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Спiвiснування фаз в полiдисперснiй рiдинi твердих сфер з

багатьма юкавiвськими потенцiалами

Ю.В. Калюжний, С.П. Глушак

Анотацiя. Запропоновано модель рiдини полiдисперсних твердих
сфер з багатьма юкавiвськими потенцiалами та аналiтично описано
її термодинамiчнi властивостi в високотемпературному наближеннi
та в наближеннi Ван дер Ваальса. Показано, що в обох наближен-
нях модель належить до класу так званих моделей з “заокругленою”
вiльною енергiєю, тобто моделей, термодинамiчнi властивостi яких
(вiльна енергiя, тиск, хiмiчний потенцiал) визначаються скiнченою
кiлькiстю узагальнених моментiв. Скориставшись цiєю властивiстю,
була порахована повна фазова дiаграма з бiнодалями та кривими
спiвiснування точок роси в наближеннi Ван дер Ваальса. Проведено
аналiз та порiвняння отриманих результатiв з вiдповiдними резуль-
татами середньо-сферичного наближення, що дозволило встановити
межу застосовностi наближення Ван дер Ваальса.

Phase coexistence in polydisperse multi-Yukawa hard-sphere

fluid

Yu.V. Kalyuzhnyi, S.P. Hlushak

Abstract. Polydisperse multi-Yukawa hard-sphere fluid model is pro-
posed and analytical description of its thermodynamical properties is
developed using van der Waals (vdW) approximation and high temper-
ature approximation (HTA). It is demonstated that in the frames of
both approximations the model belongs to the class of the “truncatable
free energy models”, i.e. the models with thermodynamical properties
(Helmholtz free energy, pressure, chemical potential) defined by the fi-
nite number of generalized moments. Using this property the complete
phase diagram, including binodal curves and cloud and shadow curves,
is calculated using vdW approximation. Analysis of our results and their
comparison with corresponding results obtained earlier via mean spheri-
cal approximation (MSA) is carried out, which allows us to establish the
limitations of vdW approach in polydisperse case.
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1. Introduction

Using microscopic liquid state theories [1], it has become meanwhile
a standard task to determine phase coexistence in two- or even three-
component fluid mixtures. However, when proceeding to polydisperse liq-
uid mixtures (which can be viewed as a mixture with an infinite number
of components), the situation is considerably more complex [2]; methods
developed up to now to calculate phase diagrams for such systems have
not yet reached the high level of sophistication as in concepts for sys-
tems with a finite number of components. This is the more deplorable
since the (formally) infinite number of components promises a very in-
triguing phase coexistence behavior with possibly new phases and phase
transitions. In addition, phenomena associated to the phase behavior
of polydisperse systems, such as fractionation, are also of technological
relevance.

Most of the concepts currently used to study polydisperse systems
view such a system as a mixture with an infinite number of components,
each of them characterized by a continuous variable ξ, which is distribut-
ed according to a distribution function F (ξ); it should be noted that ξ
can also be a set of variables. The set of concentrations {ci} in a mix-
ture with a finite number of components is replaced by this distribution
function, F (ξ), which is positive and normalized, i.e.,

∫

∞

0
dξ F (ξ) = 1.

F (ξ0)dξ is then the fraction of particles with the parameter ξ located in
an infinite interval of width dξ around ξ0.

The main problem when dealing with the phase behavior in polydis-
perse mixtures is the fact that we are now faced with a formally infinite
number of coexistence equations for the two daughter phases: e.g. the
Helmholtz free energy is now defined in a space of infinite dimensionality,
which makes the task of building the common tangent plane construction
intractable. On the level of the coexistence equations of equal pressure
and chemical potentials of the coexisting phases at fixed temperature T
this means that one has to solve the infinitely many equations

P (1) = P (2) µ(1)(ξ) = µ(2)(ξ) for all ξ. (1)

For a given parent distribution F0(ξ) solution of this set of equations
then leads to the unknown daughter distributions F1(ξ) and F2(ξ) of
the coexisting phases. Solution of this problem for a general system,
where P and the µ(ξ) have to be calculated numerically (with some
suitable liquid state theory) remain up to date yet unsolved. However,
for a few models it is possible to circumvent this problem successfully:
this applies for those systems where the thermodynamic properties can
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be expressed – within a certain liquid state approximation – by a finite
number of generalized moments of the distribution function F (ξ); models
that belong to this class are called ”truncatable free energy models”. In
those cases it is then possible to map the phase equilibrium conditions for
a polydisperse mixture (1) onto a system of coupled non-linear equations
for the corresponding generalized moments of the distribution functions
F (α)(ξ) of the coexisting phases. First steps in these directions were made
with van der Waals (vdW) models [3,4]; indeed results for complete phase
diagrams (i.e. including cloud- and shadow-curves as well as binodals)
could be presented. Recently an attempt to go beyond a vdW model
has been successfully realized [5] and complete two-phase diagram of
the polydisperse one-Yukawa hard-sphere mixture was calculated using
mean spherical approximation (MSA).

