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IarepdepeHilisi cni3HEHNX €JIEKTPOMarHeTHUX XBUJIb,
reHepoBaHUX JBOMAa TOYKOBO-MOAIOHUMU A2KepesamMu

1O.T". dpemko

Amnoranist. O6unciieno 4-BeKTOp €HEpril-iMITy/ibCy, KWl MEPEHOCUTH
€JIEKTpPOMATrHeTHEe TI0JIe JIBOX TOYKOBHUX 3apsiB. Emepris Ta iMmmysbc,
3reHepOBaHi yciMa TOYKaMM CBITOBHX JIHINT YACTHMHOK aXK JI0 MOMEHTY,
KOJIV BOHH [IePeTHHAIOTH “IJIOMHUHY criocTepexkenns’ y° = ¢, posmeneni
Ha “OpuvacTUHKOBI’ Ta pajiarmiiiui commonenTn. BusgBuioch, 1mo paJiis-
nifHa 9aCTHUHA €Heprii-iIMITy/IbCy eJIeKTPOMATHETHOTO MOJs MiCTUTD, OK-
pim JIapMOpPIBCHKUX JIOJTAHKIB, TAKOXK CyMapHY POOOTY IO TePEMINTEHHIO
B3a€MO/III0YNX 3apsA/1iB, BUKOHaHy cuiamu Jlopenna. Tum camum mokasa-
HO, 110 iHTepdepeHIlis eJeKTPOMATHETHUX XBHJIb (CIII3HEHUX PO3B’3KiB
Jlienapa-Bixepra) Besie 10 B3aeMozil MizK 3apsIamu.

Interference of outgoing electromagnetic waves
generated by two point-like sources

Yu.Yaremko

Abstract. An energy-momentum carried by electromagnetic field pro-
duced by two point-like charged particles is calculated. Integration region
considered in the evaluation of the bound and emitted quantities pro-
duced by all points of world lines up to the end points at which particles’
trajectories puncture an observation hyperplane y° = t. Radiative part
of the energy-momentum contains, apart from usual integrals of Larmor
terms, also the sum of work done by Lorentz forces of point-like charges
acting on one another. Therefore, that the combination of wave motions
(retarded Liénard-Wiechert solutions) leads to the interaction between
the sources.
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1. Introduction

We consider a closed system of two point electric charges and their elec-
tromagnetic field. A charge e, produces an electromagnetic vector po-
tential AS that satisfies the wave equation

OA = —4rjo (1.1)

together with the Lorentz gauge condition 9,A% = 0. The vector j$
is the charge’s current density which is zero everywhere, except at the
particle’s position it is infinite. For concreteness we imagine that the
particles are asymptotically free in the remote past.

The dynamics of electromagnetic field is governed by Maxwell equa-
tions with point-like sources. The action of the field of one source on
another is described by Lorentz force. The evolution of a-th particle is
determinated by the relativistic generalization of Newton’s second law
where loss of energy due to radiation is taken into account.

The dynamics of the entire system is governed by the action

S = az:(—ma/dTa\/WjLea/dTaszg) (1.2)
1
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where fu, = >, (04Aay — 0y Aq). (a-th point particle carries electric
charge e, and moves on a world line ¢, described by functions z¥(7,), in
which 7, is an evolution parameter; 2 := dz"/dr,.) Variation on field
variables AS yields the Maxwell equations. Liénard-Wiechert fields are
the solutions of Maxwell equations with point-like sources.

Since the field fo v = 0uAa,, — 0v A4, generated by a-th source
has a singularity on its world line, demanding that the total action (1.2)
be stationary under a variation §z#(7,) of the world line does not give
sensible motion equations. To make sense of the retarded field’s action on
the particle we should perform the so-called renormalization procedure.
It involves manipulation of the divergent self-energy of a point charge.
As usual, the infinite Coulomb-like term is linked with the “bare” mass
Mg, SO that the renormalized mass of particle is considered to be finite.

The principle of least action (1.2) is invariant under ten infinitesi-
mal transformations which constitute the Poincaré group. According to
Noether’s theorem, these symmetry properties imply conservation laws,
i.e. those quantities that do not change with time. In his classical pa-
per [1], Dirac used retarded Liénard-Wiechert solution in the law of
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Figure 1. The regularization procedure can be performed in two different
ways: (i) one when Green’s functions are used in variational equations
of motion; (ii) the other when wave solutions are substituted for field
variables in Noether conservation laws.

conservation of the total four-momentum of a composite (one particle
plus field, its own and external) system. It provides the foundation for
his derivation of the radiation-reaction force. Lopez and Villarroel [2]
substitute the retarded Liénard-Wiechert field in the angular momen-
tum conserved quantity which arises from the invariance of the system
under space rotations and Lorentz transformations. The authors arrive
at the angular momentum balance equations which is consistent with
the Lorentz-Dirac equation.

To find out Noether quantities G2, carried by electromagnetic field
we integrate the Maxwell stress-energy tensor and angular momentum
tensor density over a space-like three-surface [3-6]. We obtain terms
of two quite different types: (i) bound, Gy, ,, which are permanently
“attached” to the sources and carried along with them; (ii) radiative,
G ;» which detach themselves from the charges and lead independent
existence (see Fig.2). Within regularization procedure the bound terms
are coupled with energy-momentum and angular momentum of “bare”

sources, so that already renormalized characteristics G}, of charged
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Figure 2. The bound term Gf,; and the radiative term G, ; constitute
Noether quantity G¢,, carried by electromagnetic field. The former di-
verges while the latter is finite. Bound component depends on instant
characteristics of charged particles while the radiative one is accumulat-
ed with time. The form of the bound term heavily depends on choosing
of an integration surface ¥ while the radiative term does not depend on
3.

particles are proclaimed to be finite. Noether quantities which are prop-
erly conserved become:

G Ggart + G?ad' (1 3)

Recently [4] a frontal collision of two asymptotically free charges has
been considered. We have calculated how much electromagnetic field
momentum and angular momentum flow across hyperplane 3; = {y €
My : y° = t}. The crucial issue is that the Maxwell energy-momentum
tensor density of entire system

ATTH = fRAFY 5 — 1 /4 F52 frox (1.4)

is the sum of individual “one-particle” densities and an “interference”
term:

T =Ty + Ty + T - (1.5)

int *

An intrigue feature is that the radiative contribution from the combina-
tion of the retarded Liénard-Wiechert fields

ARTL = ) fegn + S s — 14 (J D + 1Y) (16)
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is then nothing but the sum of work done by Lorentz forces of point-like
charges acting on one another. Therefore, an interference of outgoing
electromagnetic waves in an observation hyperplane ¥ leads to the in-
teraction between the collided sources. (The differentiation of energy-
momentum conserved quantity gives the relativistic generalization of
Newton’s second law [5].) This observation gives us an alternative in-
terpretation for the label “int”: it stands for “interaction” as well as “in-
terference”.

In this paper we study a closed system of two arbitrarily moving
point-like charges which are asymptotically free in the remote past. The
expressions for work done by (retarded) Lorentz forces will be obtained
via the rigorous integration of interference parts (1.6) of energy and
momentum densities (1.5) over three-dimensional hyperplane ¥;.

2. Preliminaries

We choose metric tensor 7,, = diag(—1,1,1,1) for Minkowski space
My,. We use Heaviside-Lorentz system of units with the velocity of light
¢ = 1. Summation over repeated indices is understood throughout the
paper; Greek indices run from 0 to 3, and Latin indices from 1 to 3. The
particles’ coordinates, velocities etc are labelled a or b.

We consider an arbitrarily moving particles which are asymptotically
free in the remote past. Average velocities are not large enough to initiate
particle creation and annihilation.

We suppose that the components of momentum four-vector carried
by electromagnetic field of particles are [7]

Pem (t) = P/ do, TH (2.1)
Do
where do, is the vectorial surface element on a observation hyperplane
¥ = {y € My : y° = t}. Particles’ world lines

Ga + R—My
t— (t, 2L (1)) (2.2)

are meant as local sections of trivial bundle (Mg, ¢, R) where the projec-
tion

i : My—R
v’ y") —y° (2.3)

defines the instant form of dynamics [8].
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By T"" we denote the components of the Maxwell energy-momentum
density (1.4) where field strengths f# are the sum of the retarded
Liénard-Wiechert solutions f(“l'; and f(’;'; associated with the first and
second particles, respectively. So, the total electromagnetic field stress-
energy tensor (1.4) becomes the sum (1.5) where the T(‘; '; term is given
by the expression (1.4) where “total” field strengths f*” are replaced by
“individual” ones f(‘; ”) The interference term (1.6) describes the combi-
nation of the outgoing electromagnetic waves.

