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1. Introduction

Two-body Dirac equations (2BDE), i.e., the Breit equations [1] and its
generalizations [2–10], are used frequently for the description of rela-
tivistic bound state problem, especially in nuclear [11, 12] and hadron-
ic [13–16] physics. Apart two free-particle Dirac terms the 2BDE may
include potentials which are local matrix-functions in the coordinate
representation. This form provide an intuitive understanding of the in-
teraction and may suggest a proper physical choice of the potential in
phenomenological models.

But the 2BDE are pathological if certain interaction terms are not
treated perturbationally. The set of radially reduced equations [5, 7, 13]
may possess non-physical energy-dependent poles at finite distance r be-
tween particles [17,18]. Correspondingly, an exact boundary-value prob-
lem becomes incorrect mathematically or improper for assumed physical
treatment.

Here we consider a possibility to avoid pathological peculiarities of
2BDE using a pseudo-perturbative technique similar to 1/N [19–21] or
1/` expansions [22, 23]. These methods are applicable to the case of a
strong coupling and are little affected by boundary peculiarities of the
boundary-value problem.

In our case natural expansion parameter is 1/j, where j is the con-
served total angular momentum. After the radial reduction is performed
the 2BDE takes the form of the set of eight coupled first-order differ-
ential equations [5, 7]. Using a chain of transformations we reduce it to
the pair of coupled second-order equations and apply the 1/j expansion
technique. The method is applied to the potential model of meson based
on the 2BDE.

2. 2-body Dirac equation and its radial reduction

In the centre-of-mass reference frame the 2BDE has the form:

{h1(p) + h2(−p) + U(r) − E}F (r) = 0, (1)

where F (r) is a 16-component wave function,

ha(p) = αa · p +maβa ≡ − i αa · ∇ +maβa, a = 1, 2, (2)

are Dirac Hamiltonians of free fermions of mass ma, a = 1, 2, and U(r)
is an interaction potential. If F (r) is presented in 4× 4-matrix represen-
tation, the operators αa and βa act as follows: α1F = αF , α2F = Fα

T

etc, where α and β are Dirac matrices.
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The potential U(r) is the Hermitian matrix-function, it is invari-
ant under rotation and space inversion transformations (so that the to-
tal Hamiltonian H = h1 + h2 + U is too). The general form of it is
parametrized by 48 scalar function of r = |r| [10]. Of physical meaning
are potentials admitting field-theoretical interpretation of interaction.
In particular, potentials reflecting a spin structure of vector and scalar
relativistic interactions are used frequently in potential quark models of
mesons. We will consider such a model in the Section 5 using few exam-
ples of scalar and vector potentials known in a literature. In the present
section the structure of potential is not essential.

In order to apply a pseudoperturbative expansion method to the 2-
body Dirac equation let us transform it to an appropriate form.

First of all we perform a radial reduction. Following the Ref. [5,7] we
put the wave eigenfunction F (r) of the total angular momentum j and
the parity P in the 2×2 block-matrix form:

F (r)=
1

r

[

i s1(r)φ
A(n) + i s2(r)φ

0(n) t1(r)φ
−(n) + t2(r)φ

+(n)
u1(r)φ

−(n) + u2(r)φ
+(n) i v1(r)φ

A(n) + i v2(r)φ
0(n)

]

(3)

for the parity P = (−)j±1 states, and similar form for the parity
P = (−)j states but with superscripts interchanged as follows: (A, 0) ↔
(−,+). Here n = r/r, the bispinor harmonics φA(n) corresponds to a
singlet state with a total spin s = 0 and an orbital momentum ` = j, and
φ0(n), φ−(n), φ+(n) correspond to s = 1 and ` = j, j+1, j−1. Then for
j > 0 the eigenstate problem (1) reduces to the set of eight first-order
differential equations with the functions s1(r) . . . v2(r) and the energy E
to be found.

It is convenient to present this set in the following matrix
form. Let us introduce the 8-dimensional vector-function: X(r) =
{s1(r), s2(r), t1(r), . . . , v2(r)} Then the set of radial equations reads:

{

H(j)
d

dr
+ V(r, E, j)

}

X(r) = EX(r), (4)

where the 8×8 real matrices H(j) and V(r, E, j) = G(j)/r+m+U(r, j)−
EI possesses properties H

T = −H, V
T = V, the diagonal matrix m =

diag(m+I,m−I,−m−I,−m+I) (here I is 2×2 unit matrix and m± =
m1 ± m2) and j- and P -dependent matrices H(j), G(j) are constant
(i.e., free of r), and matrix-potential U(r, j) comes from interacting term
of the equation (1). For the case j = 0 components s2 = t2 = u2 = v2 = 0
so that the dimension of the problem (4) reduces from 8 to 4.