In this contribution we extend the vdW theory proposed recently [4]
to the case of polydisperse hard-sphere Yukawa fluid and compare the
numerical results for the complete phase diagram with corresponding
results of the MSA [5]. In addition we consider polydisperse version of
the multi-Yukawa hard-sphere fluid with each coefficient of the Yukawa
potential represented as a sum of arbitrary number of factorized coef-
ficients. It is demonstrated that in the frames of the high temperature
approximation (HTA) this model belongs to the class of the truncat-
able free energy models. The multi-Yukawa version of the model is very
flexible and can be used to successfully represent a large variety of the
realistic potentials, including Lennard-Jones potential [6, 7].

The paper is organized as follows. In the next section we present the
phase equilibrium conditions for the multicomponent system and gener-
alize them for polydisperse case. We outlined here the numerical scheme,
which is similar to that developed earlier [4] and allows one to solve the
corresponding set of equations and calculate the complete two-phase
diagram for truncated free energy models. In Section III muti-Yukawa
multicomponent hard-sphere model is defined and its thermodynami-
cal properties are presented in terms of the generalized moments of the
distribution function using HTA and vdW approximation. Distribution
function is discussed in Section IV and in Section V we present our nu-
merical results for the complete two-phase diagram. Finally in Section
VI we collect our conclusions.

2. Phase equilibrium conditions

In dealing with polydisperse fluids it is convenient to start with the
version of the system with arbitrary but finite number of components
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and on the final step switch all the expressions to polydisperse case.

2.1. Multicomponent case

We consider p-component system with q coexisting phases. Each phase

consists of N
(α)
i particles of species i and occupies the volume V (α),

where the upper index α denote the phase. It is assumed that the total

number of the particles N
(0)
i of species i and total volume V (0) of the

system are held constant, i.e.

V (0) =

q
∑

α=1

V (α) (2)

N
(0)
i =

q
∑

α=1

N
(α)
i , i = 1, . . . , p. (3)

Hereafter the value of the upper index α = 0 denotes the properties of
the mother phase, which under certain conditions can be separated into
q coexisting phases.

Helmholtz free energy A of such system is

A =

q
∑

α=1

A(α)
(

T, V (α),
{

N
(α)
i

})

(4)

where
{

N
(α)
i

}

denotes the set N
(α)
1 , N

(α)
2 , ..., N

(α)
p . At equilibrium the

free energy (4) has its minimum value provided that conditions (2) and
(3) are satisfied. To find the minimum under these restrictions we will
utilize Lagrange multiplier method. We have

Amin =

q
∑

α=1

A(α)
(

T, V (α),
{

N
(α)
i

})

+

q
∑

i=1

λi

(

N
(0)
i −

q
∑

α=1

N
(α)
i

)

+ δ

(

V (0) −
q
∑

α=1

V (α)

)

(5)

where λi and δ are Lagrange multipliers. Minimization of the functions

Amin yield the set of equations for the unknowns λi, δ, N
(α)
i and V (α)

∂Amin

∂N
(β)
i

=
∂A(β)

∂N
(β)
i

− λi = 0, i = 1, . . . , p (6)
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∂Amin

∂V (β)
=

∂A(β)

∂V (β)
− δ = 0 (7)

which finally gives the following phase equilibrium conditions for mul-
ticomponent system

µ
(1)
i

(

T, V (1),
{

N
(1)
i

})

= . . . = µ
(q)
i

(

T, V (q),
{

N
(q)
i

})

, i = 1, . . . , p,

(8)
and

P (1)
(

T, V (1),
{

N
(1)
i

})

= . . . = P (q)
(

T, V (q),
{

N
(q)
i

})

. (9)

where µ
(α)
i is the chemical potential of the particles of species i in the

phase α and P (α) is the pressure of the phase α. Solution of this set
of (p + 1)(q − 1) equations together with the set of p + 1 additional

conditions (2) and (3) will give us (p + 1)q unknowns N
(α)
i , V (α), i =

1, . . . , p, α = 1, . . . , q,. Note, that each phase will differ not only by its
volume, but also by its distribution of the particles of different species.