The components T#" have singularities on particles’ trajectories. In
equations (2.1) capital letter P denotes the principal value of the singu-
lar integral, defined by removing from 3; an ,-sphere around the a-th
particle and then passing to the limit ¢, — 0.

3. “Interference” coordinate system

The main goal of the present paper is to compute the interference parts
of Poincaré group conserved quantities carried by radiation. To perform
the volume integration an appropriate coordinate system for flat space-
time is necessary.

3.1. Local expressions

The interference terms of energy-momentum and angular momentum at
point y € My depend on the state of the charges’ motion at the instants
t; and to at which their world lines intersect the past light cone (see
Fig.3). Coordinates of an observation point y are given by

Yo = zg(ta) + K (3.1)

where K¢ is the null vector pointing from z,(t,) € (, to y. Our next task
is to find out local expressions for the “light-cone mapping” [9] pictured
in Fig.3. We generalise coordinate system presented in [4] where a frontal
collision is considered.

The set of curvilinear coordinates contains the “laboratory” time ¢ as
well as both the “retarded” times ¢; and t5. The “laboratory” is a single
common parameter defined along all the world lines of the system. To
find out local expressions for the components of null-vectors K; and
K5 we consider an interference of outgoing electromagnetic waves in
hyperplane ¥; (see Fig.4). By this we mean the intersection of spherical
fronts S1(01,t — t1) and S2(Oa,t — t2) pictured in Fig.4. It is the circle
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Figure 3. The past light cone with vertex at point y € ¥; is punctured
by the world lines of the 1-st particle and the 2-nd particle at points
z1(t1) and z2(t2), respectively. The vector K¢ is a null vector pointing
from z,4(tq) = (ta, 2% (ts)) to y.

C(O, h) centred at point

(t1 — t2)(2t — 1 — L)
2¢>

1
7= 3 [Z1(t1) +zo(te)| + z1(t1) — z2(t2)|. (3.2)
Since |O10| = |Z — z1| and |OO3| = |Z — 25|, the square of the radius h
of the circle can be expressed in the following alternative ways:

h? = (t—1t1)% —|Z -z
= (t — t2)2 — |Z — Z2|2. (33)

The characteristics of the circle are obtained from analysis of the triangle
OlogH with sides |01H| = t—tl, |02H| = t—tg, and |0102| = |Z1(t1)—
z2(t2)| == ¢.

To define the coordinates of the points of the circle we translate the
origin at the centre (3.2) of the circle C(O, h) and then rotate space axes




7 IIpenpunT

O

0N 0 /

G G

Figure 4. The sphere S1(O1,t — t1) is the intersection of the future light
cone with vertex at point z1(t1) € (; and hyperplane ;. The sphere
S2(Og,t — to) is the intersection of ¥; and the forward light cone of
z9(t2) € Co. Intersection S1 NSy is the circle C(O, h) with radius |OH| :=
h. It contains an observation point y € 3; (see Fig.3).

till new z-axis be directed along three-vector q := z; — z2 (see Fig.5).
Orthogonal matrix

cospg —sing, 0 costy 0 sind,
w= | sinp, cosyp, 0O 0 1 0 (3.4)
0 0 1 —sindy, 0 cosdy,

determines the rotation. Finally we obtain coordinate transformation
locally written as

Y=t
Yyt o= Z'(t,t1,te) + h(t t, to)w' i (t, te)n? (3.5)
where n/ = (sin ¢, cos,0). Polar angle ¢ distinguishes the points of

circle C(O, h).
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To present the local expressions for the a coordinate system centred
on an accelerated world line of the a-th particle, we rewrite egs.(3.5) in
a manifestly covariant fashion:

Yo = 2%(ta) + Q% (tr, t2) K2 (3.6)
Four components

EQ=t—t,, kl=hsing, k2=nhcosp, k3= (-1)*Z -z, (3.7)
satisfy the relations (3.3) and, therefore, constitute null-vector k,. Hav-
ing rotated it by orthogonal matrix {2 with components €2, = Q0 =
0u0,8i; = w;; we obtain the vector K, pointing from z,(t.) € (. to
y € X (see Fig.3). The orthogonal matrix w is given by eq.(3.4); it
rotates space axes of the laboratory Lorentz frame (see Fig.5).

Third component of k, is determined by

L) — () s

q
Z—7, =2+ (-1
| Za| 2+( ) %

The characteristics |Z — z1| and |Z — z2| are obtained from the analysis
of the triangle O102H with sides |O1H| =t — t1, |O2H| = t — t2 and
|0102| = |z1(t1) — z2(t2)| := ¢; they are pictured in Fig.(5).

3.2. Global mapping

To cover the sphere S1(z1(t1),t —t1) where ¢ is fixed we change the pa-
rameter to. The starting point is the solution ¢5°*(¢;) of algebraic equa-
tion

tr — 5 = q(t1, t5°") (3.9)

which describes the future light cone with vertex at (5, 25(5¢%)) (see
Fig.6). The sphere Sa(25¢, t—t5") touches a given sphere Sy (21 (¢1),t—t1)
at point N (see Fig.7). If parameter ¢, increases to t3%%(t;) being the
solution of algebraic equation

3% — ¢y = q(t1,t3%) (3.10)

the intersection S; N S¢9% contains the only point S. Equation (3.10)
looks as the equation of backward light cone of (t3%, 2(¢44v)), but it
defines the future light cone with vertex at (t1,2%(¢1)) (see Fig.6). The
sphere S; becomes the disjoint union of circles C'(O, h) = 51 N Sy if the
parameter to changes from 5 (1) to 149 (t;).
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Figure 5. In “momentarily rotating” Lorentz frame z—axis is directed
along three-vector q. Circle C(O,h) = S1 N S3 lies in Ozy plane; it is
centred at the coordinate origin (cf. Fig.4). Polar angle ¢ distinguishes
an observation point H € C(O, h). Space parts k; and ks of null vectors
k1 and ks are equal to hsin pi+h cos pj+kik and h sin pi+h cos pj+kik,
respectively.

Going along the world line of the first charge we arrive unavoidably
at the point ¢7°(t) being the solution of the algebraic equation

t— 7% = q(t°t). (3.11)

The forward light cone of this point touches the world line of second
charge at point (¢, 25(¢)) (see Fig.8). Light cones of upper vertices do not
intersect the second world line at all. Spheres S1(21(¢1),t—t1) determined
by t1 € [t7¢!(t),t] constitute the region of hyperplane ¥; which requires
another parametrization. For a given instant ¢; from this interval the
point S (see Fig.9) is associated with the solution t4(¢1) of the following
equation:

2t —t1 — th = q(t1,t5) . (3.12)

The point N in this figure is still connected with the solution #5¢ (1) of
equation (3.9).

So, we construct the global coordinate system centred on the world
line of the first particle. It bases on the trivial fibre bundle (2.3). A fibre
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Figure 6. For a given ¢; the retarded time ¢y increases from t5¢(¢1) to
t34%(¢1). Minimal value t5¢(¢1) labels the vertex of forward light cone
which is punctured by the world line of the first charge at a given point
(t1,2%(t1)). The world line of the second charge punctures the future
light cone of this point at point (¢3%% (1), 25 (¢397)).

3t is a disjoint union of retarded spheres S centred on the world line of
the first particle. A sphere is parametrized by the retarded time of the
second particle and the polar angle. Locally the coordinate transforma-
tion is given by equations (3.5).

In an analogous way we construct the coordinate system centred
on the world line of the second particle. If to €] — 0o,t5°*(t)] then
t1 € [t7et(t2), 149 (ta)]; if ta € [th¢l(t),t] then t1 € [t7¢(t2),t) (L, t2)],
¢ € [0,27[. The ends of intervals are defined by the following algebraic
equations:

ty — 7 = q(t7¢, t2) (3.13)
19—ty = q(t9% ty) (3.14)
t—t0 = q(t, t5¢) (3.15)
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Figure 7. The sphere So(O5¢t, ¢t — t5¢*) is the intersection of the future
light cone at (5, 25 (¢5¢")) and 3;. It touches a given sphere Sy (O1,t—t1)
at point N. The sphere S5(03%,t — %) touches Si(z1,t — t;) at point
S. If retarded time t5 increases from t5¢(¢1) to t3%%(¢;) the sphere S;
is covered by circles C(O,h) = S1 N Sy. (A circle S; NSy is pictured in
Figs.4,5.)

