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Variational wave equations of two fermions interacting via
scalar, pseudoscalar, vector, pseudovector and tensor fields

A. Duviryak and J. W. Darewych

Abstract. We consider a method for deriving relativistic two-body wave
equations for fermions in the coordinate representation. The Lagrangian
of the theory is reformulated by eliminating the mediating fields by
means of covariant Green’s functions. Then, the nonlocal interaction
terms in the Lagrangian are reduced to local expressions which take into
account retardation effects approximately. We construct the Hamiltonian
and two-fermion states of the quantized theory, employing an unconven-
tional “empty" vacuum state, and derive relativistic two-fermion wave
equations. These equations are a generalization of the Breit equation
for systems with scalar, pseudoscalar, vector, pseudovector and tensor
coupling.
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1. Introduction

Relativistic few-body systems can often be treated in a manner similar
to nonrelativistic ones in that the number of particles, i.e., quanta of the
matter fields, is fixed and there are no free quanta of fields mediating the
interaction. Examples of such systems are systems of nucleons below the
threshold for meson production, and quark-hadronic systems (where free
gluons are not observable). In such cases the use of full-scale quantum
field theory (QFT) is not necessary. Instead, some simplified or effective
versions of QFT can be employed.

In this paper we use a modification of the variational method in
Hamiltonian QFT for the description of two-fermion relativistic systems
with a superposition of scalar, vector, pseudo-scalar, pseudo-vector and
tensor interactions. We follow the general approach which was present-
ed in previous works [1,3,2,4]. The starting point of the approach is the
classical Lagrangian which describes a system of fermionic fields inter-
acting via bosonic fields. The precise nature of the fields mediating the
interaction is not specified in the present paper; the fields can originate
from standard or effective field theories. We express the potentials of the
mediators in terms of covariant Green functions and fermionic currents.
The resulting reduced Lagrangian is a nonlocal one. In order to avoid
difficulties presented by the the nonlocal nature of the field theory [5] we
employ an approximation procedure which reduces the Lagrangian to lo-
cal form. As a consequence the transition to the Hamiltonian formalism
is straightforward. We then perform the canonical quantization.

We employ an unconventional definition of the vacuum state [1-4]
and neglect terms of the Hamiltonian corresponding to the appearance
of free physical quanta of thw mediating field, as a result of which the re-
duced Hamiltonian preserves the particle number. Thus the eigenenergy
problem for two-fermion states is self-consistent and leads to a Breit-like
equation for the 16-component wave function. The equation includes
free-fermion terms, static potentials with appropriate spin-tensor struc-
ture and retardation terms. We concentrate on the general structure
of the potentials for cases of scalar, vector, pseudo-scalar, pseudo-vector
and tensor interactions and their superpositions. Finally, we compare the
present results to those known in the literature, and discuss ambiguities
in the retardation terms of the interaction potentials.
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2. Lagrangian and field equations

We proceed from the following classical Lagrangian density:

2
L= Lo+ Ly+La+Ly+Li+Lp, (1)

a=1

where

L, = Cf{ee + Eilnt = 1La(%) {i "/Nau - ma} Ya()
— e (@) {gax (@) + @V Ap(®) + Guv° ()
+ @ A (@) + S B (@)} bule) ()

is the Lagrangian density of the ath fermion field of mass m, with scalar,
vector, pseudo-scalar, pseudo-vector (i.e., axial) and tensor mediating
fields, x(z), A.(x), X(z), Au(z) and F),, (x), respectively (ga, Gas Ja, da
and ¢, are the corresponding coupling constants). We assume that all
the free Lagrangians £,, L4, Ly, £; and LF of the mediating fields are

bi-linear in the fields, and that A,,, A, satisfy the Lorentz condition':
At (x) =0,  9,A"(x)=0. (3)

Varying £, Eq. (1), with respect to the mediating fields x(z), 4, (x),
x(z), A.(z) and F,,(z), we obtain the following linear field equations:

Exx = p (4)
EaAl = g (5)
&x = p (6)
;A = JH, (7)
EpFH = g, (8)

where &,, £4 etc. are the corresponding Euler-Lagrange operators.
For example, &, can be the usual form, 0,0" — mi, or it might be
9,0"(8,0” —m3), (0,0" —m3)?, etc. as in some nonstandard and effec-

tive theories [6-8]. The quantities

p(z) = Zgapa(x)zzgad;a(x)wa(x)a 9)