2.2. Polydisperse case

To extend the phase equilibrium conditions (8) and (9) to the case of
polydisperse system it is more convenient to use instead of the set of

variables V (α) and N
(α)
i the set, which includes the density of the phase

α, ρ(α) = N (α)/V (α), and two types of the fractions, i.e.

x
(α)
i = N

(α)
i /N (α) (10)

x(α) = N (α)/N (0), (11)

where

N (α) =

p
∑

i=1

N
(α)
i . (12)

Now the set of equilibrium conditions (8) and (9) together with ad-
ditional constrains (2) and (3) can be recast in the following form

µ
(1)
i

(

T, ρ(1),
{

x
(1)
i

})

= . . . = µ
(q)
i

(

T, ρ(q),
{

x
(q)
i

})

, (13)

P (1)
(

T, ρ(1),
{

x
(1)
i

})

= . . . = P (q)
(

T, ρ(q),
{

x
(q)
i

})

, (14)
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v(0) =

q
∑

α=1

v(α)x(α), (15)

x
(0)
i =

q
∑

α=1

x
(α)
i x(α), (16)

with the fractions x
(α)
i satisfying the following normalizing condition

p
∑

i=1

x
(α)
i = 1, (17)

where v(0) = 1/ρ(0) and v(α) = 1/ρ(α).
Now extension of the phase equilibrium conditions to the case of

polydisperse system is straightforward and can be achieved by switching
from discrete species index i to its continuous counterpart ξ via the
following substitution rule [8]

xi → F (ξ) dξ, (18)

with F (ξ) being a positive distribution function normalized to 1. It
should be pointed out that ξ can be multidimensional. Due to this sub-
stitution, summations over i in (13)-(17) become integrations over ξ and
thermodynamic properties become functionals of the distribution func-
tion F (ξ), which we will indicate by the square brackets. We have

µ(1)
(

ξ, T, ρ(1),
[

F (1) (ξ)
])

= . . . = µ(q)
(

ξ, T, ρ(q),
[

F (q) (ξ)
])

, (19)

P (1)
(

T, ρ(1),
[

F (1) (ξ)
])

= . . . = P (q)
(

T, ρ(q),
[

F (q) (ξ)
])

. (20)

v(0) =

q
∑

α=1

v(α)x(α), (21)

F (0) (ξ) =

q
∑

α=1

F (α) (ξ)x(α), (22)

∫

F (α) (ξ) dξ = 1. (23)

Formally the set of relations (19)-(23) form a closed set of equations
for the unknowns ρ(α), x(α) and F (α) (ξ), which can be solved as soon
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as expressions for the thermodynamical properties of the corresponding
polydisperse system at hand will be available.

At present this problem seems to be solvable only for the so-called
truncatable free energy models, i.e. these models, for which thermody-
namic properties can be represented by a finite number of (generalized)
moments of the distribution function F (ξ).

2.3. Two-phase equilibrium conditions for the free energy trun-

catable models

In this section we will consider two-phase equilibrium conditions special-
ized to the case of truncatable free energy models. In our consideration
we will follow the general scheme developed by Bellier-Castella et al. [4].
We assume that thermodynamical properties of the model depends on
K + 1 generalized moments m0, m1, ..., mK , which are defined as follows

ml = ρ

∫

dξ ml(ξ) F (ξ) , l 6= 0 (24)

and m0 = ρ.
Now the set of the conditions (19)– (23) takes the following form

µ(1)
(

ξ, T,
{

m(1)
})

= µ(2)
(

ξ, T,
{

m(2)
})

, (25)

P (1)
(

T,
{

m(1)
})

= P (2)
(

T,
{

m(2)
})

. (26)

ρ(2)F (2)(ξ) =
ρ(1) − ρ(2)

ρ(1) − ρ(0)
ρ(0)F (0)(ξ) +

ρ(2) − ρ(0)

ρ(1) − ρ(0)
ρ(1)F (1)(ξ), (27)

∫

F (α) (ξ) dξ = 1. (28)

where
{

m(α)
}

denotes the set m
(α)
0 , m

(α)
1 , ..., m

(α)
K .