2t —th —ta = q(t),ta). (3.16)

It is worth noting that the functions #7°(t5) and t3%%(¢,) are inverted
to each other as well as the pair of functions ¢¢9%(t;) and 5 (¢;) (see
Fig.11). For a fixed observation time ¢ the functions ¢ (¢,%2) and t5 (¢, ¢1)
are inverses too.
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Figure 8. The forward light cone of (#7¢!(t), 2% (t7¢!)) touches the second
world line at the instant of observation. Future light cones of upper
vertices do not intersect it at all. For a given ¢; € [t7(¢), ¢] the parameter
ty increases from t5°(t1) to th(¢,t1). The maximal value th(¢,t;) labels
the vertex of future light cone which touches the forward light cone of
(t1,24(t1)). The minimal value of t5 is the solution #5(t1) of equation
(3.9).

4. Electromagnetic fields in terms of “interference”
coordinates

Electromagnetic field generated by a—th particle is given by [9, eq.(5.2)]

a ua,ozka7 - ua7 ka,a
féﬂ) = Ca B(r )2 2 [1+ra(ka - aq)]
a aka - UWa ka a
+ eaa’ 3 yﬁ a 76 ) . (41)

Fa

We use sans-serif symbols for the retarded distance [9,10]

ra(y) = ~1ap(y® — 2% (ta))u” (ta), (4.2)
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Figure 9. For a given ¢, € [t{¢(t),t] the sphere S;(O1,t—t;) is a disjoint
union of circles C(O, h) = S NSy. Their radius h and centre coordinate
Z are determined by to. The parameter to increases from 5% (¢;) (circle
So (05t — t5e1)) to th(t,t1) (circle So(Oh,t —th)); ¢ € [0, 27].

and for the null vector K, rescaled by a factor r;lz

ko = —[y* — 25 (ta)]- (4.3)

To rewrite expression (4.1) in terms of “interference” curvilinear coordi-
nates consisting of the common evolution parameter ¢, individual times
t1 and to, and angle variable ¢, it is advantageous to replace proper time
Tq by evolution parameter t,. The components of particles’ 4-velocities
uq and 4-accelerations a,, a = 1,2, become [7]

uy = Yavl(ta) (4.4)
af = Yalva Va)vl +504 (4.5)
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where 4-vectors v¥ = (1,v(t,)), ©* = (0,7%(t,)) and factor v, :=
[1 — v?]~1/2. After some algebra, using the relation k¥ = K*/r,, we
obtain

a Vo ta Ka, —-v ta Ka7a
1= e (ta) 67‘2 pta) Koo
.oz ta Ka. — 0 ta Kaoé
Lot (ta)Kap 2”5( ) Ko, (4.6)
/rll
where
Ca =72+ (KoVa), re = K2 — (Kova). (4.7)

Having used differential chart (5.2), one can derive the electromag-
netic field (4.6) from Liénard-Wiechert potential

Al — ea_“rj E;a)) (4.8)

via the relations féa) = Aglzy — Aglza

5. Interference part of electromagnetic field
four-momentum

Now, we calculate the interference part of the energy and momentum
carried by “two-particle” electromagnetic field:

Phe®) = [ donll. 6.1)
P

An integration hypersurface ¥ = {y € My : y = ¢} is a surface of
constant ¢. The surface element is given by doy = y/—gdt1dtadp where
/—g is the determinant of metric tensor of Minkowski space viewed in
curvilinear coordinates (3.5). Differentiation of coordinate transforma-
tion (3.5) yields differential chart

8/9y° 1 0 0 0
a/0y* 0 w1 w2 wis 55
9/0y* o w21 W2  Wa3 2
a/0y? 0 w31 wse2 wss
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0 -t T L /0t
h cos h cos sin
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Z—1z 7 — zo
0 ‘ 1 1| - ‘ T2 | O 8/830

Its Jacobian gives the determinant of metric tensor mentioned above
71 7’2

Vg = (5.3)

The volume integration (5.1) can be performed via the coordinate
system centred on a world line either of the first particle

et (t 1397 (¢1) L(tt1)
/ dty / dty + / dt, / dts / dp™2 (5.4)
— 00 twet(tl) twet(t) tref tl

or of the second particle

twet tadu(t) t t ttQ)
/ dts / dty + / dts / dt, / dp ””. (5.5)
— 00 tref(t2) T et(t) tr ef (t2)

The end points of these integrals arise from the interference pictured in
Figs.4-9.

5.1. Interference part of zeroth component

In this subsection we trace a series of stages in calculation of the volume
integral

0o _ 00
Pint = daonnt .
3t

(5.6)

In Appendix A we perform the computation in detail.

It is straightforward to substitute the components (4.6) into equation
(1.6) to calculate the interference part of electromagnetic field stress-
energy tensor. We obtain the following energy density:

4 TOO o €1€2 ( 62Fo 1 6Fo Co
TLint - 2
r172 8t13t2 r172 8t1 7’1(’/"2)
8F0 C1 F C1C2 )
A 0
8262 (7’1)27‘2 (7’1)2(7‘2)2

(5.7)

ICMP-04-04E 16

where function

62/45 Ok Ok _ 1 0 0\ 1 )
“orot oo g tR) -0 (58)

Ty =

does not depend on angle variable at all.

Taking into account the specific structure of the expression (5.7)
which contains the partial derivatives we rewrite the integrand /—g72%
as follows:

Ar mra e _ O (FO) (5.9)

eie g 0t10ta \ qrima

+ gt [t - (o))
at, | ° qri(r2)? Oty \ qrirs
AT [ o ()|
PR 5 VY
3752{ O[(I(Tl)zm Oty \ qrirs
ci1ca 0 c2
boTe | 2 (2
0 [C](Tl)Q(Tz)Q oty (C]ﬁ(?"2)2>

- 322 ( ( C; ) 375?;52 (qrif‘z)]'

First of all we should perform the integration over ¢ (see integration
rules (5.4) and (5.5)). The crucial issue is that the integral of the brack-
eted expression (that which is proportional to I'y) over ¢ vanishes (see
Appendix A). Hence the integral of (5.9) over the angle variable has the
remarkable properties of being the sum of partial derivatives:

2
T172 100 €1€2 82(F0D0) 8 87)0
— =T e G ST
/ d¢ g 2 { oot an [0\Po T g
0
0 0Dy
o 2 n(o- Ttl)}}. 510
Here
1 2 1 1 27
_ — 762
Do = 27r/d(pq7“1r2’ Bo 27r/dsDQ7“1(7“2)27 (5:11)
0 0
1 27
C1
Co = %O/d )2
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where 7, and ¢, are given by eqs.(4.7).
It is natural to integrate the expression being the time derivative
with respect to t; according to the rule (5.5). The result is

et (t 1397 (¢1) th(t,t1)
0G,(ty,t
/ dt1 / dty + / dt1 / dta M
Oto
— 00 twet(tl) twet(t) tref tl
£ (1)
= / dt1Go[ty, 159 (t1)] /dthg [t1, 1568 ()]
t
/ dt1Gat1, th(t,t1)]. (5.12)

)

Having applied the rule (5.4) to the expression of type 0G;/dt1, we
obtain

5t (1) 497 (tg) (t,ta)
/ dta / dt; + / dta / dt1 M
otq
— 00 t7et(t2) twet(t) tref 2
5 (t) t
= [ dnGil . - [ dnGilt ().t
t
/dtQGl[t’l(t,tz),tQ] (5.13)

0

The double derivative involved in eq.(5.10) can be written in the form

either 0 Toc
0
o 9 10G
0

== 1

Oto [3151] (5 5)

Now we choose (5.14) and add this term to 0G1/0t;.

Therefore, the end points are valuable only in the integration proce-
dure either (5.4) or (5.5). The retarded instant, t7¢*(¢;), and advanced
one, t7¢*(t,), (a # b) arise naturally as the limits of integrals. They label

ICMP-04-04E 18

the points S and N in which fronts of outgoing electromagnetic waves
produced by e; and ey touch each other (see Figs.7 and 9). Triangle
0102 H (see Fig.5) reduces to the line at these moments.

An essential feature of integration is that the functions ¢¢9%(t;) and
t5¢%(t1) are inverted to each other (see Fig.11). This cicumstance allows
us to change the variables in the “advanced” integral involved in eq.(5.13).
Further we couple it with the “retarded” integral of eq.(5.12). We obtain

t
dty [ "G — G2:| (5.16)
/ 1-7 to=tget(t)

where
Vo = (ngva). (5.17)

Scrupulous calculation results the terms of two quite different types: (i)
this depends on all previous evolution of the 1-st charge

- / dtyy [t 5 ()] (5.18)

— 00

(ii) those determinated by the state of particles’ motion at the observa-
tion instant only:

t1=t

ele [ L+ Ve — L
ROl -t (t)](1 - Vo) qltn 5 (E)](1 = Va) |y

€1€2
20— 570 (>:19)
(see Appendix E, Table 1, left column, first line). The integral (5.18)
over world line (; is then nothing but the zeroth component of the work
done by “retarded” Lorentz force acting on the first charge.