It turns out that rankH = 4 (2 for j = 0). In other words, only
four equations of the set (4) are differential while remaining ones are
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algebraic. They can be split by means of some orthogonal (i.e., of O(8)
group) transformation. In new basis we have

X(r) =

[

X1

X2

]

, H = 2

[

J
(2)

0

0 0

]

, (5)

where J
(2) is the symplectic 4×4 matrix. Thus we arrive at the set

2J(2)
X

′

1 + V11X1 + V12X2 = 0 , (6)

V21X1 + V22X2 = 0 . (7)

Eliminating X2 from (6) by means of (7) we get a differential set for the
4-vector X1

{

J
(2) d

dr
+ V

⊥(r, E, j)

}

X1(r) = 0, V
⊥ = (V11 − V12V

−1
22 V21)/2 (8)

while X2 then follows from the algebraic relation X2 = −V
−1
22 V21X1.

The elimination of X2 causes non-physical energy-dependent singular
points (apart of r = 0 and physical singularities of potentials) in matrix
elements of V

⊥.
Now we present the 4-vector X1 in 2+2 block form,

X1(r) =

[

Φ1

Φ2

]

, V
⊥ =

[

V11 V12

V21 V22

]

, (9)

eliminate then Φ2 and arrive at the second-order differential equations
for 2-vector Φ1:

L(E)Φ1 =

{(

d

dr
+ V12

)

[V22]
−1

(

d

dr
− V21

)

+ V11

}

Φ1 = 0. (10)

The matrix V22 is diagonal for all potentials considered in Section 5
(and many other ones). In these cases we can perform the transformation:

Φ̃1 = Φ1/
√

V22, L̃ =
√

V22L
√

V22 (11)

providing for the operator L̃ the form which is as close as possible to
2-term form:

L̃(E) =
d2

dr2
− W(r, E, j) − {Z(r, E, j),

d

dr
}+J

(1); (12)

here W(r, E, j) is a symmetric 2×2 matrix, J(1) is 2×2 symplectic matrix
and {. . . , . . .}+ denotes the anticommutator.
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We are nearly to apply the 1/j expansion method to the equation
(12). For physically interesting cases the function Z vanishes or it is
negligible at j large. Thus the equation (12) has a 2×2 matrix 2-term
form. Before proceeding further we consider a simpler example of a single
2-term relativistic equation.

3. Todorov equation via 1/` method

Here we consider the Todorov-type equation describing the relativistic
system of two interacting scalar particles in the centre-of-mass reference
frame [24–26]:

{

p
2 + U(r, E) − b(E)

}

Ψ(r) = 0. (13)

Here p = − i∇, the quasipotential U(r, E) depends on energy E of the
system, and the binding parameter b(E) is the following function of E,

b(E) = 1

4
E2 − 1

2
(m2

1 +m2
2) + 1

4
(m2

1 −m2
2)

2/E2, so that

E(b) =

2
∑

a=1

√

m2
a + b. (14)

The corresponding radial equation takes the form

{

d2

dr2
−W (r, E, `)

}

ψ(r) = 0, (15)

where ` is the angular momentum quantum number, and

W (r, E, `) = U(r, E) + `(`+ 1)/r2 − b(E). (16)

Let us consider motion of the system in the neighbourhood of clas-
sical stable circular orbit. Given ` > 0, the radius rc = rc(`) of the
stable circular orbit and the corresponding energy Ec = Ec(`) satisfy
conditions:

W (rc, Ec, `) = 0, ∂W (rc, Ec, `)/∂r = 0 (17)

and ∂2W (rc, Ec, `)/∂r
2 > 0.

One puts r = rc+∆r andE = Ec+∆E where ∆r and ∆E are small in
some meaning, and expand the function W (rc+∆r, Ec+∆E, `) in power
series with respect ∆r and ∆E. Then due to the conditions (17) leading
terms of this expansion represent the harmonic oscillator potential and
other ones are anharmonic terms. If the conditions (17) hold for any large
value of ` it is possible by renormalization of ∆r and ∆E to single out
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in the equation (15) the `-independent harmonic oscillator problem and
anharmonic perturbations which disappear if `→ ∞. This is the idea of
1/` expansion method. The application of pseudoperturbative techniques
of this type [19–23] to our case meets two peculiarities: the equation
(15) represents a nonlinear spectral problem, and an exact solution of
the equations (17) may appear to be unknown or too cumbersome for
practical use. Thus we modify the technique.

