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posiernenusayM piBuiB. s 1T mocizKkenHs BUKOPUCTAHO y3araabHEHHsT
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€JIGKTPOHHOI I'yCTUHY CTaHiB. TaKO0XK JIOCTIIZKEHO 3aJIeKHITh KOHIICHTPA~
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TEHITaTy, OIS acuMeTpil Ta TyHe oBanHdA. [lokazamo 1o B HaOMMKEeHH]
THUILY CILUIABY MOJIEJIb JIEMOHCTPY€E (DAa30BUil ITEPEXiJL MEePIIOro POy v de-
POMAarHITHUI CTAaH NMpU 3MiHI XIMiYHOTO TOTEHITIATY.

Band electron spectrum and thermodynamical properties of
the pseudospin-electron model with tunneling splitting of lev-
els

0O.Ya. Farenyuk, A.M. Shvaika

Abstract. The pseudospin-electron model with tunneling splitting of
levels is considered. Generalization of dynamical mean-field method for
systems with correlated hopping was applied to the investigation of the
model. Within the alloy-analogy approximation the numerical investi-
gations were conducted and electron spectrum was calculated. The de-
pendences of the electron concentrations and average pseudospin values
on chemical potential, asymmetry field and tunneling were obtained. It
was shown, that in alloy-analogy approximation the model possess the
first order phase transition to ferromagnetic state with the change of
chemical potential and second order phase transition with the change of
temperature.
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1. Introduction

One of the main models for describing strongly correlated electron sys-
tems is the Hubbard model and it’s extensions and modifications. The
model is often generalized by introducing of additional degrees of free-
dom. In particular, it is supposed that interaction of electrons with a
lattice vibrations is important for describing high-temperature super-
conductors [1] and proton-electron interaction in molecular and crys-
talline systems with hydrogen bonds [2]. Because anharmonicity in such
a systems is principally local, it can be considered by using pseudospin
formalism. Important particular case of anharmonic vibrations is local
potential with two minima, which corresponds to absolute pseudospin
value 1/2. The pseudospin-electron model (PEM) [3] is generalization of
the Hubbard model which includes pseudospins with absolute value 1/2.
The Hamiltonian of the model has the following form:

H = Y H;j+H + H,, (1.1)
Ht = Z tijaj;ajm (].2)
©,7,0
1 4 4
Hss: _§ZJ1357 Sja (13)
2,3
H, = Unﬁnil +gni7Sf — th — QS;E — un;, (1.4)

where H; is the single-site Hamiltonian, H; is electron transfer and Hg
is direct pseudospin-pseudospin interaction. n;, = a?;ajg is the o-spin
electron number operator, gn;S? represents interaction with the anhar-
monic mode (pseudospin). U is Coulomb repulsion of the electrons at
one site. 1S¥ describes tunneling splitting of vibration mode and hS? is
asymmetry of the anharmonic potential.

PEM was investigated in many special cases. Among them are:

e a model with the inclusion of the direct pseudospin-pseudospin
interaction (but without electron transfer (¢;; = 0)) [4,5]

e PEM in the case of absence of the direct pseudospin-pseudospin
interaction (J;; = 0), when pseudospins interact through the elec-
tron subsystem [6].

Special attention was paid to electron spectra [7], the pseudospin and
collective dynamics [8], effective electron-electron interaction [9], correla-
tion functions ((S*S%), (S*n), (nn)), possibility of the phase separation
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and charge-ordered phases [6]. Phase transitions between states with dif-
ferent electron concentrations and with different pseudospin orientations
were also studied.

In the case of direct pseudospin-pseudospin interaction PEM is in-
vestigated mainly within the mean field approximation (MFA) [4] and
the transfer matrixes formalism [5]. PEM without direct pseudospin-
pseudospin is investigated using generalized random phase approxima-
tion (GRPA) [10] and dynamic mean-field theory (DMFT) [11]. Many
special cases of such modification of PEM were studied:

e simplified PEM with U =0 and Q = 0 or Q # 0 [8,12],

e a model with the infinitely large Coloumb interaction U — oo [13,
14]

e PEM with © # 0 but symmetric anharmonic potential h = 0 [7],

o two-sublattice PEM [15].