Condition on the equality of the chemical potentials in two phases
(25) can be written in terms of the excess values of the chemical poten-

tials µ
(α)
ex

ln

(

F (1) (ξ) ρ(1)

F (2) (ξ) ρ(2)

)

= ∆µex

(

ξ, T,
{

m(1)
}

,
{

m(2)
})

, (29)

where

∆µex

(

ξ, T,
{

m(1)
}

,
{

m(2)
})

=

= µ(2)
ex

(

ξ, T,
{

m(2)
})

− µ(1)
ex

(

ξ, T,
{

m(1)
})

. (30)
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This allows us to relate distribution functions F (α)(ξ) in the two different
phases

F (1) (ξ) = F (2) (ξ)A12

(

ξ, T,
{

m(1)
}{

m(2)
})

, (31)

where

A12

(

ξ, T,
{

m(1)
}{

m(2)
})

=
ρ(2)

ρ(1)
exp

[

∆µex

(

ξ, T,
{

m(1)
}{

m(2)
})]

,

(32)
Taking into account (27), (31) and definition (24) we get

F (1) (ξ) = F (0) (ξ)H
(

ξ, T, m
(2)
0 ,
{

m(1)
}{

m(0)
})

, (33)

m
(2)
k =

ρ(1) − ρ(2)

ρ(1) − ρ(0)
m

(0)
k +

ρ(2) − ρ(0)

ρ(1) − ρ(0)
m

(1)
k , (34)

where

H
(

ξ, T, m
(2)
0 ,
{

m(1)
}{

m(0)
})

= (35)

(

ρ(1) − ρ(2)
)

A12

(

ξ, T, m
(2)
0 ,
{

m(1)
}{

m(0)
}

)

(

ρ(2)ρ(1)

ρ(0) − ρ(2)
)

+
(

ρ(1) − ρ(2)ρ(1)

ρ(0)

)

A12

(

ξ, T, m
(2)
0 ,
{

m(1)
}{

m(0)
}

) .

Note that H and A12 depend on the all moments of the phases 0 and 1
and only on the zero moment (density) of the phase 2, since all the rest
of the moments of the second phase are connected to the moments of
the phases 0 and 1 via relation (34)

Now the set of equations (25) and (26) can be solved in terms of
the moments of coexisting phases. The corresponding set of equations
follows from the definition (24)

m
(1)
k = m

(1)
0

∫

dξm
(1)
k (ξ)F (0) (ξ)H

(

ξ, T, m
(2)
0 ,
{

m(1)
}{

m(0)
})

(36)

where k = 1, 2, ..., K. Equation (36) together with the equation for the
equality of the pressure in both phases

P (1)
(

ξ, T,
{

m(1)
}{

m(0)
})

= P (2)
(

ξ, T, m
(2)
0 ,
{

m(1)
}{

m(0)
})

(37)

and normalizing condition (28) for either α = 1 or α = 2 form a closed set

of equations for K+2 unknowns
{

m(1)
}

, m
(2)
0 . Thus solution of the set of

equations (28), (36), (37) for a given temperature T , density of the parent
phase ρ(0), and parent distribution function F (0)(ξ) gives the coexisting

ICMP–04–10E 8

densities ρ(α) of the two daughter phases and corresponding distribution
functions F (α)(ξ), α = 1, 2. The coexistence densities for different tem-
peratures fix binodals, which are terminated at a temperature for which
the density of one of the phases is equal to the density ρ(0) of the par-
ent phase; these termination points form the so-called cloud and shadow
curves which thus represent an envelope for the binodals. Cloud and
shadow curves intersect at the critical point, which is characterized by
the critical temperature Tcr and critical density ρcr = ρ(1) = ρ(2) = ρ(0).
Thus only for ρ(0) = ρcr the two branches of the binodal meet at the
critical point.

By definition, states located on the cloud curve are characterized
that they coexist with a state (localized on the shadow curve) where an
infinitely small amount of the other phase emerges. Thus the cloud and
shadow curves can be obtained as special solutions of the general phase
coexistence problem, when the properties of one phase are equal to the
properties of the parent phase: assuming, e.g., the second phase to be the
cloud phase, i.e. ρ(2) = ρ(0), and following the scheme presented above
we will end up with the same set of equations, (28), (36), (37), but with
ρ(2) and F (2)(ξ) substituted by ρ(0) and F (0)(ξ), respectively. Note that
F (2)(ξ) = F (0)(ξ) is now known, but ρ(0) is unknown; it is obtained from
the solution of the appropriately modified set of equations (28), (36),
(37).

