo,@ < C for almost all (2',t) € Q,

where were C' depends only on the data of the problem, and not on the
w, ' and t'.

In order to prove Theorem 3.3 we need the following auxiliary Lem-
ma:

Lemma 3.4. Let the origin O € 0N and w be any function such that
w =0 on 002, a be positive real, then

T T
/ / 2P lwl? < C(Q,p.n / / 2] V], (3.5)
0 0

provided the integral on the right exists.

The proof is analogous to that of Lemma 2.4.
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Proof of Theorem 3.3. Without loss of generality we may assume that
' =0,t =0, and u(z’,t') = 0.

Step 1. On the first step we shall assume that O € 9Q x {0}. Sub-
stituting (3.4) into equation (3.1) and using sgn w(|z|* +t°)(Jw| — ko),
where

|g(.’L’,t) - g(ZCI,t/)l %
/ag+|t_t/ ,)
(lz — 2| + |t =t/

sup
(z,t),(z,t)€S (|Jz — =z

r)+

X sup
(@.t).(atyes |z —a'|* + [t = t']P)
b osup M@ —w@) o |r -2
(z,2")€Q |z — 2’| (w,2")€Q |z — /| —
t _ / t/
= Sup l9(a,t) gl F)] ((dist Q)= 4 TPs=F)4

(@,t),(z',t')ES (Jz — @' + [t — t'|Fs)

_ /
! s |u0|(;7) ;’LIZ(OJ? L (dist )%™ = ko,
z,x’)E -

a < minfay, ag), B < By, as a testing function, after integrating over the
domain Q x (0,7}, and applying Young’s inequality, we get:

Jlal 2|+ Bra [0 (ol + o
Q = 5
+ /(|:v|0‘ + tﬁ)p|vwko|p < a”Cy(p) / |$|O¢p—p(wk;0)p+
Q

+Colpa /W DEDy (Ju] > ko} + Ca(p, >/<|f||x|1*a>ﬁ
Q

where w*o = (|w|— ko) and x{|w| > ko}— characteristic function of the
set {(z,t) € Q|lw| > ko}. After applying Lemma 3.4, choosing oo = aq
such that of/Cy < 1/2, this yields:

(k — ko)Pmes {w > k}(dist Q)@ 1P <
< /|x|ap—p(wko)p <
Q

< 04(p,Q)/|I|06;D|Vwk0|;D < O5(p,OZ,Q,T, Hf”ﬁako)a
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where mes {w > k} is a Lebesgues measure of the set {(z,t) € Q|lw| >
k}, k > ko. The existence of all integrals can be proven in a conventional
way approximating by smooth functions and then passing to the limit.
As in the previous section set

o = k4 d —

=1,2,3,...
2m7 m =Y )

where d is any real > 0, k > kg is to be determined later. As in the

previous section considering two alternatives and arguing by induction
we can prove that

~ * 1
gmax[mi,m ]Oﬁ(p,oz,Q,HfH flvko) "
Hw”OO)Q S ko n jid = C77 (36)

mes )
2m 1
where my is such that M = 1, and m* is such that — =
PAL /1m*
(mes Q)'/?
2m”* '

Step 2. On this step we assume that (z/,t') ¢ 02 x {0}. As in the
previous section we have

lu(x' 1) — u(x, t)| = Ju(z’,t') — u(zo, 0) + u(xg,0) — u(z, t)] <

< Ju(z',t") — u(zo, 0)| + Ju(z,t) — u(xg, 0)| <
< Cr(|a’ — xol™ + 1% + Crl|w — xo|* + [t]7) <

(dist Q) + T8 , ,
<207 (1 —2 [+ t—t]) <
<26 (1+ g g (eI =) <
1/(n+1) [( 3 o 7B
<o (14 n [(dist Q)* +T7] "
(n + 1)1/(n+1)(|x _ xl|om|t _ tl|ﬁ)l/(n+1)

x (Jo —a'|* + ]t = t7) <

1 /o 1B
(o — 2]t - t’|)maX[a-ﬂ]/(n+1)) (jo =" + |t = £7),
(3.7)

< Cs <1+

where xg is a point on the boundary 9Q x {0}. In much the same way
as in the elliptic case we obtain

mes {w > kmax[m*mil]} < mes {’w > k} <
< mes Cy(z,2',1,t') = 2w(n)|x — "t = 1|, (3.8)
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and

mes Cy(a,a/, 1) = 2w(n)le — /|t — ¥ < 5o Q

max[m*,m1]’

(3.9)

where Cy(z, 2, ¢,t') is a cylinder centered at (z/,t') with radius |z — z
and hight 2|t — ¢/|, w(n) is a volume of a unit ball in n—dimensional
space. In order for (3.9) to happen |x — 2/|"|t — /| must be

’

mes @

/n /
_ - < :
|$ z | |t t | = 2max[m*77ﬁl]2w(n)

In order for (3.8) to happen there must be

1
|w|‘80y(m,m/,t,t’) <Gy (1 + (lz — /|t — t/|)max[a,ﬁ]/(n+1)> =k,

where dCy(xz, 2’ t,t') is a surface of the cylinder Cy(x, 2’ ¢,t'), i. e. lat-
eral area with bases. Substituting here |x — a/|"|t — /| we get

gmax[m”,mi]9 max[a,8]/(n+1)
lw(z € Cy(z,2",t,1)| <k = Cs (1+( w(n)) ) ,

(mes Q)max[a,ﬁ]/(n-{-l)

where m* and m; are as in (3.6). It is seen from (3.7) that for & such
that | — 2| > |z — 2'| and ¢ such that |t — ¢/| > |t — t/| this estimate is
also valid. And so we have that

(2max[m* ,m1] 2w (n))max[a,ﬁ]/(n-l-l)
s QR )

uww@Sk=%(r+
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