It is reasonable that, starting with the retarded Liénard-Wiechert
solutions, we obtain the retarded direct field due the 2-nd charge on the
1-st one. A surprising feature is that we can arrive at the expression
for the advanced direct field within the framework of retarded causality.
E.g., one can perform change of variables (t°(ts), t2) — (t1,13%(¢1)) in
the retarded integral involved in eq.(5.13) and then couple it with the
advanced expression from eq.(5.12):

(1)

TR ey
/ dty [GQ - VQGl] . (5.20)

— 00
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Having integrated (5.20), we obtain the work done by advanced Lorentz
force due to the 2-nd charge plus functions of momentary positions of
particles:

7% (t)
_ 1 1-V,
- dtr 7 P [t 199 (49)] + | —= 5.21
/ 171 21[ 1,02 (1)] 2/{81-&-‘/2 ( )

1 t1—t7e (L)
© )

[l + V3]

t1——00

(see Appendix E, Table 1, left column, second line). The matter is that
the integral of advanced force due to 2-nd charge over worldline (; is
intimately connected with integral of the retarded force due to 1-st charge
over (a:

t et (¢)

/dt272_1Ff)2[tIEt(t2)at2]— / dt1yy FS [t 57 (t)]

—c0 —oo

|: —1—|—(V1 'V2) + 1 + 1
= —eje
gl Vil + V] gL+ W] gL+ VA

to=t
(5.22)

to——00

(see Appendix D, eq.(D.11)). Therefore, the advanced expression can be
replaced by the retarded one plus functions of momentary positions of
particles (see Appendix E, Table 2, left column, second line).

Now we consider the last terms in both eq.(5.13) and eq.(5.12). Since
the functions #} (¢, t2) and t5(t, t1) are inverses, the sum of these integrals
can be written in the form either

t ’

141, ta=t} (t,t1)
dt, |G G 5.23
/ 1 [ 2+ -1, 1} ( )

7t ()
or .

1-V, t1=t} (t,t2)
dts |G G . 5.24
/ 2 [ 1+ Tr v 2] ( )

Both the expressions result the same function of the end points only:

tz —t

1
2(t — t2)

. ) )
=—1 5.25
P Ty Rt ez v M

to=t5°%(t)
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(see Appendix E, Table 1, left column, third line).
Summing up all the contributions (5.18), (5.19), (5.21) where (5.22)
is taken into account, and (5.25) we obtain the expression

¢
P = =% [ Bt () (5.26)
b#a_"
eres (voa-vi)+ Vo . eiea Va

A, L+ VA [L+ Va] ot t—ta 1+ Va

Now we take the double derivative in the form (5.15) and add it to
0G4 /0ty. Analogous calculations give

t
P = = [ s Bt (1) (5.27)
b#a_"o
eres (vi-va) = Wi . eea Vi

dEBFOI L - V[l Vo] titt—ti1- V-

(see Appendix E, Table 1, right column).

Having compared eq.(5.26) with (5.27) we are sure that the calcula-
tions result the “immovable core” which describes the action of the fields
due to one charge on another, and “changeable shell” which expresses the
deformation of electromagnetic “clouds” of charged particles due to mu-
tual interaction. Only the immovable terms should be taken into account
in the total energy balance equation.

5.2. Interference part of space components

To calculate interference part pi , of electromagnetic field momentum
Der We have to integrate the expression

i 0j i 0j i
AT, = fh s + foy f; (5.28)

over three-dimensional hyperplane y° = t. The electromagnetic field
components are given in Section 3.

According to the integration rules (5.4) and (5.5), first of all we per-
form the angle integration. Then integrand (5.28) looks as follows:

2w

2 i
— [ dpv=gTl, = (5.29)
€e1€2
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D o)) 03\ 02\
_ 0 hddd 0 -
- A [k 3t13t2 + at2:| C [k 31513152 + 3t§:|

1350 ; o\
Dt 0
W Sear, O30t Dok O30t

[ 92 O\ o O3

i 0 il 37,0

+ A _k2 Ot10ts + at1:| 1% oty 3152
3 2 4

| [ L PN 0 ] 4 i 0

R kS
5 26t§6t2+ o2 172 512012

+ B

o X O
+ Ao _)\(Ul +v3) + kg“laT + kv 28t1]
D)

+ Co |:)\1)2 + ki —= o83 +

. OA
0,
kl 2 6t1 :|

218t

LA OPA
+ Do [t T + i

: N\ oA
+ B [A@Hk 02(,%2 + k9ot }

where
A=1/2 [(k) — k9)* — ¢°] . (5.30)
Calligraphic letters A, B,C and D denote the following integrals over :
2 2w

. 1 . C1C2 ; 1
Alz—/dK277 B = /dK77
b 27T0 4 b q(r1)2(r2)? b 27TO ’ b qri(ra)?

2w 27
. 1 . c1 . 1 1
C=— [ doK;,———, D;=— [ dpK} 5.31
b 27T0/ 2 bq(r1)2r27 b 2770/ ® bq'l"17’2’ ( )

where r, and ¢, are given by eqs.(4.7). Functions By,Co and D, are
defined by eqs.(5.11) and function Ay is

2m
1 C1Co
Ao = —/d —_— - 5.32
*=5n | am e 532

After some algebra one can rewrite the terms which involve Aj, B}, C
and Dj (see the 1-st and the 2-nd lines of eq.(5.29) as follows:

P . oDj P oDi\]  92(A,Di)
ot {Ab (Bb atg)] ot [Ab (Cb am)}* 91,01,
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, oBi oci  9°D;
+ Ay (Ab o o T ana ) (5.33)
Here ) 5
Alzkoa)\ +@, AQZkOa)\ +Q (5.34)

2ot,0ts | Oty Lot 0ty | Oty

Routine scrupulous calculations performed in Appendix B explain that
the “non-derivative tails” in eq.(5.33) are proportional to three-velocities:

s > oD,
A oty Oty * Ot10ty vi(ta) { Bo Ot (5.35)
;, 0By ocy 0*Dy 8Do
A oty Oty * ot 0ty va(tz) | Co ot, )

We add them to the part of integrand (5.29) which involve “zeroth”
functions Ao, By, Co, and Dy. It is now straightforward (but tedious)
matter to rewrite it as the following sum of partial derivatives:

o [, dDo 9 dDo
Sl B (o )] o

62(Ai Do) a(UEAQID())

+ Ot10ts B
3730 0 p 9Dy

o g [ (50 50)] o [ (0= 50)
+ 62 AZ'D()) 6(@1A1DO)

Ot 0t Ot

o , . . D,
+ o [)\ (v} + v5) (Bg a0, )]

8 i 8,ZDO
+ 8_t2 |:)\ (Ul ) <CO atl >:|

2

* Shan [A (v +v3) Do

(We keep in mind the identity (A.40)). Recall that Aq, A are given by
eq.(5.34) and
O\ ; ;o O

Ai:’l}ikga—t?, A;Z’U%kla—tl
Therefore, the integrand (5.29) also becomes the combinations of

partial derivatives with respect to time variables, namely the sum of
the expressions written in the first line of eq.(5.33) for both b = 1 and

(5.37)
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b =2, and eq.(5.36). Now we apply the integration procedure developed
in previous subsection.

Each double derivative involved in (5.29) can be integrated according
to the rule either (5.4) or (5.5). There are five terms of this type in this
expression. This circumstance implies ten possible ways of integrations.
In Appendix E we study two of them in detail (see Table 2 and Table

Firstly we write all the double derivatives in the form (5.14). The
integration gives

%t=—2/mm%@%Wu» (5.38)

brta
N erez [+ (vi-va)nf[tie(t),1]
qlt*(t), 1] [1+W][1+ V3]
B eres  vj[t1¢(1)]
q[ti (), t] 1+ W
N erex {nbltTe (t2), ta] — vh(t2)} Va

tzu—r}t t— 1o 1-— (‘/2)2

Secondly, we express all the mixed derivatives in the form (5.14). We
obtain

%t=—z/mm%@%Wu» (5.39)

b#a_" o
B erey (=14 (v va)]mglt, 5 (1)]
qt, t5°(1)] [1=W][l -V

erez  vh[t5e(t)]
qlt, 55 ()] 1-Va
o 12 {ni[tr, 55 (t1)] + v} (t2) } VA
ti—tt—11 ].—(‘/1)2

+

Comparing eq.(5.38) with eq.(5.39), we are sure that the form of func-
tions of momentary positions of particles heavily depend on the method
of integration. It reinforce our conviction that the changeable “shell”
expresses the deformation of electromagnetic “clouds” of “bare” charges
due to mutual interaction. Thus only the immovable “core”, i.e. sum of
work done by Lorentz forces of point-like charges acting on one another,
possesses relevant physical sense.
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6. Conclusions

Inspection of the energy-momentum carried by the electromagnetic field
of two point-like charged particles reveals the essence of renormal-
ization procedure in classical electrodynamics. Volume integration of
Maxwell energy-momentum tensor density over three-dimensional hyper-
plane y° = t gives terms of two quite different types: (i) these depend on
the state of the particles’ motion in the vicinity of the instant of observa-
tion ¢; (ii) those depend on all previous time development of the sources.
The former involves diverging quantities while the latter contains finite
terms only. Structure of the quantities which are accumulated with time
does not depend on choice of integration three-surface while the form of
“instant” expression heavily depends on the way of integration.