The simplified PEM (U = 0 and © = 0) corresponds to the Falicov-
Kimball (FK) model but differ in thermodynamic equilibrium condi-
tions! [11].

This paper presents investigation of the PEM with tunneling splitting
of levels without direct pseudospin-pseudospin interaction. Generaliza-
tion of dynamical mean-field method for systems with correlated hopping
was applied to the investigation of the model. Within the alloy-analogy
approximation the numerical investigations were conducted and electron
spectrum was calculated. The dependences of the electron concentrations
and average pseudospin values on chemical potential, asymmetry field
and tunneling probability were obtained.

Special attention was paid to the phase transition to the ferromagnet-
ic state with the change of chemical potential and temperature. Different
aspects of possibility of ferromagnetism in PEM model were analyzed.

2. Analysis of the Hamiltonian

In the case of narrow bands (! <« U) and absence of the direct
pseudospin-pseudospin interaction, the single-site Hamiltonian (1.4)
plays a role of an initial approximation, so it is useful to introduce the

18% = const for the FK model and h = const for the PEM.
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Hubbard operators X% = |i, R)(i, S| which acts in the space spanned
by the state vectors, defined as:

|7’7p> = ‘niTvnilvsiZ>‘ (21)

Then single-site Hamiltonian H; can be expressed as [16]:

4 4
Ho= Y0 XI DY (X 4 X7, (22)

p=1 p=1
where:
h h
A= :Fga Ao =—2pu+Ux(9— 5)7 A3z =N 3= —pE(g—h). (2.3)
This Hamiltonian is diagonal for Q = 0 (no tunneling splitting of the

vibrational modes). For Q # 0 we can diagonalize it by using following
unitary transformation [16]:

()= (Cahee)) () e

where:
rg — . Q
cos(2¢,) = g —h ; sin(2¢,) = . (2.5)
(n.g —h)2+Q2 (nr.g — h)% + Q2
Then we have:
Hi=>» \XPP (2.6)
p
and 1
>\T,F = U5r,2 — BNy + 5 (nrg - h)2 + Q2. (27)

Here n, denotes number of electrons for state r : ny =0, no =2, ng =1,
ng = 1; n, = ns. After transformation (2.4) Hubbard operators are also
transformed:

XRS 4 xRS [ cos(¢r — ¢p5) —sin(¢r — @) XS 4 XT8 03
XRS _ xRS |7 \sin(¢, — ¢s) cos(¢r — ¢s) xrs — x| (28)

XEBS _ XBS\ ( cos(¢y + ¢s) sin(¢y + ¢s) (X7 — X75 2.9)
x5 1 x| =\ Zsin(ér + du)cos(r + 6,)) \ x5 4+ x70 ) -3
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In the new basis total Hamiltonian can be written as:
H=> 3 NX"+) ) tijealaj,. (2.10)
% T ij o
Here creation (destruction) operators are defined as:

af =Y A7 X ap =) A7, XM (2.11)

where:
AT = I.. = S AT = I.. = S
1= Aj=cos(da), A= A =cos(¢23),

(¢41)

Al :—A%}:sin( a), Al =—Al =sin(4as),
(¢31)
(¢31)

! ! 3P 2.12
A;_ A%:cos $31), A§4: A%i:—cos(¢24), (2.12)
Aél__Asi_bm 31)s A$4:_A221:_ sin(¢24),

and all other are equal to zero. Here the designation ¢,y = ¢, — ¢4 is
used.