1The Lorentz condition is a consequence of the field equations for massive vector
field (such as the Proca equation), but is a gauge fixing condition for massless field.
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an(]# an¢a Y 1ha (), (10)
p(r) = Zgaﬁa Zga¢a T)y ¢a ), (11)
JH(x) > Gadt () }}mavv%<> (12)

J¥(x) = Z%aJéW x) =3 Z%ﬂba (x)o" g (), (13)

are the fermionic scalar, vector, pseudo-scalar, pseudo-vector (axial) and
tensor source densities.
The solutions of Egs. (4)—(8),

x(@) = / a4/ D — o) pl'), (14)

Au(z) = / 40/ Dy(z — ') T2, (15)
W@ = [daDye - (16)
Au(z) = / 40 D — ') o), (17)
Ful) = [d4Dila )7 @), (18)

where Dg(x), Dy (z) etc. are corresponding symmetrical Green functions,
can be used in the Lagrangian (1) to obtain the reduced Lagrangian,

2
L=t~y — Uy — Uy — s, (19)

a=1

where

U(r) = / a4 pl() Dl — ') pla), (20)

Uy (z) = %/d4m’JM(ac)Dv(m—a:’)J“(m’). (21)
thia) =} [ 5Dyl )5 (22)
Up(z) = 1 / d*a’ J,(2) Doz — a') J*(z), (23)
U(z) = 1 / d*x’ J, (x) Dy (z — o) JH (27). (24)
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Note that we have suppressed the source-free solutions xo(z), Af(z)
etc., which can be added to the right-hand-sides of Eqs. (14)—(18). This
excludes processes involving creation and destruction of physical quanta
of the mediating fields.

The reduced Lagrangian (19) leads to the fermion field equations,

{7 (104 = 204w (@) = @7° Aul2)) = ma

~ 90X(@) ~ GuX(x) = 0" Fy fhule) =0, (25)
ba() {A/” (1 O + daAu(z) + qw‘r’flu(x)) +mq
+ gux(®) + GuX(@) + 50" Fyu | =0, (26)

provided that the mediating fields x(z), A*(z) etc. are as given by Egs.
(14), (15), (16), (17), (18), with the free fields xo(z), Aj(z) etc. left out.

3. Approximate accounting for time non-locality

The action integral,

/d4m£ fofeeu + I, + I, + I, + I, (27)
a=1

where Iy = — f Uyd*z, etc., has a structure similar to that of the Fokker
integral in direct interaction theory [9-11|. The scalar, vector and other
potentials (14)—(18) (and thus the interaction parts of Lagrangians (20)—
(24)) are non-local in the time variable ¢ = 2. Because of this the
standard hamiltonization procedure is not applicable.

In order to employ the canonical Hamiltonian formalism it is neces-
sary to convert the interaction Lagrangians to single-time form. The sim-
plest way is to set ¢’ = ¢ for all field variables involved in the Lagrangian.
This results in the neglect of retardation of interactions, which may lead
to the loss of essential relativistic effects, as was shown previously in the
case of QED [4]. Therefore, we shall use the procedure employed in [4],
which takes retardation effects into account approximately.

The symmetric Green functions Dg(z), Dy(z) etc. on the r.h.s. of
Egs. (14)—(18) are (whatever equation they satisfy) Lorentz-invariant
functions of a single argument only— the interval? z? = t? — x2. Then,

2In fact, these functions may be any elementary solutions of equations (4)—(8)
(i.e., solutions of the same equations, but with §-functions on the r.h.s.) depending
on z2 only.