3. Thermodynamical properties of the multi-Yukawa

hard-sphere fluid

Let us assume that interparticle interaction in the system is represented
by the multi-Yukawa hard-sphere potential

Vij (r) =

{∞, for r ≤ σij ,

− 1
r

∑

n

∑

m A
(nm)
i A

(nm)
j e−zn(r−σij) for r > σij ,

(38)

where σij = (σi+σj)/2 and σi is the hard-sphere diameter of the particle
of species i.

The form assumed for the pair potential is very flexible and it is
possible to model a large variety of the realistic potentials by appropriate
choice for the coefficients Anm

i and zn [6, 7].
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3.1. High temperature approximation

The high temperature approximation (HTA), applied in this study, will
be derived using Gibbs-Bogoliubov inequality [1]. We start with the def-
inition of the Helmholtz free energy A

−βA = ln

∫

dΓe−βH(Γ), (39)

where β = 1
kbT

and H(Γ) is the system Hamiltonian defined on a phase
space Γ. Let us assume, that the Hamiltonian of the corresponding refer-
ence system is H0(Γ). Subtracting the free energy of the reference system
A0 from the free energy (39) we have

−β (A − A0) = ln

∫

dΓe−β(H(Γ)−H0(Γ))e−βH0(Γ)

∫

dΓe−βH0(Γ)
= ln

〈

e−β(H−H0)
〉

0
,

(40)
where

〈. . .〉0 = ln

∫

dΓ (. . . ) e−βH0(Γ)

∫

dΓe−βH0(Γ)
. (41)

Taking into account the convexity property of the logarithm it can be
proved that

ln
〈

e−β(H−H0)
〉

0
≥
〈

ln e−β(H−H0)
〉

0
, (42)

which gives Gibbs-Bogoliubov inequality

A − A0 ≤ 〈(H − H0)〉0 . (43)

Using the hard-sphere system as a reference system and choosing the
upper limit of this inequality the HTA is recovered

βA

V
=

βAHS

V
+

1

2
β
∑

i

∑

j

ρiρj

∫

d~r4πr2Vij (r) gHS
ij (r). (44)

where gHS
ij (r) is the hard-sphere radial distribution function. Substitut-

ing into (44) expression for the pair potential (38) we have

βA

V
=

βAHS

V
− 2πβ

∑

i

∑

j

ρiρj

∑

n

∑

m

A
(nm)
i A

(nm)
j G̃HS

ij (zn) . (45)

where G̃HS
ij (zn) is the Laplace transform of hard-sphere radial distribu-

tion function

G̃
(HS)
ij (zn) = eznσij

∫

drre−znrg
(HS)
ij (r). (46)
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We will be using here Percus-Yewick approximation for hard-sphere radi-
al distribution function, since analytical expression for its Laplace trans-
form is known [9, 10]

G̃
(HS)
ij (zn) =

∆

z2
nD̃

(n)
0

{

zn

[

σij + σiσj

π

4∆
m2

]

+ 1 +
π

2∆
m3+

+
πzn

2∆

(

m
(n)
2 − 2σijm

(n)
1 + σiσjm

(n)
0

)}

, (47)

where

D̃
(n)
0 = ∆2 − 2π

zn

(

∆ +
1

2
πm3

)(

m
(n)
0 +

1

2
m2

)

−

−2π

{

∆m
(n)
1 +

1

4
π

[

m
(n)
2

(

m2 + 2m
(n)
0

)

− 2
(

m
(n)
1

)2
]}

, (48)

ml =
∑

k

ρkml(k); ml(k) = σl
k, (49)

m
(n)
l =

∑

k

ρkm
(n)
l (k); m

(n)
l (k) = σl

kϕ (zn, σk) , (50)

∆ = 1 − πm3/6, (51)

ϕ (zn, σ) =
1

z2
n

(

1 − znσ − e−znσ
)

(52)

To extend the expressions for thermodynamical properties for poly-
disperse case it is convenient to represent expression for Helmholtz free
energy (45) in terms of the moments. Introducing in addition to already

existing moments ml and m
(n)
l one more

m
(nm)
l =

∑

k

ρkm
(nm)
l (k); m

(nm)
l (k) = σl

kA
(nm)
k , (53)

we have
βA

V
=

βAHS

V
− 2πβ

∑

n,m

Q
(nm)
0

z2
nD̃

(n)
0

(54)

where

Q
(nm)
0 = zn

π

2

(m2

2
+ m

(n)
0

)

m
(nm)
1 m

(nm)
1 +

+ zn

(

∆ − πm
(n)
1

)

m
(nm)
0 m

(nm)
1 +

+
(

∆ +
π

2
m3 +

πzn

2
m

(n)
2

)

m
(nm)
0 m

(nm)
0 . (55)
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Differentiating expression for Helmholtz free energy (54) with respect
to the density we will have the following expression for the chemical
potential