One can see, that for the diagonalized Hamiltonian, hopping integral
value depends on states of neighboring lattice sites. Hopping of that
kind is called correlated hopping and can be dealed with using matrix
representations of all quantities [17]. In our case, hopping term can be
rewritten in the following way:

H, = Zztij”a;;aj”’ (2.13)
iy O

1
i (o)

- Y
tiioatyaje = (Vo) " (V2 )T 2 ) )5 (VA ) o | 5 |

i (o)

4
it (o)
2.14
where: B . . ( :
Yo =XR+ X0, Y2, =X - X
Yig =X2+ X%%, Vi = X?TQ - X%Qv
Vi) =XZ+XE2 Y, =X7? - X2

and the designation X7 = XPI(7) was used.
The correlated hopping matrix for the model is:




5 IIpenpunT

Y1 = (€S ¢a1,8in Pa1, cOS Pa3, sin Pa3),
vy = (cos ¢31,8in P31, — €OS Pog, — Sin Pag).
So, one can see that correlated hopping, introduced by tunneling
splitting is simple enough, because rank of direct product of vectors is
always equal to one:

rank (’yZ ®70) = 1. (2.16)

3. Temperature Green Functions. Perturbation theo-
ry in terms of electronic hopping

Investigation of the model is performed using temperature Green func-
tions.

Single-site Hamiltonian (1.4) was selected as a zero-order Hamiltoni-
an. Thus statistical operator can be written as:

p=ePos(p), (3.1)

where

B B
o(f) =Texp §— T dr’ vio (T —Tal (Tajo (1!
(8) = Texp /Od /Od ;tm( Yat (Taje(7') v, o)

Hy = ZH

For the grand canonical potential functional we have:

Q= —ZlnSpj =~ ({5, (3.3)
Qp = —%ln Sp e~ PHo, (3.4)

So we can define single-electron Green’s function as:
Gijo(r—1") = —<Taw(T)aj+O_ (") = L (3.5)

57,‘3‘7;{,—(7'/ —7’)7

and mean values are

(n) = %Z(nm = —%%, (3.6)
(5 = 5 2457 = —x T (37)

(57) = 3 087 =~y oo (39

K2
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Here mean values are define by

(.. .>:% Sp(... p), (3.9)
Z=Sp p, (3.10)
or 1 ) - )
where
(.. .>0=Zi0 Sp(...e PHoy, (3.12)
Zy=Spe PHo, (3.13)

Let us introduce corresponding matrix Green functions? and other
quantities [17]. According to (2.13), (2.14) and (2.15) matrix form of
Green’s function Gy, (7 — 7') is defined as:

02

(=)

G (r—7)=p (3.14)

5tif's
where p, v are matrix indices. Then total Green’s function (3.5) is equal
to:

dt, -

Go = Sp <EGU> =Sp ((vf ®70) G'g) = 7,GoL. (3.15)

According to (2.14) and using (3.14) we can write elements of the 4 x 4

matrix Green’s function:
173% / 1% v *

Gij,o’(T -7 ) = _<TT}/;7—([7) (YjT/((T)) > (316)

It is obvious, that for each matrix element of Green’s func-

tion we will have sum of T-products of Hubbard operators like

(T, X1 X0 9 ()X (Tl)XZIql (11)...)o- We can calculate them by

the consecutive pairing according to the corresponding Wick’s theo-

rem [18]. Zero-order Green functions, which corresponds to (3.16) are
explicitly defined in appendix A.

2Related to correlated hopping.
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4. Dynamical mean field theory of correlated hopping

Because only limited number of lattice models can be solved exactly, one
must use some approximations to describe model behavior. Dynamical
Mean-Field Theory (DMFT), which is exact in the limit of infinite spatial
dimensions d — oo, is one of the most popular approaches [19]. The
DMEFT is based on local (single-site) nature of the self-energy in the limit
d — oo. But, for systems with correlated hopping self-energy becomes
unlocal [20], so it is necessary to modify standard DMFT approach.
Let us recall that self-energy appears in the Dyson equation for the
one-electron Green’s function, and represents many-electron interactions,
which are taken into account as perturbations. There is another natural
approach — perturbation theory over electron hopping #;;,. In this case
fundamental equation for the one-electron Green’s function is the Larkin
equation [17]:

Gio (W) = Eio (W) + Exo (w) ko Gro (W), (4.1)

where Z;;(w) is an irreducible part of the Green’s function that can
not be divided into parts by cutting one hopping line. Formal solution of
Larkin equation gives us the Larkin representation of the Green function:

. . 71, . -1
Grelw) = [1 - Ek(w)tk} E(w) = {Egl(w) - tk] . (4.2)

It was shown in [21], that Z;;(w) is local in the d — oo limit?:
EU(Wn7 k) = Ea’(wn)7 (43)

and this statement is more general than the one about the local nature
of the self-energy [17].