5 IIpenpunT

using the substitution ¢ = ¢ + A and the Taylor series expansion f( +
ANa') = f(t, ")+ Af(t,2')+- - -, the common structure of the potentials
(14)—(18) can be expressed as follows:

/d4m’D [(t—t)? =] f(t',2) =

7 d)\/d?’m’D()\2 ) {f(m') FAf( )+ It a) + }

= [@a {emisee) +tamita) + - (28)
where f = 9f/ot, r = |r| = |x — 2/|, the functions
G(r) = / dAD(N\?* —r?), (29)
Q) = [ (e - (30)
satisfy the relation
Q'(r) =rG(r), (31)

and all odd-order derivative terms vanish because D is an even function
of A\. Thus we express the interaction integrals I, I, etc. in the single-
time form:

Lo~ 1040 - / da {u® +ud},

I ~ 1O 1 1V = / diz {ug()) +u§1>} (32)
etc., where
U = 5 [ @ pla)Gurpla) (33)
= =1 [ @)@ pa) (34)
U = 4 [ @I @G @), (35)

Uy = -3 [ a2 @)Qun ) (36)

ICMP-04-16E 6

etc., and the common time argument ¢ is suppressed.

From now on we restrict ourselves to the description of weakly rela-
tivistic systems. Thus we can consider the terms Lls(l), L{\El) ... as small
as compared to Lls(o), Ll\(,o) .... Indeed, if the speed of light c is used ex-
plicitly, the expansion (28) appears as a series in powers of 1/¢. Then
Z/{s(l), Z/{\(,l)... ~ 1/c® and Z/{S(O), Z/{‘SO)... ~ 1, while the terms Z/{S(Z),
L{\gz) ...~ 1/c* etc. are negligible in the present approximation.

The resulting Lagrangian,

2
£ — Zﬁflree — YO~y Z/{}SO) — Y - Ut(O)
a=1

—uU® —y® —u® —yH —y
— £O gy _y L{él) —uW® - ut(l), (37)

leads to Euler-Lagrange equations which are second-order in time deriva-
tives, because of the terms Lls(l), L{él) .... Thus, it describes the system
as having twice as many degrees of freedom as the truncated Lagrangian
L) does, because 9T are no longer the conjugate momenta of 1. This
changes completely the dynamical content of the fields ,. Since the
second-order time derivatives occur in small terms only, they should be
eliminated by means of the Euler-Lagrange equations of a lower-order
approximation. But the resulting field equations are then not necessarily
the Euler-Lagrange equations of a known Lagrangian. Thus the transi-
tion to the Hamiltonian and hence to a canonical quantum description
becomes unclear.

To avoid this difficulty we can eliminate the time derivative in the
small terms by means of the field equations or conservation laws. Though
this can be done in general, it is more illuminating to do this separately,
for example, for the cases of purely scalar and purely vector interactions.

3.1. Vector interaction only

The quantum-mechanical relation e = v/¢, where v is the free-particle
velocity operator and c¢ is the speed of light (here i = 1), suggests the
use of the estimate e ~ 4 ~ 1/¢, at least in the small terms of the
Lagrangian (37). Thus J ~ 1/¢, hence the L{\gl) term containing J is
negligible compared to the term (36) with JO. We use this estimate
initially for the sake of simplicity. The full expression for Z/{\El) including
terms of order 1/¢* will be calculated later.




7 IIpenpunT

To eliminate the time derivative of the charge density J° one can use
the conservation law

oI =0, ie. J'+V.-J=0. (38)

This result is a consequence of the Euler-Lagrange equations. It fol-
lows from the reduced Lagrangian £ as well as from the truncated one
L), However, the direct use of the equations of motion (or their con-
sequences) in the Lagrangian is not a correct procedure: it changes
the equations of motion themselves. This fact was first emphasized in
the case of the Golubenkov-Smorodinskii Lagrangian [12,13], and sub-
sequently discussed in the literature [14]- [18]. Instead, one can use the
method of “double zero", employed in Refs. [14,17]. In our case this con-
sists of the following modification of the Lagrangian:

LY o LW =D _ z (39)

where, in the present case of purely vector interactions,
Z, = %/d‘q’m’Qv(r) {F@)+V-J@)} {I @)+ V- I@)}. @)

It is easy to see that the term Z possesses the property:

6/d31‘Z

so that it does not change the variational problem to the accuracy
desired. On the other hand, it cancels those terms of £(!) which are
quadratic in time derivatives of the fields. Thus the modified Lagrangian
LW yields equations of motion, which are first order in the time deriva-
tives of the particle fields .