Let us introduce the parameter λ = 1/
√
` which is small at ` large.

Since the exact form of the functions rc(`) and Ec(`) is unknown in
general, we first determine asymptotics rc ∼ r∞(λ), bc = b(Ec) ∼ b∞(λ)
at λ→ 0 which may be found much easily. Then the functions rc(`) and
Ec(`) can be presented in the form:

rc(λ) = r∞(λ)ρ(λ), bc(λ) = b∞(λ)µ(λ), (18)

ρ(λ) = 1 + λρ(1) + λ2ρ(2) + . . . , µ(λ) = 1 + λµ(1) + λ2µ(2) + . . . (19)

where expansion coefficients ρ(n), µ(n), n = 1, 2, . . . (and thus the an-
alytical functions ρ(λ) and µ(λ)) can be found, step by step, from the
conditions:

W̄ (ρ, µ, λ) = 0, ∂W̄ (ρ, µ, λ)/∂ρ = 0 (20)

and ∂2W̄ (ρ, µ, λ)/∂ρ2 > 0; here the dimensionless function

W̄ (ρ, µ, λ) = λ4r2∞W
[

r∞ρ,E(b∞µ), 1/λ2
]

(21)

is regular at λ→ 0 by construction.
Now we transit to the dimensionless variable r → ξ and spectral

parameter b(E) → ε,

r = r∞(λ)[ρ(λ) + λξ], b = b∞(λ)[µ(λ) + λ2ε], (22)

in terms of which the equation (15) takes the form
{

d2

dξ2
− 1

λ2
w(ξ, ε, λ)

}

ψ(ξ) = 0 (23)

with
ψ(ξ) = Ψ[r∞(ρ+ λξ)], (24)

and
w(ξ, ε, λ) = W̄ (ρ+ λξ, µ+ λ2ε, λ). (25)

If the functions ρ(λ) and µ(λ) satisfy the conditions (20) the equation
(23) is nonsingular at λ → 0. This is true even if we use the first-order
approximate solution to (20) in (22),

ρ(λ) = 1 + λρ(1), µ(λ) = 1 + λµ(1). (26)
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Indeed,

1

λ2
w(ξ, ε, λ) =

1

λ2
W̄

[

ρ(λ) + λξ, µ(λ) + λ2ε, λ
]

=
1

λ2
W̄ (0) +

1

λ

{

∂W̄ (0)

∂ρ
(ρ(1) + ξ) +

∂W̄ (0)

∂µ
(µ(1) + λε) +

∂W̄ (0)

∂λ

}

+

+
1

2

∂2W̄ (0)

∂ρ2
(ρ(1) + ξ)2 +

1

2

∂2W̄ (0)

∂µ2
[µ(1)]2 +

1

2

∂2W̄ (0)

∂λ2
+ (27)

+
∂2W̄ (0)

∂ρ∂µ
(ρ(1) + ξ)µ(1) +

∂2W̄ (0)

∂ρ∂λ
(ρ(1) + ξ) +

∂2W̄ (0)

∂µ∂λ
µ(1) +O(λ).

Singular terms are absent if the following set of equations holds:

W̄ (0) = 0, ∂W̄ (0)/∂ρ = 0, (28)

∂W̄ (0)

∂µ
µ(1) +

∂W̄ (0)

∂λ
= 0. (29)

Besides, zero-order terms which are lineal in ξ disappear if

∂2W̄ (0)

∂ρ2
ρ(1) +

∂2W̄ (0)

∂ρ∂µ
µ(1) +

∂2W̄ (0)

∂ρ∂λ
= 0. (30)

Notice that the equations (28) and (29)–(30) represent the conditions
(20) in the zeroth and first orders of λ, respectively. Thus the equations
(28) hold identically and the (29)–(30) are linear equations with ρ(1) and
µ(1) to be found.