Such matrix representation allows to reformulate the Dynamical
Mean-Field Theory of the systems with correlated hopping in the terms
of local quantities. Equivalency of the irreducible part =, (w) for the
lattice problem and the single-impurity problem leads to the following
equation for coherent potential J,(w) [17]:

-1

%Ek: [é;l(w) - ika]—l _ {é;l(w) —Jo@)| = Gimpo(w), (4.4)

3when hopping integral is scaled by tij — t’\/—é in order to obtain finite density of
states.
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which is the matrix generalization of the Brandt-Mielsch [22] equation for
the auxiliary Kadanoff-Baym field. Right side of (4.4) is the Larkin rep-
resentation of the single-site Green’s function G’imp?”(w) for the single-
impurity problem with statistical operator:

. B B
p=e PHoTexp —/ d’T/ dr’ Z Jo(T —7m)at (T)as(7') p . (4.5)
o Jo

ijo
The grand canonical potential of the lattice in terms of the quantities
for the impurity model [17] is:

Da = (iw, )t
]l\[t:Qimp_%Z:{%glndet [1—:7(2%)751«7}

~Indet [1 - ég(iwy)jg(iwy)] } (4.6)

where ;,, is the grand canonical potential for the impurity model.
Qimp can be calculated by applying Wick’s theorem, but now we have
averages of the products of diagonal Hubbard operators at the same site,
so we can multiply them and reduce their product to a single Hubbard
operator. Finally we get [18]:

Qimp = —%ane*’GQ(W, (4.7)
P

where €, is grand canonical potential for subspace |p). Now we can
find single-electron Green’s function for impurity model by:

A 08, A
Gimp,o(iwn) = ———2— = wpGop)(iwn), 4.8
p.o (iwn) 57, (iwn) Zp: pGo(p) (iwn) (4.8)
A 00
GP (iwn) = ——2 49
0(1))( ) 5T (iwn) (4.9)
where G’f; (”p) (iwy) are single-electron Green’s functions for subspaces

characterized by the statistical weights

e P
N S e @
As a result single-site (impurity) problem naturally splits into eight sub-

spaces |p) = [1),...]4) (see also [18]). We also can introduce an irre-
ducible parts of Green’s functions in subspaces =, (p) (iwy) by

(4.10)

Wp

Clo(py (i) = [é;(lp) (iwn) — Jg(iwn)} o (4.11)
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Because matrix of electron hopping is direct product (2.15), one can
proof that equality (4.4) conserves after transforming it into scalar form
by relations:

t, = %?t% = J,=J- (7[;.” RY) & Jy = vgjg%. (4.12)

The same transformations are also applied to all other matrix quanti-
ties, like Green functions and irreducible parts. As a result we can easily
switch to scalar form and back for all equations. For example, equa-
tion (4.4) can be transformed in the following way:

[ ] AT = Sy B @)~ dew)] AT
k p

Then, for left and right part after using obvious relation:

A" @y)B =Ay" B

we have:
0 [é;l - fk0:| - v =n (éo + 2 [to(7" ®9)] Eo + ) o
= (YZe7") + (VZer") tko (VEAT) 4+ ... = [WE;WT - tkg] B
and

So scalar form of equation (4.4) can be written as:
1 e -1 e -1
B (R
Kk
. —1
SR
P

This interchangeability of representations allows us to use whatever form
is more convenient in each situation.

(4.13)

5. Alloy-analogy approximation. Numerical calcula-
tions

For the pseudospin-electron model with tunneling splitting perturbation
theory expansion is very large and inconvenient — for example, third

ICMP-05-21E 10

order contribution has near 30000 terms. For obtaining results on behave
of the model, we used very simple approximation:

ézr(p) (wn) = ga(p) (wn)a (5'1)

a so-called alloy-analogy approximation. Here §, () (wn) are zero-order
matrix Green functions for subspaces obtained from (3.16).