Next, we perform the following transformation of the field variables:

Yo — Ea= (1_i anV)¢a ~ e—ianv,wa’
Ea - Eu = (1+i anV)Ea ~el anan’ (42)

=0, (41)

§ [ d3aw £©O)=0

where
Wy(z) =1 / d2'Qy(r)\V' - J(x). (43)

The transformation (42) removes time derivatives from the interaction
part of E(l).NTo the accuracy desired, and using the equality (31), the
Lagrangian £() can be written in the form

LD =0 _yp (44)
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with V = V\U (for the case of truncated vector interactions), where
V=4 [@0Qv @)V I@)

=1 [ (G ()T (@) I@)) + Gl n - T(@))(m - T} (45

n = r/r, the symbol ~ denotes equality modulo surface terms, and the
symbols 1, in the expressions £(?), V, etc. are replaced by &,.

We note that time derivatives are now present in the Lagrangian £
via its standard free-field part only. Moreover, the structure of £(!) looks
to be incorrect, i.e., as if the conservation law (38) is used directly in the
small term L{\gl) of the Lagrangian £(1). The only correction resulting
from the use of the double-zero method is that the Lagrangian £
describes the dynamics of new fields &,, not the old ones v,,.

Due to this structure of the Lagrangian, and since only the new &,
fields are used in the subsequent quantization procedure, we will use, in
the final expressions for Lagrangian, the old symbols v, to represent the
new fields.

We now calculate V, using the total expression for L{\gl) (i.e., including
those terms which contain J ). For this purpose, from the equations (25)
and (26), we deduce the equality:

2
J = - Z da {(V¢Z : a)o“r/)a + 1/120(0 : V%)
a=1

— 2ma Pl vba + 2¢a VA X oY}, (46)

and then eliminate the time derivative J from the interaction Lagrangian
(36). Using the procedure described above, one obtains the Lagrangian

(44) with V, = VI + V&, where
Vi = iZanqb/de'Qv(T)
a b
x {(Vyl(@) - a)ae(z) + ¢i(@)a(a - Vi (z)
—2i mawl(x)'ﬂ/)a(x }
{(V'ul(@) - a)avn(@) + v(@)ala - V(@)
_ 9 mwg(m/)wb(m/)} .4

In deriving this expression we neglected the last term in the r.h.s. of
Eq. (46) since it is nonlinear in the coupling constant and thus is not
important in the first approximation.

)
)
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3.2. Scalar interaction only

Using the field equations (25) and (26) with x # 0 leads to the result,

2
- Z gaijaa -V g, (48)

a=1

where aV b = a(Vb) — (Va)b. We then apply the “double zero” method
(39) with

Zs = /d?)x,Q { +Zga1/)a "/h(w)}

X{P +Zgbwb Jou -V 'y (a )} (49)

and use the transformation:

/(/)a - ga = (]-_iga

‘)/(/)a ~ efigaWs,(/)a’
Ea - ga = (1+lgtl E ~e

W
WS) a ™ igaWsEm (50)

where

>

=520 [ e V@), 6

The resulting Lagrangian has the form (44) with

» = 41X S0 Jaam {i@a

3.3. Scalar-vector interaction

In this case we use the “double zero” method (39) with Z = Z; + Z,.
Of course, the equality (48) no longer holds exactly but does hold ap-
proximately as a linear approximation in the coupling constant. This
accuracy is sufficient for obtaining results, which are accurate at least to
lowest order relativistic corrections. In place of equations (42) or (50),
the transformation of the field variables is now

¢a i ga = (l_igaWS_iQan)¢a ~ e—igawg ~ida v¢a
wa - Ea = (]' + o ')Ea' (53)
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The final Lagrangian can be expressed in the following canonical form,

LY =Y "iglé, — Mg, (54)

a

where the term H is free of time derivatives.
Thus, the total Hamiltonian is

H= HrU® 4 U V4V =HO 1V 1V, (55)

where H(®) is the truncated Hamiltonian (with retardation effects ne-
glected),
Hy = Yh(@)(—ia -V +maf)a () (56)

is the free Hamiltonian of the v, field, and the remaining terms on the
r.h.s. of Eq. (55) are given in equations (33), (35), (52), (45) and (47).