In zero-order approximation the equation (23) reduces to the har-
monic oscillator problem

{

d2

dξ2
+ κε− ν − ω2ξ2

}

ψ(ξ) = 0 (31)

with

κ = −∂W̄
(0)

∂µ
, ω2 =

1

2

∂2W̄ (0)

∂ρ2
, (32)

ν = −1

2

∂2W̄ (0)

∂ρ2
[ρ(1)]2 +

1

2

∂2W̄ (0)

∂µ2
[µ(1)]2

+
1

2

∂2W̄ (0)

∂λ2
+
∂2W̄ (0)

∂µ∂λ
µ(1), (33)

µ(1) = −∂
2W̄ (0)/∂λ

∂2W̄ (0)/∂µ
,

ρ(1) = − 1

∂2W̄ (0)/∂ρ2

{

∂2W̄ (0)

∂ρ∂µ
µ(1) +

∂2W̄ (0)

∂ρ∂λ

}

, (34)
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where ∂W̄ (0)/∂µ = limλ→0 ∂W̄/∂µ = ∂W̄/∂µ(1, 1, 0) etc. The higher-
order terms in the expansion (27) can be considered as perturbations
to the oscillator problem (31). They depend, in general, on a spectral
parameter ε and can be taken into account by means of the perturbative
procedure [25] which is appropriate to this case. Otherwise the treatment
is closed to that of Refs. [19–23].

The eigenvalues in zero-order approximation εnr
= [ω(2nr+1)+ν]/κ,

where nr = 0, 1, . . . is a radial quantum number, are to be corrected by
means of higher orders of perturbative procedure. Then, using 2nd eq.
of (22) in (14) gives us the energy spectrum.

4. Breit-type equation via 1/j method

At this point we return to the radial 2BDE in the form L̃(E)Φ̃1 = 0,
where the 2×2 matrix operator L̃(E) is given by Eq. (12) with the last
term neglected. Let us put

Φ1 =

[

Ψ1

Ψ2

]

, (35)

where Ψ1 and Ψ2 are component of Φ1. Then the equation (10) can be
presented as a pair of coupled ordinary second-order differential equa-
tions:

d2

dr2
Ψ1(r) −W1(r, E, j)Ψ1(r) = Y (r, E, j)Ψ2(r), (36)

d2

dr2
Ψ2(r) −W2(r, E, j)Ψ2(r) = Y (r, E, j)Ψ1(r). (37)

We will treat this system perturbationally using the pseudosmall param-
eter λ = 1/j.

Let us suppose for a moment that the right-hand side of the system
(36)–(37) can be ignored, so that these equations decouple. Then we can
apply to each of equations the scheme of the Section 3. We define radii
and energies of circular orbits by means of the conditions:

Wi(ri, Ei, j) = 0,
∂Wi(ri, Ei, j)

∂r
= 0,

∂2Wi(ri, Ei, j)

∂r2
> 0, (38)

i = 1, 2. Then we single out asymptotics of these functions of λ by means
of the relations:

ri(λ) = ri∞(λ)ρi(λ), bi(λ) = bi∞(λ)µi(λ), (39)

ρi(λ) = 1 + λρ
(1)
i + λ2ρ

(2)
i + . . . , µ(λ) = 1 + λµ

(1)
i + λ2µ

(2)
i + . . . , (40)
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and, using the relations

r = ri∞(λ)[ρi(λ) + λξi], b = bi∞(λ)[µi(λ) + λ2εi], i = 1, 2 (41)

we reformulate the equation (36) in terms of the dimensionless variable
ξ1 and the spectral parameters ε1 while the equation (37) – in terms of
ξ2 and ε2. Finally, we perform an expansion of the equations in powers
of λ and solve them separately.

Now we are going to take an actual coupling of the equations (36)
and (37) into account. First of all we note that the variables ξ1 and ξ2
are not independent of one another, as well as the spectral parameters
ε1 and ε2 are not. Thus we should choose common variables in both the
equations.

Let us first choose ξ = ξ1, ε = ε1. Then the set (36)–(37) reduces to
the form:

ψ′′

1 (ξ) − 1

λ2
w1(ξ, ε, λ)ψ1(ξ) = y(ξ, ε, λ)ψ2(ξ), (42)

ψ′′

2 (ξ) − 1

λ2
w2(ξ, ε, λ)ψ2(ξ) = y(ξ, ε, λ)ψ1(ξ), (43)

where

ψi(ξ) = Ψi[r1∞(ρ1 + λξ)], i = 1, 2, (44)

wi(ξ, ε, λ) = λ4r21∞Wi

[

r1∞(ρ1 + λξ), E
(

b1∞(µ1 + λ2ε)
)

, 1/λ2
]

, (45)

y(ξ, ε, λ) = λ2r21∞Y
[

r1∞(ρ1 + λξ), E
(

b1∞(µ1 + λ2ε)
)

, 1/λ2
]

. (46)

The functions (44)–(46) are regular at λ→ 0. Moreover, the general
structure of the function w1 is the same as that of w in the Section 3
(see eqs. (25), (27)). In particular, w1 = O(λ2). Thus the equation (42)
is similar to (23) (but with non-zero right-hand side). It admits similar
expansion in λ.