Then, for the grand canonical potentials for subspaces one can ob-
tain [18]:

1 2 7

For numerical calculations scalar form of equations is more convenient.
Starting from (5.2) and using (4.12) one can obtain grand canonical
potential for subspaces, expressed in scalar quantities:

1 —_
Qpy =X = 5 D0 (1= Eog (@n) Jo(wn) (5.3)
where: A
Eo(p) = Yo Eo(p) s (5.4)

The first step of the numerical analysis is solving of the equation (4.4)
for coherent potential, when irreducible part is defined by (5.1). This
equation may have more then one solution, but it is rather complex
and contains integrations. It is more convenient to introduce equation
for statistical weights w,, treating them as self-consistency parameters
and then use it’s solutions for calculating Green functions and coherent
potential (see also [23]).

Equation for w,, has following form:

ey {mh) 55
Py exn(—6 g ({wrir}))
Q) ({wi }) is calculated according to (5.3) using coherent potential J, (w)
which is obtained by iterative algorithm, described in details in ap-
pendix D. Green functions can be obtained from the same iterative pro-
cess.

Initial examination of the solutions space of (5.5) was made us-
ing Multi-Niche Crowding (MNC) variant of the genetic algorithms
(GA) [24]. It allowed us to find all possible potential solutions. Then the
candidates were checked and refined using modified Newton method®.

It was shown that for rather large U the model shows transition to
the ferromagnetic state.

4The GA are mostly too slow to rich high precision.
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#11m(G) 1#1Im(G)) *11m(G))

a) ® b) ° Cw T e ®

Figure 1. Electron spectrum. Numerical parameters: h = —2.0, g = 1.85,
Q=1.01,U = 4.0, p = —0.33, T = 0.01, W = 1.0, (a),(b) and (c)
corresponds to different solutions:

a b c
ws = 0.160 w; = 0.840 w; = 0.5
w; = 0.840 w; = 0.160 w; = 0.5
other w, =0

n = 0.833 n = 0.833 n = 0.881

TLT—TLLZO.518 nT—nl=0.518 ny—ng =
S*=-0.48 S% = —-0.48 5% =—-0.48
Qar = —1.95 Qiar = —1.95 Qar = —1.93

Typical situation is the existence of three solution sets for self-
consistency parameters w, (Figure 1). One of them corresponds to the
paramagnetic phase and two other to the ferromagnetic ordering.

Average value of electron concentrations can be obtained in two differ-
ent ways. One of them is differentiation of the Grand canonical potential
by the chemical potential u. The other way is based on using density of
states:

ny = %ZGU(W”). (5.6)

For the AA approach thermodynamically obtained concentrations can
get unphysical values for some values of the chemical potential, so the
second one was used.

Figure 2 presents typical behavior of the electron concentration, de-
pending on chemical potential. One can see that ferromagnetism exists
for electron concentrations near the half-filling, both forn < 1 andn > 1.
Gaps on p — n diagram corresponds to the unperturbed levels, where
present iterative algorithm of calculations fails for AA approximation.

The critical Coulombian repulsion U, shown on Figure 3 is much
lower than for ordinary Hubbard model according to [25,26]. Indeed, nu-
merous studies [27-29] revealed that different forms of correlated hopping

ICMP-05-21E 12
204 N
1,54
1,0 - 1,51
14}
1,3t
0,5+ 1,2t
1,1
1, N
2 24 26 28 30
0,0 T T T T T T T T T T T !
4 2 0 2 4 6
0

Figure 2. p — n diagram. h = —2.0, g = 1.85, Q = 1.01, U = 4.0,
T=0.01,W=1.0

favors ferromagnetism including lowering of the critical U and stabilizing
of ferromagnetic ordering.

In addition the model possess phase transition with the change of the
temperature. Figure 4 shows change of the magnetization ny — n| with
the temperature.

6. Conclusions

The pseudospin-electron model with tunneling splitting of the vibration
mode was investigated. It was shown that correlated hopping formalism
is useful for investigating systems with transverse field. The numerical
results were obtained within alloy-analogy approximation.