βµk =
∂

∂ρk

(

βA

V

)

=

βµ
(HS)
k − 2πβ

∑

n,m

1

z2
nD̃

(n)
0

(

∂Q
(nm)
0

∂ρk

− Q
(nm)
0

z2
nD̃

(n)
0

∂D̃
(n)
0

∂ρk

)

(56)

where

∂Q
(nm)
0

∂ρk

= −zn

(π

6
m3 (k) + πm

(n)
1 (k)

)

m
(nm)
1 m

(nm)
0 +

+ zn

(

∆ − πm
(n)
1

)(

m
(nm)
0 m

(nm)
1 (k) + m

(nm)
0 (k)m

(nm)
1

)

+

+ zn

π

4

(

m2 (k) + 2m
(n)
0 (k)

)

m
(nm)
1 m

(nm)
1 +

+ zn

π

2

(

m2 + 2m
(n)
0

)

m
(nm)
1 m

(nm)
1 (k) +

+
(π

3
m3 (k) +

znπ

2
m

(n)
2 (k)

)

m
(nm)
0 m

(nm)
0 +

+ 2
(

∆ +
π

2
m3 +

znπ

2
m

(n)
2

)

m
(nm)
0 m

(nm)
0 (k) (57)

1

2π

∂D̃
(n)
0

∂ρk

=
1

3
πm3(k)

[

1

2
m

(n)
1 − 1

zn

(

m
(n)
0 +

1

2
m2

)]

− ∆

(

1

6
m3(k) + m

(n)
1 (k)

)

(58)

−
(

1

2
m2(k) + m

(n)
0 (k)

)[

1

zn

(

∆ +
1

2
πm3

)

+
1

2
πm

(n)
2

]

− 1

4
πm

(n)
2 (k)

(

m2 + 2m
(n)
0

)

+ πm
(n)
1 m

(n)
1 (k).

The pressure P of the system can be calculated invoking the following
general relation

βP = β
∑

k

ρkµk − βA

V
(59)

Here µHS,k and PHS are the hard-sphere chemical potential and
pressure, which in this study is represented by the Mansoori-Carnahan-
Starling-Leland approximation [11]
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µHS,k = µid,k + µex
HS,k, (60)

where

βµex
HS,k =

βAex
cs

N
+

(

m2

m3

)2 [

3σ2
k − m2

m0m3

(

m3 + 2m0σ
3
k

)

]

ln ∆ −

−πσk

2∆

[

1

3

(

m3
2

m0m2
3

− 1

)

σ2
km0 − m2 − σkm1

]

−

−πm2m1

2m0∆2

(

∆ − π

6
σ3

km0

)

+
πσ2

km2
2

2m3∆2
+ (61)

+
πm3

2

6m2
3m0∆

[

∆
(

σ3
km0 + m3

)

− π

3
m3m0σ

3
k

]

and

βAex
cs

N
=

(

m3
2

m0m2
3

− 1

)

ln ∆ +
π

2∆

m2

m0

(

m1 +
1

3

m2
2

m3∆

)

. (62)

βPHS =
1

∆

[

m0 +
π

2∆
m1m2 +

π2

12∆2
m3

2 −
π3

216∆2
m3

2m3

]

(63)

Expressions for thermodynamical properties (54)-(63) are written in
terms of the moments (49)-(53) and their extension to the polydisperse
case is straightforward. This goal can be achieved by substituting all
the sums with respect to the discrete species index k by integration
with respect to the multidimensional species index ξ = (σ, {Anm}). Here
{

A(nm)
}

represent the set of all coefficients of the Yukawa potential (38).
Now for the moments (49)-(53) and for the pressure expression (59) we
have

ml = ρ

∫

dξ ml(ξ)F (ξ),

m
(n)
l = ρ

∫

dξ m
(n)
l (ξ)F (ξ),

m
(nm)
l = ρ

∫

dξ m
(nm)
l (ξ)F (ξ) (64)

and

P = ρ

∫

dξ µ(ξ)F (ξ) − A

V
, (65)
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where
ml(ξ) = σl

m
(n)
l (ξ) = σlϕ1(zn, σ)

m
(nm)
l (ξ) = σlA(nm) (66)

One can see, that our multi-Yukawa hard-sphere system treated in
the HTA belongs to the class of truncatable free energy model. Thus the
formalism developed in the previous section can be used to predict the
phase diagrams of the polydisperse version of the model.