On the contrary, the function w2 may possess different behaviour at
λ→ 0. Here we consider three cases.

1). Let r2∞ 6= r1∞ and b2∞ 6= b1∞. Then w2 = O(λ−n), n ≥ 0
(except perhaps very special examples which we do not consider). In
this case one can solve formally the equation (43) in favour of ψ2(ξ) as
follows:

ψ2 = −
(

1 − λ2

w2

∂2

∂ξ2

)−1
λ2

w2
yψ1 = −

∞
∑

n=0

(

λ2

w2

∂2

∂ξ2

)n
λ2

w2
yψ1. (47)

This representation leads to the loss of solutions for ψ2 which are not
analytical in λ and thus have nothing to do with the perturbation pro-
cedure. The use of (47) in the r.-h.s. of (42) permits us to eliminate ψ2
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from (42) and thus to obtain a close wave equation for ψ1. The structure
and treatment of this equation are the same as those of the equation
(23). Moreover, it is obvious from (47) that at least the zero- and the
first-order terms of ψ2 vanish. Thus the r.-h.s. of (42) does not contribute
in lower orders of perturbation procedure. In zero-order approximation
we have the oscillator problem.

2). Let r2∞ = r1∞ and b2∞ = b1∞ but ρ2−ρ1 = O(λ) and µ2−µ1 =
O(λ). Then w2 = O(λ). Since λ2/w2 = O(λ) the perturbative treatment
(47) of the equation (43) is still valid. The only difference from the case
1) is that the r.-h.s. of eq. (42) may contribute in the first order of λ.

In both the above cases we used the dimensionless variable ξ1 and
obtained a closed eigenstate equation (which we will reference to as the
problem 1) for the wave function ψ1(ξ1) and the spectral parameter ε1.
We can proceed with the variable ξ2 and obtain the problem 2 for the
function ψ2(ξ2) and the parameter ε2. One might be inclined to think
that both the problem 1 and 2 are equivalent and lead to the same
spectrum (in terms of energy E). Actually, these problems complement
one another. Indeed, it is evident from the relation:

ε2 − ε1 =
1

λ2

{

b1∞
b2∞

µ1 − µ2

}

+

{

b1∞
b2∞

− 1

}

ε1 (48)

that in both 1) and 2) cases |ε2 − ε1| → ∞ if λ→ 0. It does mean that
energy levels following from the problem 1 correspond to very (infinitely
in the zero-order approximation) excited states of the problem 2 (or
conversely). Higher-order corrections do not change this statement. Thus
different problems generate different branches of the energy spectrum of
the original set of equation. In this respect the following special case
differs essentially from the previous ones.

3). Let r2∞ = r1∞ and b2∞ = b1∞ but ρ2−ρ1 = O(λn) and µ2−µ1 =
O(λn), n ≥ 2. Then w2 = O(λ2). Both the equations (42) and (43) have
similar structure and should be treated on the same footing. The use
of common variables ξ, ε defined by (22) and (26) is appropriate to
this case. In the zero-order approximation we obtain the coupled pair of
wave equations (on the contrary to the cases 1) and 2) where we had a
single wave equation). In physically meaningful cases (of Section 5, for
example) they have the form:

{

d2/dξ2 + κε− ν1 − ω2ξ2
}

ψ1(ξ) = χψ2(ξ), (49)
{

d2/dξ2 + κε− ν2 − ω2ξ2
}

ψ2(ξ) = χψ1(ξ), (50)

where χ = limλ→0 y = const, and parameters νi, κ and ω are related
to the functions wi (i = 1, 2) by the equation of the type of (32), (33)
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and (34). The equations (49), (50) can be evidently split and reduced to
the pair of equations of the type (31) with parameters ν̃i = {ν1 + ν2 ±
√

(ν1 − ν2)2 + 4χ2}/2 (i = 1, 2). The eigenvalues ε corresponding to the
first and second equations are split by finite constant ν̃1 − ν̃2. Thus the
corresponding states mix in higher orders of perturbation procedure.