Possibility of the ferromagnetism within alloy-analogy approximation
was shown. Ferromagnetism in Hubbard-like models is still controver-
sial [30-32]. In fact, Hubbard model first was proposed as model for de-
scribing ferromagnetism in metals. It manifests ferromagnetism for large
values of U within mean-field theory [25]. Some other approximations
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08 08 09 09 1 105 11 115 12
n

Figure 3. Magnetic phase diagram. F denotes regions where ferromag-
netism exists. Wavy lines serve as the boundaries of regions, where AA
approximation fails. h = —2.0, g =1.85, Q =1.01, T =0.01, W = 1.0

leads to ferromagnetism too. Gutzwiller method leads to the ferromag-
netism even in case of the Gaussian density of states [26] for substantially
large U. It is generally accepted that ferromagnetic phase cannot develop
in the AA approximation because it lacks mechanism for spin-dependent
shift of the center of gravity of the Hubbard bands [23,33]. However in re-
cent years other mechanisms of ferromagnetic ordering, where there is no
shift in the relative position of the Hubbard bands, were considered [34].
One of them is connected with the redistribution of the electron densi-
ties between spin-up and spin-down electrons. Our scheme of solving the
equations for the Green functions leads to the ferromagnetism of that
kind.

ICMP-05-21E 14

0,8—- T
074
064
0,5—.
04
03
02
014

0,0 1

-0,1 T T T T T T T T T

Figure 4. Dependence of magnetization on temperature. h = —2.0, g =
1.85,Q2=1.01, u=1.62, U =8.0, T =0.01, W =1.0

A. Zero-order matrix Green functions

1 0 00 —L_— 0 00
TWn 41 tWn 31
g (UJ ) = i“’"iAZn 00 g (w ) = 0 i“’"ikﬁ 00
g1 Wn) = 0 0 oo | Tt = 0 0 00
0 0 00 0 0 00
1 1
i“)"_/\zﬁ (1) 8 8 iwna/\éi (1) gg
A wn) = iwn—/\4i , g - wn) = iwn—/\3i
Grcp) (wn) 0 0 oo | G n) 0 0 00
0 0 00 0 0 00
—L 0 00 00 0 0
tWn 41
1 () ——00| . (n) 00 0 0
Wp) = TWn —Ayg s Wn) =
Ir 0 0o oo | NW 007 = 0

0 0 00 00 0 o
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9133) (wn 91y (wn) = g0 —

» 91 (W) = | o

)= (
gr(wn) =100 —1__ 1
iwn —A23 1 00 0 1
00 0 iun—)\23 iw"—>‘221
)= (
)= (

00 0 0 00 0 0
) 00 0 0 A 00 0 0
913 (wn 00 —5—= 0 g @) =100 L= 0
00 0 & 1 00 0 1
iwn7>\§3 iwnf)\éﬁl
00 0 0 s 0 00
wWn 31
o 00 0 0 o) (0n) Tom g7 00
N , ) = n—A3]
IONC 005hs O L@ 0 0 00
00 0 Ao 0 0 00
00 0 0 Ty 0 00
n T A3]
o o) 00 0 0 e (o) 0 —-—00
913 (wn) = 1 s 913y (wn) = o e
13) 00 75 (1) L) 0 0 00
00 0 St 0 0 00

B. Samples of perturbation theory results

Analytical view of first order of perturbation theory for grand canonical
potential for subspace |1):

tao(wn)tin (wi) (90 95 90" + 90" 90 90" — 93 90 ant s + 90 gnt gyt )+

ti(wn)toa(wu)(gnt gt g0t + gt antant — g0 gt gt + gntantant )+

tin(wn)tin(wi) (g, 95" )+
Cte(w)tn(w) (e ) ]
tro(wn)tiz (W) (95 9 08y — 90 9n 9nts + 9500 90" — 9n' 90" 96" )+

tor(wn)tor (W )(95 95 90ty — Gn G Into + 90" 95 96" — 9n 90" 90" )+

tro(wn)ta1 (W) (90 00" —9n 90 90 =93 02 90" — gn" 90" 90" + 95" 95" 95" )+

tor(wn)ti2(wn ) (gnt gt —gnt gt gnt — gntantant — gntgntadt + 9itantgbh),
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where gP? = gP%(wy,).
Contribution to average values of Hubbard operators in the first order
of perturbation theory from subspace [1):