It follows from Eq. (54) that the variables £, (but not v,) are canon-
ical ones, that is &§ are canonically conjugate to &, (while 1, and ]
are not conjugates), and H[¢] (not H[¢]) is a proper Hamiltonian. The
original variables v, are, therefore, no longer of concern for us. That is
why we can (and do) use in final expressions the notation ), for the new
variables, &,.

3.4. Pseudo-scalar, pseudo-vector and tensor interactions

The procedure is, in all respects, similar to the previous cases. Thus we
shall write down only the essential input and output formulas.
The field equations (25), (26) yield the following expressions:

2
5 - Zga {¢a’75a ' Vwa —2i ma¢2’75¢a} ) (57)
a=1

S
Il

~V T +20) Gamatay da, (58)

2
Ga { (V! - @)y + Yiay® (- Vi)

W
[
g

+ 2,01 A x a%} , (59)

2
= % Z Ha {(Vﬁa ~a)ot i, — 1;a‘jwj(a - Viba)
a=1
+imathalB, 0" 1a} + - (60)
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The resulting Lagrangian has the form (44) where terms V,, V, or
V; are equal to Uél), ;1) or Ut(l), respectively, with the time derivatives

of the currents eliminated by means of Eqgs. (57)—(60).

4. Quantization, empty vacuum and two-fermion
state

Equal-time quantization corresponds to the imposition of anticommuta-
tion rules for the fermion fields, namely

{waa(w)7¢gﬂ(y)} = 6ab6aﬂ53(w - y)a a’ab = 172a aaﬂ = 1a "'a47 (61)

and all others vanish. We shall work in the Schrédinger picture thus we
shall omit the time argument ¢ in the expressions for the field and other
operators, that is ¢ (x,t) = ¥ (x), etc. .
Next, we define the unconventional (“empty”) vacuum state |0) by [2—
4|
Yaa(z)|0) =0, (62)

and write the normal-ordered Hamiltonian
H, = /dgx;’H; (63)

where H is defined by Egs. (55), (56), (33), (35), (52), (45), (47) etc.
The normal ordering is achieved by using the anticommutation rules
(61) as usual; but note that it is not identical to the conventional normal
ordering because of the unconventional empty vacuum that is being used,
and the unconventional definition of 1, as annihilation operators and of
! as creation operators. To underscore this unconventional procedure
we use the notation ; H; rather than : H : .

With these stipulations, it follows that one—, two—, three—, ..., N-
Dirac-fermion states form sectors of the Fock space which are closed (i.e.
not coupled) under the action of the Hamiltonian (63). Thus each of
these sectors can serve as a space for the eigenstate problem of (63).

Our first interest is the two-fermion state:

2) = / @B 4%y Foy(, )] (@)1 ()[0), (64)

(summation on a, 3 = 1,...,4 is implied). This is an eigenstate of ; H;
(Eq.(63)), that is
s H;[2) = E2), (65)
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provided that the 4 x 4 eigenmatrix F satisfies the wave equation which
we deduce below.
The action of the free-field part of ; H; on |2) is evident:

S 2) = [yl @)l () (e VatmiB,, o))
(66)
and similarly for ; Hiree; |2).

Let us represent the interaction part of ; H; in integral form. It is
easy to do so by inserting an appropriate number of d—functions and
their derivatives. Then any operator constituting the interaction part of
; H; can be expressed in the following general form:

2 2 2
;0; = ZZ;Oab;:ZZ/d3zd3ud3vd3w

a=1b=1 a=1 b=1
X1f o (2)10} 5 (W) ar (V)05 (0) Oapagys (2, u, v, w) (67

(summation on Greek indices implied). It is easy to show, using the
anticommutation relations (61) and the definitions of the vacuum and
two-fermion states, (62) and (64), that ; O11;|2) =; Oa2;|2) = 0 while

;012;2) = /dgzdgud?’vd3w
1] o (2)1] 5 (1) O120v6 (2, w, v, W) Fys (v, w)[0), (68)

and a similar result for ; O21;|2). Using Eqgs. (63), (55), (56), (33), (35),
(52), (45), (66) and (68) we obtain the following wave equation for the
eigenfunction matrix F(x,y):