5. Application: Regge trajectories of mesons

Here we apply the pseudoperturbative treatment of 2BDE in a meson
spectroscopy.

It is known [29] that spectra of heavy mesons are well described by
the nonrelativistic potential model with QCD-motived funnel potential
u(r) = ul(r) + uC(r), where

uC(r) = −α/r, α = 0.27 (51)

ul(r) = ar, a = 0.25 ÷ 0.3GeV2. (52)

The Coulomb part (51) of this potential describes a nonrelativistic limit
of the vector one-gluon exchange interaction while the linear part (52) is
suggested by the area law in the lattice approximation of QCD and has
presumably scalar or scalar-vector nature.

The description of light meson spectroscopy needs an application of
appropriate relativistic models. Most of them are related to the string
theory. From the theoretical viewpoint the most interesting are QCD-
motived relativistic models embracing properties of both the heavy and
light mesons. Such models should reflect the scalar-vector structure of
interaction and should lead to the funnel-type potential in the nonrela-
tivistic limit.

A natural pretender to the relativistic potential model is the 2BDE
with a short-range vector potential and a long-range scalar one. At least
three general structures of vector potential are used in the literature,

Uv(r) = uv(r), (53)

Uv(r) = {1 − α1 · α2}uv(r), (54)

Uv(r) = {1 − 1

2
α1 · α2}uv(r) + 1

2
(n · α1)(n · α2)ru

′

v(r), (55)

with uv(r) = uC(r) or another short-range potential; here u′(r) =
du′(r)/dr. The potential (53) is only a static part of vector interaction
(see [5]). The relativistic vector field kinematics is taken into account in
the potential (54) (see [8,16]) which, for the Coulomb case, was first pro-
posed by Eddington and Gaunt [27,28]. In the generalization (55) of the
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Breit potential [1] retardation terms have been added [8]. Two different
scalar potentials,

Us(r) = β1β2us(r), (56)

Us(r) = 1

2
(β1 + β2)us(r), (57)

come from different couplings of scalar mediating field with fermionic
fields. The first one (56) arises from the Yukawa interaction (see [6] while
the second one (57) corresponds to so called “minimal” coupling [15]. The
latter and also two next potentials can be treated as static approximation
of various QFT-motived scalar quasipotentials [17, 30–32]:

Us(r) = 1

2
(1 + β1β2)us(r), (58)

Us(r) = 1

4
(1 + β1)(1 + β2)us(r). (59)

The perturbative treatment of Breit-type equations has been used
for calculating a fine splitting in spectra of heavy mesons [14, 16]. Light
meson spectra are essentially relativistic and need a nonperturbative
statement of the problem which is inconsistent because of non-physical
singularities of radial equations. To avoid this difficulties in numerical
calculations one is forced to invent sophisticated potentials and impose
rather artificial boundary conditions [15].

Using the pseudoperturbative treatment of 2BDE with different com-
binations of potentials (51)–(59) we obtain analytical expressions for
meson mass spectra and estimate a role of general structure and input
parameters of potentials in the model. We consider mass spectra of light-
est mesons (containing u and d quarks only) and try to reproduce their
following general features:

i). Mass spectra of light mesons fall into the family of straight lines
in the (E2, j)-plane known as Regge trajectories.

ii). Regge trajectories are parallel; slope parameter σ is an universal
quantity, σ = 1.15GeV2 = (4 ÷ 4.5)a.

iii). Nonrelativistic classification of light mesons as
(

n2s+1`j
)

–states
of quark-antiquark system is adequate; i.e., radial quantum number nr =
n−`−1 enumerates leading (nr = 0) and daughter (nr = 1, 2, . . .) Regge
trajectories, spin s = 0, 1 corresponds to mass singlets and triples etc.

iv). Spectrum is `s-degenerated, i.e., masses are distinguished by `
and nr (not by j).

v). States of different ` possess an accidental degeneracy which fact
causes a tower structure of the spectrum.

vi). Hyperfine ss-splitting is relatively small, about 5 ÷ 6% of σ.
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For this purpose we use the nonrelativistic potential function (51) and
(52) in vector and scalar potentials of different spin structure (53)–(59)
and calculate pseudoperturbative spectrum in zero-order approximation.
Classification of states then is done using singlet-triplet properties of
large-large component of wave function (3) in the nonrelativistic limit.