(OO = (eglgh! + gl XMy
GG (X0 + 621191 (X

(XTHW = (17951 95" — 193195 ) (X o
P gatgn (X Mo — 1205 gp (X M)
—(#'gn' 95" — 1795 96" ) (X o,
(XMW = (39 gs" — 119 g6 ) (X o
—t7 gatgnl (X0 + ¢1%gn g (X M)
(179 90" — t1gnlgb )X o,
(XD = (i galgn + 2937 gn1) (X )0

gy (X M) + 28T gL X 1),

0
0

(X)O = —(gitglt + 28T (X,
_t%lg4lg41 <X11>0 _ t%2g41g41<Xﬁ>0
n n n n ’
<X421>(1) _ (t%lg4lgéé~1 _ t}2g4igé“1)<X44>o
n n
—t3' g g (X0 + 157,19, (X Mo
(g e’ — 11203 ag") (X1,
(X)W = (1 gnlg8" — #7941 (X )0
g5 g (X o — 200" 9

(
—(#' g5 90" — 11200 95" ) (X ™)

X11>0

0
<X44>(1) — _( %{qg}gél +~é%2gilgil)§Xéf4>0
il gf (X o — g2 i (X ),
C. Summation over wave vectors in the matrix form

After introducing some density of states p(t) we can write:

Gimpo (@) = / dtp(t) (B; () — dot) ),

where ¢, =77 ® 7.
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Rank of the matrix &, is 1 so:
det(Z;1 (W) — dot) = Kt + det(Z; Y (w)) = Kt + b,

where
12 13 14
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=
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—

w

—
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w
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|

Q
pt

Q
w
%)
w

Q
w
~

—
[1]>
Q|
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—
S
S
—~
[1]>
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—
~
w
[1]>
Q|
—
S—
=
~

1)41 ( (

H
-
—
Q|

[1]> [1]> [1]>

Q199

—
N
—~

—~

—
[ b 1>
Q1919

== e
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w N
=
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== e
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[ V)

—
Q191 9]

—
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Algebraic adjunct A, of matrix (2! (w) — 4,t) with indices 7, j is
equal to:

o 0det(E N (w)—dot) _ _ 0K ddet(Z1) _ spo y
Bij = g E T T o = 0Kt + by
It is obvious that
ddet(Z;1) - -
- =0 J — (—1)"* . minor E;l 30, 7)-
= e~V (E51).4,9)

Thus, elements of inverted matrix are:

b

g A
(B! = aot)d = —— =0
det(Z5! — ayt)

and after some algebraic transformations we get

6K7‘1‘b
(SR UL ST (L e il
’ 7 K K \t— (—%ub)
K
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So, finally we have:

- ..
(Gimp,s)? = /p(t) <Clj + ‘— t(l')]') dt,

where
Ci'j _ 0K
cli sby | 5Kyb
2 K2
0~ T K >

and after the integration:
(éimp,n)ij = C?‘f’ -
+iCy - sign (Im (téj)) \/Eef(téj)Qerfc (—i - sign (Im (téj)) tgj) .

D. Algorithm for calculating Q) ({w:})
First, we select initial condition for J,(w):
Jo(w) = iW,

where W is initial band width. Then the following iteration method is
used:

1.
N -1 N
Ga(p) = (]— - (’Yoga(p)%?) Ja) (’Yoga(p)%?) Jo‘a

2.

Gy =Y wpGop),

p

3.

=t =GN+,
4.

Go = [dipt) [, =1

where p is Gaussian density of states:

p(t) = % exp (—t*), W=1,
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Then, using obtained coherent potential J, we can calculate grand
canonical potentials for subspaces:

1
Q) = Ap — 3 /dwn+ (w)ImIn [1 = (Yo go(p) (w — id)vg) Jo(w —i0)] .
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