3.2. van der Waals approximation

van der Waals approximation can be obtained using Bogoliubov inequali-
ty with the following radial distribution function for the reference system

gij = Θ (r − σij) , (67)

which gives

∫

drre−srgij (r) =

(

σij

zn

+
1

z2
n

)

e−znσij . (68)

Now we have

f = fR − 2π
∑

i

∑

j

∑

n

∑

m

ρiρjA
(nm)
i A

(nm)
j

(

σij

zn

+
1

z2
n

)

=

= fR − 2π
∑

n

∑

m

(

m
(nm)
1 m

(nm)
0

zn

+
m

(nm)
0 m

(nm)
0

z2
n

)

, (69)

where

fR = kbT
∑

i

ρi

{

ln Λ3
i ρi − ln ∆ − 1

}

. (70)

Similarly for the chemical potentials and pressure we obtain

µk = µR,k − 4π
∑

n

∑

m

A
(nm)
k

(

m
(nm)
1 + σkm

(nm)
0

2zn

+
m

(nm)
0

z2
n

)

, (71)

P = PR − 2π
∑

n

∑

m

(

m
(nm)
1 m

(nm)
0

zn

+
m

(nm)
0 m

(nm)
0

z2
n

)

, (72)
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where

µR,i = kbT

{

ln Λ3
i ρi − ln ∆ +

πm0σ
3
i

6∆

}

, (73)

PR = kbT
m0

∆
. (74)

4. The distribution

To illustrate the theory developed above in this study we choose the
simplest one-Yukawa version of the model. This version have been stud-
ied previously [5] using mean spherical approximation (MSA). According

to our choice all the coefficients A
(nm)
i are equal zero, except A

(11)
i , i.e.

A
(11)
i = Zi/

√
ε0σ0. We will be using here van der Waals approximation

and compare its results with results of more advanced MSA.
For the sake of simplicity we have chosen the distribution F (σ, Z),

which strongly correlate the size σ and the ’charge’ parameter Z of the
particles

F (σ, Z) = f(σ)δ

(

Z − Z0
σ2

〈σ2〉

)

. (75)

This choice states that the charge is proportional to the surface of the
particles. For f(σ) we have chosen the Beta-distribution, given by

f(σ) = B−1(α, β)

(

σ

σm

)α−1(

1 − σ

σm

)β−1

Θ(σm − σ)Θ(σ) (76)

Here B(α, β) is the beta function [12], α and β are related to the first
(σ0 = 〈σ〉) and the second (〈σ2〉) moments of f(σ) by

α =
σm − σ0 (1 + Dσ)

σmDσ

; β =

(

σm − σ0

σ0

)

α (77)

with Dσ = 〈σ2〉/σ2
0 − 1.

5. Results and discussion

We now present results for the phase diagram of a system, which is char-
acterized by a mother distribution function f0(σ) represented by the
Beta-distribution (76) with Dσ = 0.02 and σm = 2σ0. The screening
length of the Yukawa potential was chosen to be zσ0 = 1.8. In what
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follows the temperature T and density ρ of the system will be repre-
sented by the dimensionless quantities T ? = kT/(ε0Z

2
0) and ρ? = ρσ3

0 ,
respectively.

In Figures 1 and 2 we show the phase diagram of the system in the
(T ?, ρ?)-plane obtained using MSA (Figure 1) and vdW approximation
(Figure 2): they contain the cloud- and the shadow-curves, the critical
binodals (see below) and in Figure 1 binodal for one selected ρ?

0-value
(ρ?

0 = 0.03). For the critical point MSA gives T ?
cr = 1.343 and ρ?

cr =
0.3527. Parameters of the critical point, which follow from vdW are
T ?

cr = 3.195 and ρ?
cr = 0.615. For reference we have added the phase

coexistence curve for a one component system (’oc’), treated as well in
the MSA and vdW, characterized by a diameter σoc = σ0 and a ’charge’
parameter Zoc = Z0; for this system we extract (via extrapolation) the
critical point to be located at T ?

cr;oc = 1.2373 and ρ?
cr;oc = 0.32 in the

case of the MSA and T ?
cr;oc = 3.075 and ρ?

cr;oc = 2/π ≈ 0.6366 in the
case of vdW.