“Instant” terms are permanently attached to the charges and are
carried along with them. By this we mean that a charged particle cannot
be separated from its bound electromagnetic “cloud” which has its own
4-momentum [11]. This quantity together with 4-momentum of “bare”
charge constitute the finite 4-momentum of “dressed” charged particle.
(Note that the electromagnetic “clouds” of sources are deformed due to
mutual interaction.) All diverging quantities have thus disappeared into
the process of energy-momentum renormalization.

The terms which are accumulated with time lead to independent ex-
istence. They constitute the radiative part of energy-momentum carried
by “two-particle” field. It consists of the integrals of individual Larmor
relativistic rates over corresponding world lines and the work done by
Lorentz forces of point-like charges acting on one another.

The situation considered here, in which the radiation is propagat-
ing outward, breaks the time-reversal invariance of Maxwell’s theory.
Choosing the retarded solution of wave equation (1.1) as the physically-
relevant solution, we adopt a specific time direction, when an interference
of outgoing electromagnetic waves leads to the interaction between the
sources. The interference are pictured in a fixed observation hyperplane
% = {y € My : y° = t}. To restore time-reversal invariance we take the
limit ¢ — +o00 and suppose that particles are asymptotically free in the
distant future. The relation (D.12) takes the form

—+o0
/ dtoryy "F [ta, ty (ta

— 00

/ dtyyy “ER [T (1), 1) (6.1)

The work done by retarded Lorentz force of b-th charge over entire world
line of a-th one is equal to the work done by advanced Lorentz force of a-
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/ N y
1 G2

Figure 10. To restore time-reversal invariance we locate the observation
hyperplane 3° = ¢ in the distant future. We suppose that particles are
asymptotically free.

th particle acting on b-th charge backward in time! The sum of “retarded”
works involved in the total energy-momentum of our closed (two particles
plus field) system

+o0 +oo
/ dtvyy PR [t 155 (4)] + / dtaryy ' Fy [t (t2), ta], (6.2)
may be replaced by the linear superposition

+oo

1 - re aav
3 | [ dentt (Bl @)l + B ln, st (0)

— 00

+oo
+ / dtayy ' (Flo[tT (t2), ta] + F5[t1% (t2), t2]) (6.3)
— 00
which restore time-reversal invariance. Indeed, the retarded Lorentz force

Fl [ta, t:¢t(to)] becomes the advanced one F. [t,, 3% (t,)] (and vice ver-
sa) if the time direction is reversed. But the retarded causality is still
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not violated. We consider the interference of outgoing waves at distant
future instead of a picture in which the radiation is propagated inward.

The situation looks as that described by Wheeler and Feynman [12]
where the absorber theory of radiation is elaborated. The basic assump-
tion is that the fields which act on a given particle are represented by
one-half the retarded plus one-half the advanced Liénard-Wiechert solu-
tions of wave equations. To disappear “incoming” radiation, the authors
introduce a perfect absorber which cancels the (acausal) advanced part
of the fields acting on a given particle and doubles the retarded one.

Our emphasis is on rigorous calculations and exact solutions based
on standard electrodynamics. It allows us to substitute the phenomenon
of interference of outgoing electromagnetic waves for acausal mechanism
of perfect absorbtion in time-symmetric action-at-a distance electrody-
namics. The interference of outgoing electromagnetic waves (retarded
Liénard-Wiechert solutions) ensures the action of the field of one source
on another (mutual interaction).
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A. Angle integration of 7.2

int
In this Appendix we perform the integration over ¢ of “double ze-

roth” component (5.9) of the Maxwell energy-momentum tensor density.
Angle-dependent terms involved in energy density have the form

21 27
1 c1ca 1 C2
= — | dp—22 Bo=— | dp————, (A.1
AO 271’! wq(r1)2(r2)2, 0 271—! (pqu(’f'g)g, ( )
1 21 1 27 1
C1
Co = — [dp—2 Do=— [d
0 27r/ gpq(rl)%g’ 0 27r/ (pqurg
0 0

where the retarded distances are
Ta = T9 — e sing — 72 cos p. (A.2)
The other scalars we use are:

Ca=—c 4 clsing + 2 cosgp (A.3)
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Here
7"2 kg — (v - nq)k:g7 ri = wljvgh, 7’3 = ngvgh (A.4)
cg = - (7;2 + (Vg - nq)kg) , c}l = wljijgm cz = ngz}gh. (A.5)

It is convenient to introduce three-dimensional manifold Q with
space-favouring metric gog = diag(—1,1,1). For Q we put the tangent
bundle T'Q being the disjoint union of all tangent spaces T,,Q. A tangent
vector with foot point a € Q is simply a pair (a,r) with

r =r%, € R?,

where e, := 0/0x% a = 0,1,2, is the standard basis of R3. We define
also cotangent bundle 7*Q being the disjoint union of 7.Q. An one-form
with foot point a € Q is a pair (a, ) with

r= Tﬂéﬁ S RS,

where &7, 3 = 0,1,2, constitute dual basis &°(e,) = J°. We shall use
Jop = diag(—1,1,1) and its inverse g = diag(—1,1,1) to lower and
raise indices, respectively.

For each differential manifold one can define the canonical pairing

(,) + T"QxTQ—R (A.6)
<f1a I‘2> = rl,’ﬂ";

where both one-form r; and vector ry are of the same foot point. We
introduce also the scalar product

()« TQxTQ—R (A7)
(r1-T2) = gagriry

which is connected with canonical pairing by the operation of raising
indices. And finally, we shall need the norm of vector r € TQ

el = \/~gapror? (A.8)
- VP =P - P
So, a-th retarded distance r, becomes the scalar product of the vector

with components (A.4) and the null-vector n, := (1,sin¢p, cos ¢) taken
with opposite sign.
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To go further we express a term of type (b - n,)/rir as follows

b —A—Clri|cos(p+ 1) | —B+ Clra|cos(¢ + (2)
riTo Y — |r1|sin(e + B1) 79 — |ra|sin(p + B2)

(A.9)

where scalar b denotes the product (b - n,). The a-th phase j3, is deter-
mined by the relations

cos By = 1 /|val, sin B, =12/|ra|, (A.10)
where
Iral = V(ry)* +(r2)?
= hy/vZ—(vy-1ng) (A.11)

The coefficients A, B and C are the solutions of the following system of
algebraic equations

(©c A B) [ Lo L1 Lo (bo b1 bo)
To0 T2,1 T22 = (A.12)

Ti,0 Ti,1 T1,2

where L, = gagL? and LP is P-th component of the vector
L=1] 7r20 721 T22 (A.13)

This can be written more compactly
LY = ey g1
by use of the Ricci symbol in three dimensions:

+1 when af7 is an even permutation of 0,1, 2
£ = { —1 when afy is an odd permutation of 0,1,2 (A.14)
0 otherwise

In solving the problem (A.9) one is soon led into rather complex
expression. Great simplification arise, however, when one uses the binary
operation of vector product which is defined as follows:

[X] @ T"QxT"Q—-TQ (A.15)

[f‘l X f‘g] — Eaﬁ’YTLB’r‘QW
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So, the determinant D of 3 x 3 matrix in eq.(A.12) becomes the square
of vector product of one-forms 11 and ro given by eqs.(A.4):

D — (L= (L? (A.16)
= [f‘QXf'l]Q
= —(Ba,ra)(E1,11) + (B2, 11)2

= —(ro-12)(r1-11) + (r2-11)2

Having solved the system of linear equations (A.12) we obtain

A = 2 (A.17)

p = (bolexb) (A.18)
= %{(b ro)(ra-r1) — (b-ry)(re 1‘2)}
_ (b-L)