{hl (iL’) + h2(y) + Uv(wv y) + Vv(ma y) + Us(wa y)
+Vilz,y)+...— E} F(z,y) =0, (69)

where
ha(®) = —iaq Ve+meBa, a=1,2, (70)
U(x,y) = qg2Gv(r) {1 —ou - ca}, (71)
Ve(@,y) = Vl(@,y) + Vi (2,9), (72)
Vi, y) = 0@ {G(rar-as +rG,(r)(n-ai)(n-az)},  (73)
Vi (®,y) = 3 {(ar- Vi) (az- V) (o - a2)Q(r)

— (a1 - Vg)(ar - a2)Qy(r)(az- V)
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— (a2 Vy)(on - a2)Qv(r)(a1 - Vy)
+ (a1 - a2)Qv(r)(on - Vi) (a2 - Vy)}, (74)
Us(z,y) = 9192Gs(r)B152, (75)
Vs(z,y) = —39192{Qs(7) (71 V) (72 Vy)
+ (71 - Va)Qs(r)(v2 - Vy)
+ (72 Vy)Qs(r)(71 - Va)
+ (V1 Vo) (v2 - Vy)Qs(r)}
= 1919261082 {Qs(r)h1(x)ha(y) + hi(x)he (y)Qs(r)
+ h1(z)Qs(r)h2(y) + ha(y)Qs(r)hi(z)}, (76)
Up(z,y) = §152Gp(r)B177 6275, (77)
Vol@,y) = — 33192975 {Qu(r) (71 - V) (72 - V)
+ (71 Va)@p(r)(v2 - Vy)
+ (72 Vy)Qp(r)(v1 - Va)
+ (71 Va)(v2 - Vy)Qp(r)
+2imy (Qp(r)ys - Vy+v,- VyQp(r))
+2ima (Qp(r)v1 - Vo +72 - Va@p(r))
—4dmimaQp(r)}
= 301927775 8182 {Qp (1) h1 (z)ha(y) + hi(x)ha(y)Qp(r)
+ hi(2)Qp (1) h2(y) + ha(y)Qp(r)ha ()}, (78)
Us(®,y) = @132Ga(r)7)7s {1 — a1 - an}, (79)
Va(®,y) = 10132777 {Ga(r)an - g + rG(r)(n - ar)(n - as)
—2imyBi(oe - n)rGy + 2imafa(ar - n)rGp
— 4mimaB1B2Qp(r)
+ (a1 - Va)(az - Vy)(ar - az)Qa(r)
— (a1 Vg)(ar - a2)Qa(r) (a2 - Vy)
= (az - Vy)(on - a2)Qa(r) (o - Vm)
+ (a1 - 2)Qa(r) (a1 - Va)(az - Vy)l, (80)
Ui(z,y) = L50G(r)p1 6201 o2
= 2x150G(r)fofo{oy - as + 01 - 02}, (81)
Vi(@,y) = —gram{(ar- Va)(ao - Vy)ol" 02, Q(r)

+ (al . V )O'TDO'ZLWQV(T)(O‘Q . Vy)
=+ (a2 . Vy)O’iLDO'2HDQV(T)(a1 . VI)
+ 01702 Qe (r) (a1 - Vi) (a2 - Vy)
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—1im1[B1,01"] (a2 - V)02, Q1 (r)

+ 02 Q1 (r) (2 - V)

—imz[B2, 04"] (a1 - V)01, Qs (1)

+ 01 Q4 (r) (0 - V)

—mima (B2, 01" |[B2; 02, ]Qs (1)}, (82)

r=|r|=|x—y|, n =r/r, and the action of the operators a,, [, and
v, (a =1,2) is defined as follows: a; F = aF, asF = Fa™ etc., where
a, § and v are the standard Dirac matrices.

In the Piotal = 0 ( “rest") reference frame the problem simplifies since
the wave function F'(r) depends only on the relative position vector r.
The corresponding wave equation for F(r) follows from (69)-(82) by the
formal substitution: V, — V,, V, — -V,

The equation (69)-(82) is our main result. It is of sufficient general-
ity so as to describe various systems: two nucleon systems, two quark
systems, and even muonium-like atomic systems. Indeed, this last case
(muonium) corresponds to a purely massless vector interaction (i.e., only

Uy, vl are non-zero, Gy, = —a/r). The partial wave decomposition and
solutions of this equation for the muonium system are given in Ref. [4].