Quantitative predictions of the both theories for the critical point
and overall position of the phase equilibrium curves are quite different,
however there is certain degree of the qualitative similarity. This can be
seen in Figure 3, where predictions of both MSA and vdW is plotted in
the (T ?/T ?

cr, ρ
?/ρ?

cr) plane. The shape of the cloud and shadow curves
are rather similar and the critical binodals almost coincide.

A more specific information about the composition of the coexisting
phases can be extracted from the distribution functions of the two daugh-
ter phases, which give evidence of possible fractionation effects. For the
two selected pairs of points on the phase coexistence curves (C1, C2 and
E1, E2) at T ?/T ?

cr = 0.67 (Figure 3) the daughter distribution functions,
f1(σ) and f2(σ), along with the mother distribution function, f0(σ), are
shown in Figures 4 and 5, respectively. Points C1 and C2 are localized on
the critical binodal (ρ? = ρ?

cr): while the particles of the fluid phase have
– on the average – nearly the same size as in the homogeneous mother
phase, the particles in the gas phase are on the average smaller; MSA
predict slightly stronger shift in the direction of the smaller particles.
Points E1 and E2 are localized on the cloud- and and on the shadow-
curve: by definition f1(σ) = f0(σ) and we find a remarkable shift of
the maximum of f2(σ) towards larger particles in the case of the MSA
predictions and much smaller shift in the case of vdW predictions.
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ρ∗

T ∗

shadowcloud

C2C1 A2A1

E2E1

0.80.60.40.20

1.4

1.3

1.2

1.1

1

0.9

Figure 1. MSA phase diagram. Cloud- and shadow-curves are represented
by the solid lines, binodal curves by the broken lines connecting the
points, which mark the density of the corresponding mother phase, i.e.
ρ∗0 = 0.03 (A1- - -A2), ρ∗0 = ρ∗c = 0.3527 (C1- - -C2); the dash-dotted
line denotes the binodal curve for the monodisperse HSY system. Here
T ∗

cr = 1.343 and ρ∗cr = 0.3527.
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ρ∗

T ∗

shadow

cloud

1.210.80.60.40.20

3.25

3

2.75

2.5

2.25

Figure 2. vdW phase diagram. Notation is the same as in figure 1.
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ρ∗/ρ∗cr

T ∗/T ∗

cr

shadowcloud

C2C1

E2E1

21.61.20.80.40

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

Figure 3. Comparison of the MSA (solid lines) and vdW (broken lines)
predictions for the phase diagram (T ∗/T ∗

cr vs ρ∗/ρ∗cr) of polydisperse
HSY fluid.



19 Препринт

σ/σ0

f(σ)

f0(σ)

f2(σ)

f1(σ)

21.81.61.41.210.80.60.4

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 4. Mother [f0(σ)] and daughter [f1(σ) and f2(σ)] MSA (solid
lines) and vdW (broken lines) distribution functions investigated for
points C1 and C2.
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σ/σ0

f(σ)

f2(σ)

f1(σ) = f0(σ)

21.81.61.41.210.80.60.4

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 5. As Figure 4 for points E1 and E2.

6. Conclusions

(i) In the frames of the HTA description polydisperse mixture of multi-
Yukawa hard-sphere fluids belongs to the class of ’truncatable free en-
ergy’ models, i.e. thermodynamic functions required to calculate phase
equilibria can be expressed by a finite number of generalized moments.
As a consequence we could map the coexistence relations that are par-
ticularly complex for polydisperse systems onto a coupled set of highly
non-linear equations for the unknown moments of the daughter distri-
bution functions.

(ii) vdW approach and MSA theory give rather different quantitative
predictions for the phase diagram and fractionation effects of polydis-
perse one-Yukawa hard-sphere fluid. However both theories give similar
qualitative description of the phase diagram and cloud-shadow curves in
terms of the reduced temperature T ∗/T ∗

cr and density ρ∗/ρ∗cr.
(iii) Fractionation effects become more pronounced with the decrease
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of the temperature and/or decrease of the mother phase density. For the
model at hand:

(a) the average size of the particles in the fluid phase is larger than
in the gas phase;

(b) the width of both daughter phases distribution functions is small-
er than that of the mother phase.
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