¢ - &b (A.19)

The expression of type (A.9) can be integrated over ¢ via the relations

/Qﬂd 1 B 2w /27r _cosp
0 ¢1—asin<p V1= a2 l—asmgo
0<a<l. (A.20)

Having integrated (A.9) we obtain

27
b A B
dgo—:—27r( + ) A21
/o Tl T el (A.21)

Having considered the simplest case of integral Dy (see eqgs.(5.31)),
we put the one-form b = (—1,0,0). We obtain

1/ A B
Doz——( 0 4 = ) (A.22)
g \rafl 2]
where
0af L
Ay = € "alp (A.23)

D
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_ _7‘8(1‘1'1‘1)-7‘?(1‘2'1‘1)
D
BO = —760016712’011/6
D
_ rI(rg - 11) — r9(ry - r2)
D
LO
CQ - E

To calculate By we rewrite the integrand as follows

C2 co 1
— — A.24
71 (7’2)2 r17r9 T2 ( )
_ —Ay — Calr1| cos(p + B1)
1
L —Bs + Ca|ra|cos(p + B2) ) 1
T2 T2
4 Oyl cos(p + B)
— [r1|sin(e + B1)
n —Bj + Cj|ra| cos(p + o)
— |r2|sin(e + B2)
—Bs + CQ|I'2| COS(QD + 52)
[r9 — [r2| sin(p + 52)]”
where
(cy - [f1 x L]) (cy - [F2 x L])
Ay = ~— - 2 By=-—--= - "~ A2
2 D ’ 2 D ) ( 5)
co - L
Cy, = ( 2D );
A/2 = —AQAQ + OQC()||I'1||2, Bé = —AQBO + 0200(1'2 . I‘1),
Cy = —AyCy— 04 (A.26)
Another relevant integration rules are
27 27
1 27 cos ¢
d = dp——7  —
/0 s0(1 — asing)? (1 —a2)3/2’ /0 s0(1 —asinp)? 0
0<a<l. (A.27)

Combining these results together with the relations (A.20) for integral
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of expression (A.24) over ¢ gives

1 A/ B/ BQT‘O
BO:__( L T ) (A.28)
d \Tell " Tl T Tl

If one interchanges the indices “first” and “second” in the above ex-
pression (A.24), they obtain

1 Al B A17‘O
cz——< L 1y 1), A.29
o=\l Tl I (4.29)
where
_ (e[ x 1) (e[ x L)
A = 5 . B = > 7 (A.30)
ci-L
G = (lD );
Al = =Bidg+CiCo(rz-11), Bj=—BiBy+ CiCo|rsf?,
C| = —BiCy— CyB,. (A.31)

We now turn to the calculation of Agp. Transformation of the inte-
grand scales as (r172) "2 proceeds with the help of eq.(A.9), using identity
C1C2 C1 C2

(7’1T2)2 rir2 r172 ( )

The calculation is straightforward, although it involves a fair amount of
algebra. Finally we obtain

e _ I + Io|r1| cos(p + 31)
172 172 (7’1)2
J1 = Jo|rz| cos(p + B2)
n A.33
% (A.33)
N —Ajg — Ca|ry| cos(p + B1)
1
—Bis + 012|I‘2| COS(W + ﬂ2)
T2
where
L = A1As — C1Colry %, Iy = A1Cy + AxCh, (A.34)
Ji = BiBy — C1Cyral?, Jo = B1C2 + B2Ch,
A1z = [A1Bs + BiAs — 2C1Cs(r1 - 12)] Ao
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JoCol|r1]|* = IoCo(r1 - r2),

Bis = [A1By+ BiAy —2C,Ca(ry - 13)] By
— JoCo(ry - 12) — IyCo|lr2|?,
Ciz = [A1B2+ B14s —2C1Cs(r1 - 12)] Co + Lo Bo + Jo Ao.

Using integration rules (A.20) and (A.27), we perform the integration of
(A.33) over the angle variable ¢:

1 (A12 B12 117‘? Jl’l"g )

Ag=—- - A35
0= (A.35)

el el el e ®

All the coefficients involved in resulting expressions (A.22), (A.28),
(A.29), and (A.35) should be rewritten in terms of three-dimensional
vectors which denote particles’ positions, velocities and accelerations.
Substituting components (A.4) and (A.5) into expressions (A.23), (A.25)
and (A.30) returns the root coefficients A;, B; and C;,i =0,1,2:

([ng x v1] - [mg x 1)

Ay = — R : (A.36)
gy — (naxcwllngx)
¢y - b))
where
A = [y x 12 — R2(nglve x vi])?, 1= 1rSvi — r0vy: (A.37)
A = i vl g <) = 2 (g x 0 g < 1)
+ hg(nq-[\'flxvl])(nq-[v1><V2])}, (A.38)
Bi = A7 g val g 1) = o8 g 9] g < 1)
I g 6 val) (g I xva)
¢ = a7 {- g el - <D}

4 = A { (g x va] - [mg x 1) — 9 ([ x ] - [mg x 1)




33 IIpenpunT
+  h%(ng - [Vo x vi]) (ng - [v1 X va)) } , (A.39)
By = -A™ {Cg (Ing x va] - [ng x 1)) =75 ([ng x V2] - [ng x 1)

+  h*(ng- [V2 x va]) (ng - [v1 X va]) } )

Cy, = A {_ A (ny - [va x v1]) + (g - [¥2 % 1])}.

A complex calculation performed with the help of software system
“Maple 8” confirms the key identity
0By 0Cy  0°Dy
Ao ot ot + 060t 0. (A.40)
It allows us to rewrite the integral of “double zeroth” component of the
Maxwell energy-momentum tensor density over ¢ as the sum (5.10) of
partial derivatives in time variables.

It is worth noting that all the coefficients (A.36)-(A.39) and, there-
fore, expressions (A.22), (A.28), (A.29) and (A.35) depend on h?, i.e. on
the square of the radius of the circle C(O, h) = S1NS3 (see Figs.4,5). One
can express functions Ay, By, Cp and Dy in form of expansions in powers
of h?. (To simplify the calculations as much as possible we can rewrite
the integrands of (A.1) as expansions in power h and then integrate over
©.) Putting h? — 0 we tend to convex neighbourhood of the end points,
either S or N (see Figs.7, 9). The identity (A.40) is also valid in the
immediate vicinity of the end points. (Differentiating functions By, Co
and Dy in time variables we must keep in mind that Oh? /0t, does not
vanish even if h? — 0.)

B. Angle integration of 7%

int
To express the integral of T over ¢ as a combination of partial deriva-

tives in time variables we have to calculate the following “tails™:
i oB; B ac} n 0*Dj
b otq Oto Ot10ts

(see eq.(5.33). By calligraphic letters we denote the integrals over angle
variable:

(B.1)

27 27
. 1 . c1C2 ; 1 i C2
A = ———u/nd K———, B = ——-J/(i K——,
b 2 / 4 ()2 ()2 b7 or / 14 b qri(rs)?
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2m 2m
; 1 ;o a 1 K}
C, = — [ deKj———— Dy=—|d B.2
b 27_[_/ ® bq(rl)2r27 b 27_[_/ gqul’f’g ( )
0 0
where ‘ ‘ ‘ ‘
K} = kgnlq + hwi sin ¢ + hws cos . (B.3)

The integration can be handled via the relation (A.9). The simplest term
D; becomes:

. 1 Al B!
D = —— —b+—b). (B.4)
T g <|r1| [[r2l
Here
i 3,4 1 i i
Ay =kyngAo — A [1)2 — nq(anQ)} (r1-rp)

—

Uli — nz(nqvl)] (I‘l . I'Q)} y (B5)

Bi=kiniBy + { [v5 — ng(ngva)] (r2 - 11)

B> =

— [vzl — nfz(nqvl)] (ra '1‘2)}

where Ag, Byp and A are defined by eqs.(A.36) and (A.37). But we find
out the expressions (B.1) in another way.

To simplify the calculations as much as possible we express the in-
tegrands of eqgs.(B.2) in form of expansions in powers of h. Thanks to
exponential operator

dr9

a a

4 d
Y :=exp —Zhvg(wﬂ sin ¢ + wjo cosgo)—] (B.6)

we remove harmonic functions from denominators and then integrate
over . In fact, we deal with the flow of the vector field in between the
square brackets of eq.(B.6). It maps an open neighbourhood of end points
either S or N to an open vicinity of another point of integral curve of
this vector field [14]. It is sufficient to compute “tails” (B.1) at the end
points where h% = 0 (see Figs.7 and 9).