The case of a purely scalar interaction has been investigated by
Childers [19]. Indeed his equation (3.7) corresponds identically to the
present result (76) with Coulombic purely scalar interactions (only Us
and V5 non-zero, with Gs « 1/r and Qs « r, cf. Egs. (29)—(31)). Howev-
er in this paper we give the general form of the potentials for arbitrary
superposition of vector, scalar, pseudovector, pseudoscalar and tensor
interaction, including retardation effects.

Several authors have considered the two-fermion problem with empir-
ical forms of potentials. For example, Brayshaw [23] employs the so-called
minimal coupling form of the scalar confining interaction (31 4+ G2)r (his
Eq. (7) in which the Dirac’s § matrices appear summed rather than as a
product in our case, cf. Us, Eq. (64)). Simenog and Turovsky [24] define
the pseudoscalar potential to be of the form o 51 - @252V, (r), in con-
trast to our result U, = §1G2/3177 B275Gp(r). However, the forms given
in Egs. (69)—(82) of this paper we derived from the underlying quantum
field theory.

5. Concluding remarks

Starting from the classical field model of two fermionic fields interacting
via an arbitrary superposition of any of (pseudo) scalar, vector and ten-
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sor interactions we eliminate the mediating fields by expressing them in
terms of corresponding Green functions and the fermionic source densi-
ties and currents. This “reduced" theory is then quantized.

The characteristic feature of the present approach is that the Hamil-
tonian of the “reduced" theory has exact few-fermion eigenstates, if an
unconventional “empty" vacuum state is used and terms of the Hamilto-
nian that describe the emission and absorption of physical quanta of the
mediating fields are ignored (cf. below Eq. (24)). Thus the two-fermion
problem set up in the present work appears as an eigenstate-eigenenergy
problem. The relativistic wave equations for two fermions, interacting via
an arbitrary superposition of any of (pseudo) scalar, vector and tensor
interactions, are derived.

The lowest order terms describing retardation effect are determined
and retained in the interaction potentials. The retardation corrections
of the scalar interaction agrees with that presented in [19] for the case
of standard massless mediator. This correction contains second-order
derivatives of the wave function while the principal part is of first order.
In general, the same applies to the other interactions. This means that
the retardation corrections should be considered perturbationally, not
within an exact treatment of the eigenstate problem.

It is not obvious whether all derived retardation terms contribute
in the first nontrivial approximation. Indeed, the transverse retardation
term Vb of the vector interaction is quartic in the a-matrices. Thus,
following the estimate a ~ 1/c used in the present work, this term ~
1/¢* would seem to be negligibly small. With the remaining longitudinal
correction Vil equation (69) coincides with the Breit equation [20,21]
(but generalized for the case of arbitrary mediating fields of the vector
type), and without vl it reproduces the Eddington-Gaunt equation [21].

On the other hand, the estimate e ~ 1/¢ originates from the fact
that a has off-diagonal elements only, and mixes small and large com-
ponents of the wave function. The matrices v, v° etc. have the same
property. But products of these matrices mix the components further
and may return the large component to its original place. This suggests
that products of a’s should be estimated as 1 rather than 1/c2. This
ambiguity does not occur within conventional QFT, where operators in
wave equations (such as the Salpeter equation), which contain the Dirac
matrices, are projected onto positive-energy states. Thus powers of off-
diagonal operators vanish. In the present approach (with the “empty"
vacuum) positive- and negative-energy states are mixed together. Thus
products of off-diagonal operators should be suppressed “by hand”, i.e.,
using the estimate o ~ 1/c.
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Breit-type equations have been used recently in hadron and nuclear
physics (see, for example, [19,23,22,24] and Refs. therein). Thus, tak-
ing account of interactions of various relativistic structure, especially
with retardation corrections, as is done in the present paper, may re-
fine results in these fields. The interaction in the present approach is
determined by standard or some effective covariant Green function of
the mediating fields (and by its spin-tensor structure), which may be
phenomenologically defined. Alternatively, one can choose the function
G(r) to be proportional to the nonrelativistic potential. Then the rela-
tion (31) determines the function Q(r) up to an additive constant which
can be chosen on physical grounds.
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