If the vector short-range interaction is ignored and scalar potentials
(56)–(59) are used with us(r) = ar the pseudoperturbative mass (i.e.,
energy) of meson in zero-order approximation has the following form:

E2
A = ka[`+ 1

2
+ η(nr + 1

2
)] + ζm+

√
2a`+ δ1m

2
+ − δ2m1m2

+O(1/
√
`), E2

0 = E2
A, E2

± = E2
A ± κa; (60)

here m+ = m1 +m2, and k, η, ζ, δ1, δ2, κ are dimensionless constants
depending on the potential chosen.

Four families of energy levels Ei (i = A, 0,−,+) form trajectories in
the (E2, `)-plane which are nearly straight. Indeed, ζ = 0 ÷ 2 for all the
potentials considered and rest masses ma (a=1,2) of lightest mesons are
small compared to the energy scale

√
σ. Thus the parameter ζm+

√
a

determining a curvature of trajectories is small. Parameters δ1 and δ2
determine a common shift of all the trajectories and are not important
for the present discussion. Below we discuss the calculated values of
parameters k, κ and η determining the slope of trajectories and their
degeneracy properties.

In the (56) case k = 4 so that the slope σ = ka matches quite well to
that of property ii); η = 2 causes the accidental degeneracy typical for
the harmonic oscillator; but κ = 4 leads to j-dependence of energy (not
`-dependence) so that the ls-degeneracy is absent.

In the (57) case k = 4 and η = 2, so that the slope and the accidental
degeneracy are the same as in the (56) case; κ = 4 − 3

√
2 ≈ −0.243

provides an approximate ls-degeneracy, with accuracy 6%; the splitting
is of order of the actual ss-splitting (see property vi)).

In the (58) case k = κ = 3
√

3 ≈ 5.196, η =
√

3 ≈ 1.732; none of
these values matches well to properties ii)–vi).

In the (59) case k =
√

23 −
√

17(7 +
√

17)2/128 ≈ 4.2 provides the

best fit of σ to that of property ii); η = (
√

17−3)
√

102 + 26
√

17/8 ≈ 2.03
leads to nearly precise oscillator-like degeneracy, with accuracy 1.5%;
κ = 0 provides exact ls-degeneracy.

Taking into account the vector short-range interaction (one of poten-
tials (53)–(55) with uv(r) = uC(r)) results in a parallel shift of Regge
trajectories. The value of the shift is of order αa, it depends on the vec-
tor potential chosen and is different (in general) for different trajectories



13 Препринт

Ei (i = A, 0,−,+).
It has been proved in the farmework of single-particle Dirac equa-

tion a possibility of confinement by means of vector and equally mixed
vector-scalar long-range interactions [33–35]. We examined these cas-
es in 2BDE approach using different vector potentials (53)–(55) with
uv(r) = ar. Corresponding zero-order pseudo-perturbative spectra have
a form similar to (60). The difference is that k = ki = 8 ÷ 12 is as twice
or more as desired, and is different for i = A, 0−,+ (i.e., trajectories are
not parallel).

6. Summary

The Breit equation and its generalizations (2BDE) possess non-physical
singularities. In some cases these points lay far from the physically impor-
tant domain but they make a boundary problem incorrect or physically
improper [16, 17]. In order to avoid this difficulty and to use the 2BDE
in the relativistic bound state problem, especially for the case of strong
coupling, we develope the 1/j expansion method.

The method is based on the large-N or large-` techniques applicable
to the radial Schrödinger equation. In our case the 2BDE is reduced to
the coupled pair of quasipotential-type equations which structure causes
principal modification of known techniques. Other changes are related to
the fact that the equations represent a nonlinear spectral problem with
cumbersome quasipotentials.

We apply this pseudoperturbative method to the 2BDE with the
linear+Coulomb potential of different scalar-vector structure. In all cases
in the zero-order approximation it was obtained the Regge trajectories
which are linear asymptotically. Linear potentials of two scalar structures
(57) and (59) which was discadred in Ref. [17] as nonphysical (beause
of singularities in 2BDE) reproduce well in our case general properties
of light meson spectra. In particular, the slope σ = ka of light meson
trajectories fit experimental value well if the parameter a is taken from
the nonrelativistic potential model [29]. Third linear potential of Ref. [17]
(with no singularities in 2BDE) does not match to experimental data.
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