At these end points the term A! is as follows:

27
C1C2

Al = /d Ki——= B.7
' 0 7 bq(rl)Q(T2)2 h2=0 (B.1)
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cich
1q(r)*(r)?

= ki’anAo’

= kin

h2=0"

Since derivatives 0h®/9t,,a = 1,2, do not vanish whenever h? = 0, we
should expand C; and B} up to the first order of this small parameter:

B, = kin.Bo (B.8)
h2 vy — nt(n,v vl —nt(n,v
+ o5 _Cg 2 2 qo( q 2) + 1 qo( q 1)
2qr9(r3) T2 1
+ @é—n;(nq(fg)]
+ O(h?)
Ci = kyniCo (B.9)
h? vh —nt(n,v vl —nl(n,v
+ 020_0(1) - q0<q2)+21 qo<q1)
2q(r?)ry T3 1

+ @i—nfl(nq\'fl)]
+ O(hz)

Symbols By and Cy denote the expansions of corresponding integrals
(5.31) in powers of h?:

Bo = ﬁ (B.10)
o B
- g [ R e+ o
G = ﬁ (B.11)
+ zq@;irg [l olbanfav) g sl

The last expansion we shall need is

D, = kyn,Do (B.12)
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h? vy — né(anQ) vi — né(nqvl)
+ 2qr9719 l 9 + r?
h* [vy — nf(ngva)]ngva]?
' w@@{ Gk
N 2[v5 — nf(ngva)]([ngvi][ngva]) + [vf — nf(ngv1)][ngva]?
i (r9)?
i 2[“% - né(nqvl)]([nqvl][nqvﬂ) + [ (nqv2)] [an1]2
(r?)?r3
+ iz lmen ] } £ o).

By Dy we denote the following expansion:

Dy = qr%o (B.13)

B il | (Ingvilingva)) | [ngvel?

- 2qr97«3{ A 7= S }
W[ gt il (ngvilingvs))

TG {3 I T
2([an1][an2])2 + [anI]Q[anﬂQ

* (r0)2(r2)2

4 gloevel’ ﬁg‘};g;ﬁ[“m” +3[Izj§’)2j }+O(h4).

Our final task will be to compute expression (B.1). When we differ-
entiate functions Bf, Ci and Dj we must keep in mind that derivatives
of h? with respect to t, do not vanish even if h?> — 0. With a degree of
accuracy sufficient for our purposes we obtain

0Bl oci 0D | D,
i = i (By— L0 B.14
1 8751 6752 + 87518752 e BO 8t2 ( )
. oB, oci oDy 9Dy

A= "o Tana, - 2 S5

Substituting these relations into egs.(5.33) returns the integral (5.29) of
interference part of the momentum density 7., over ¢ as the combina-
tion of partial derivatives in time variables.
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C. Direct particle fields and Lorenz forces

In classical electrodynamics the four-dimensional delta function of the
square of the interval between points A and B is Green’s function of
the wave operator. The delta function ensures that the typical points
A and B on the worldlines of point-like charges a and b interact if and
only if they are connectible by a null ray. The interaction is described
by Lorentz force, i.e. there is no self action.

0

ta JX / 2t €79
N/

1ret(t,) 5 &

/N

Ca Cb

Figure 11. Points A € (, and B € (; are connectible by a null ray. They
are defined by the pair of instants either (¢, (tq)) or (t29%(ty), ).
Functions 7 (¢,) and t29%(t;) are inverses.

The particle a is acted on by the particle b via Lorentz force
Fe = eaF(%)Buf where F§, ; is direct particle field [13]. By this we mean
electromagnetic field generated by b-th particle at point where a-th par-
ticle is located. It immediately implies h = 0 in expressions (4.6) for the
components of electromagnetic fields. Indeed, h is the radius of the circle
Sa NSy, i.e. of the intersection of spherical fronts of outgoing electromag-
netic waves generated by charges (see Figs.4, 5). If we consider the direct
particle field, the sphere S, reduces to the point where a-th particle is
placed.

To evaluate the retarded field of the 2-nd particle at point z1(¢1) € (1
we put kY = 0 and kY = q[t1, 15 (t1)] in (4.6). It implies

K)=q, Ky=qni, r2=q1-V3], co=% +q%a (C1)
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in the expression for fo(fg) (It is obvious, that fé}; vanishes.) All the
quantities are evaluated at the moments either ¢; or t5¢(t1), V5 := (ng -
vy) and Va := (n, - ¥9).

To find out the advanced field of the 1-st particle at point z5(t2) € (o,
we put k9 = 0 and k) = —q[t99°(t5), o] in élﬁ) given by eq.(4.6). It means

K)=—-q K{=-qnl, mn=-q1-Vi], a=v%"-qn (C2)

where V; := (n, - v1) and V; := (n, - ¥1).

In general, to obtain the retarded/advanced field generated by a-th
particle at point where b-th particle is located, one should substitute the
quantities

K} = ¢, K. = (—1)“qnf1, re =€q[l — (=1)%V,], (C.3)
Ca = 'Ya_Q + (‘anVa
in eq.(4.6). Parameter € is equal to +1 for retarded fields and —1 for

advanced ones. Putting eqs.(C.3) in (4.6) we arrive at the following ex-
pressions:

PRI R i Rk WOV S il ek
0 ¢ (1- 6,1Va)3 “ q(l— saVa)3

/(')’L
+ oe—2
q (1 - gaVa)
vind —vin vind —vint .
Fjj@(e) SR o Bl B B AR /4
q> (1 —e,V,) q(1—¢eaVa)
(—1) v;nﬁ! — v{lnfl }

q(1— EaVa)Q

i

_|_

where parameters
€a = (—1)%. (C.4)

The components of Lorentz force a-th charge acting on b-th one are
written as follows:

W (e = —e B (o) (C.5)

€aVo — (Va - vp) _
- (va 1) s
q? (1 - EaVa)
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aV - a y .a :
+o(cr)elah (v ‘;b)va_6 (Va - V) i
q(1—¢e,Va) q(1—¢e,Va)
Y Fi(e) = —eF(e) + enFyy ()] (C.6)
] " B
= —epea | Eally 1t (Vo vo) ng?%2
q? (1 —eaVa)
a1+ (Va Vo) (Va - V)
+ ((V)'——FgVate— "
q(1—¢e4Va) q(1—¢eqVa)
1—-¢,V4 vg 9
+ a
1- 5aVa q2 (]. - €aVa)2,y
V! . o
+ (1) Vot e | }.
( )q(l—sava)2 q(1—edVa) }

All the quantities labelled by a are referred to the instant ¢¢(¢;) while
those supplemented with index b are evaluated at tp.

D. Difference of work done by “advanced” and retarded Lorenz
forces

The retarded, 7 (), and “advanced”, t¢4°(t,), instants arise naturally
within the integration procedure developed in Section 5 as the end points
of “inner” integrals (see eqs.(5.4) and (5.5)). Typical points A (on the
worldline of charge a) and B (on the worldline of charge b) interact if
the line connecting them is a null ray. It seems, that the interaction can
be both forward (B to A) and backward (A to B) in time (see Fig.11).
And yet the retarded causality is not violated. Indeed, we consider the
interference of outgoing waves present at the observation time t. Both
the retarded and “advanced” moments are before t.

In this subsection we compare the work done by retarded Lorentz
force due to charge b on charge a

t
[t Filto 7 00 (0.1

—o0
and the work done by “advanced” response of charge a on charge b
A0

dtyy, P Fl[ta™ (t6), to]. (D.2)
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To compare (D.1) and (D.2) we change the variables [t2%(t;), ;] —
[ta, ;¢ (te)] in “advanced” integral:

t e (t)
/mﬁwmw%m—/ﬁm%m%ww

o [Va ' Fiolta, %" (ta)] (D.3)

Il
—
&

(89 (1) =t

1+ (=D,

—~ L a slprnadvgy g
1_'_(_1)17%717 ab[a (b)7 b]

ty=t;°" (ta)

The following identity generalises the derivatives of egs.(3.9), (3.10),
(3.14) and (3.15):
dte(ty)  1—edVi
dty, 11— caVu

(D.4)

Here
€a = (—1)%; (D.5)

parameter € is equal to +1 for retarded instants and —1 for advanced
ones. With the help of eq.(D.4) we obtain the following chain of identities:

dq[tZ(tb)v tb] a ‘/b B Va

| i = (-1 - (D.6)
HE = SE[ioa ] oo
7d(n§t'bvb> = %[—%2—[—1+(V1-VQ)]71:Z:“2

+ %M—W%E%%YW@ (D.8)
o) S a2 )
b= V)l Ve (D.9)

Using identities (D.7)-(D.9) in the integrand of eq.(D.3), we derive
that it is the total time derivative. In other words, the difference of
“retarded” work (D.1) and “advanced” one (D.2) is the integral being a
function of the end points only:
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tget t) AN

/ 25 N y
C1 G2

Figure 12. Difference of work done by retarded Lorentz force due to
charge 2 on charge 1 and the work done by advanced response of charge
1 is given by egs.(D.10). All the quantities in the right-hand side of this
equation which are labelled by 1 are referred to the instant of observation
while those supplemented with index 2 are evaluated at t5(t).

tg(‘t
/ dtryy FS [t 15 (4)] / dtaryy " Flo[t™ (ta), t) (D.10)
t1=t
=14 (vivy) 1 1
= O -
p e [q[l R I AREE I P
. . i ti=t
. 1+ (vva)lnl | o v
p=i —erer [qu SV V] -Vl - VL,
t’r‘(‘t(t)
/ oy R 5 (1), 1] — / dtry; P, 57 (1) (D.11)
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\ Yy Zt

/e N y
G G2

Figure 13. Difference of work done by retarded Lorentz force due to
charge 1 on charge 2 and the work done by advanced response of charge
2 is defined by eqgs.(D.11). All the quantities in the right-hand side of this
equation which are labelled by 2 are referred to the instant of observation
while those supplemented with index 1 are evaluated at ¢7°(t).

to=t
_ 1+ (vive) 1 B 1
“‘Oﬁﬁ[qu+mu+w]qu+w]qu+wﬂ

to——00
to=t

i e -1+ (vva)]nf] _ v} _ vy
r= Rl 1 S Y BT e ) R 2 PO

It is convenient to rewrite the results (D.10) and (D.11) in a mani-
festly covariant fashion:

e (t)
/ﬁmﬂ%mﬁ%m—/dmf%m%mm (D.12)
to=t
(u1 - ug)nl uff uby

= -1 “eleg |: d — —
U [y g w) g g,
Symbols u#,a = 1,2, denotes the (normalized) four-velocity vector
(vat v tol). If the 2-nd particle moves in the retarded field of the 1-st
one while the 1-st particle moves in the “advanced” field of the 2-nd one,
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then n = (1,n}). Four-products of this null vector with four velocities

are as follows:
(ng - ua) = =75 " [1 = Va]. (D.13)

If one interchanges the words “first particle” and “second particle” in the
above sentences, nf = (—1,n;) and we have

(mg - 1a) = 7 [1+ Val. (D.14)

in eq.(D.12).

. . . Op
E. Time integration of T}

In this paper we integrate the interference part of energy-momentum
tensor density of two point-like charged particles over three-dimensional
hyperplane ¥; = {y € My : y° = t}. An integration hypersurface is a
surface of constant value of the obsevation time parameter. Besides t, the
set of curvilinear coordinates includes the “individual” retarded times t;
and t5, associated with the particles’ worldlines, and the angle variable
. The integration over ¢ is performed in Appendix A and Appendix B.
The crucial issue is that the resulting expressions are the sum of partial
derivatives in individual times (see egs.(5.10) and combination of (5.33)
and (5.36)). It allows us to perform the integration over one of the time
parameters, either ¢1 or t5. “Retarded” shifts in arguments of particles’
individual characteristics such us coordinates, velocities etc. appear on
this stage as well as “advanced” ones.

The first double integral involved in the rules either (5.4) or (5.5)
defines the integration over “causal” region which is pictured in Figs.6
and 7, while the second one deals with “acausal” region (see Figs.8 and
9). The integration of “causal”’ type can be handled via the relations
(D.4)-(D.9). Their counterparts for “acausal” region look as follows:

dtll(tatQ) _1 - ‘/2

= E.].
dto 1+WV (ED)
dts 1+W
dnl [t (t,t2), 2] 1 T N Vi + V.
qll1\bs ) i i 2 i V1 2
e P R E.3
dts q[ Y2 U11+V1 nq1+V1} (E:3)
d(l’lq 'Vl) 1 _21—‘/2
e ) 0 -n .
i . "y _p M+ (vi-vo)]+Vi+ Vs
1=V

— E4
11—|—V1 ( )
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Table 1. Integral fo% V—9T? has the form of 0G;/0t1 + dGa/0ts +
02G /0t 0ty. Integration over time results the expressions in the left
column (if mixed derivative is coupled with dG;1/dt1) or in the right
column (if 92Gy/0t1 0t is added to G /dts). Integration over “acausal”

region gives the functions of the end points only (see third line).

. [@] a9 [%]
0t1 0752 at2 atl
(5.16) — [*dtvi Fft, (1)) | (B6a) — [ O dtyys B[99 (2), 8]
1 1+V, 1] 1 1+V, P ]
4 rTVva 1 4 1TV 1
teies {ng -V, q[i— VZJ B e {Qk? I A vlﬂ s o

ret
(5.20) — [ dtiy E [t 157 (81)] | (E6b) — [* dtayy  FG[EN(t), o]

L 15eL (1) ta=t
11-V, 1 11-Vi 1
+eren {ngl—i-Vz +q[] +Vv2]}l.1—>—oo +ejey {%?1-}—1/1 q[]—i—Vl]j|h_)_OC
ta—t ta=t
(5.24) — G (5.24) ke
2k3 |iymigen Kt Lot
ding-va) _ 1[ L- Ve
dt> g 2 Ty
1-V; :
— (Vi + V- + V. ES5
Wi+ Vi |+ (E:5)

where V, := (n, - v,) and V, := (n, - V,).

The way of integration where all the mixed derivatives are written
as 0/0t1[{0Go/Ota] results the expressions placed in the left columnes of
Tables. We apply the rules (5.16), (5.20) and (5.24) for the 1-st, 2-nd
and 3-rd line, respectively.

If one changes the order of differentiations they obtain the expres-
sions in the right columnes of Tables. For the 1-st and 2-nd lines time
integration rules are as follows:

5 ® -V tr=t§"" (t2)

Vi
— E.
dts |:G1 - G2:| (a), (E.6)
/ 1+ V;
+ Va
dto |:—G1 + G2:| (b)
4 LV mipe )
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Table 2. Integral fo V—9TY, becomes the combination of partial

int
derivatives in time variables. Structure of this Table is analogous to the
structure of Table 1. Table 3. The expressions which are placed above double line concern
with integration of energy density 700, while ones below double line result
d_[0A d |0A ; ; 0i
i [WQ] 3 [WJ from integration of 7},.
_rt ret t2 {O) 1pi [radv Jd |0A J |0A
o b 0 oy Fl () 6] 28] 2%
“+ee +v2 +ee +v1 + vi e L —1 770 ¢ L —1 770 t
1 2k°[1 —Vy  q1 . 1 2k°[1 -l A=Wy, — Sl dtiyr Fyy[te, 5% (t)] — oo dtiyyr Fyy[te, 5% (t)]
t1=t
et _ 1 14+V 1 11+V; 1
— 5 diny By, 15 (1) [ ity F[157 (1), 1) e [%3 T=Te ~ qlT— VQ]L_W e [%? T=V 1=V
) Lotrel(e) ; o=t =14 (v1vy) b=t
+ ’UQ Uy + 7)1 Uy — 1Y2 :|
e [Zko[l +V5] "l + VQ]Lﬁ_w e [Zko[l Vil VJLHO oAl
i taost i i (ta=t - fioo dtayy  F[17° (2), to] - fioo dtyyy P F[H7 (t2), ta]
e n — Uy e n, +v; la=1
12 SRI[T - 2L+ VA, e 1=V, 1 11-V 1
(1 -Va]|, ta=t5°t(t) il 1] ta—t5°4(t) Tee 2691+ Ve g[1+V] teie 2] 1+ V1 1+ V] trs—00
_ -1 + (V1V2) :|L2_>L
q[1 + W][1+ V3] ty——00
Acausal region is integrated according to the rule (5.24) (3-rd line of the g e
. — 5.0 51.0
right column). 2k |y iper 2Ky |y e
Taking into account the relationship (D.12) between work of the “ad- : :
vanced” Lorentz force and the work of the “retarded” one we remove — Lo dtiy 'y [t 57 (t)] — Lo dtiyy [t 157 (1)]
all the “advanced” integrals from these Tables. The final expressions are nt 4 ol i b=t nt 4 o i
i in Table 3 +6162[ P2 2 } +6162[ o — 2
written in Table 3. 21— Va] a1 =VAff, | 2601 — V1] q[1 = V7]
=14 (viva)] nl]tﬁt
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