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Iнтерференцiя спiзнених електромагнетних хвиль,

ґенерованих двома точково-подiбними джерелами

Ю.Г.Яремко

Анотацiя. Обчислено 4-вектор енергiї-iмпульсу, який переносить
електромагнетне поле двох точкових зарядiв. Енергiя та iмпульс,
згенерованi усiма точками свiтових лiнiй частинок аж до моменту,
коли вони перетинають “площину спостереження” y0 = t, розщепленi
на “причастинковi” та радiацiйнi сомпоненти. Виявилось, що радiя-
цiйна частина енергiї-iмпульсу електромагнетного поля мiстить, ок-
рiм Ларморiвських доданкiв, також сумарну роботу по перемiщенню
взаємодiючих зарядiв, виконану силами Лоренца. Тим самим показа-
но, що iнтерференцiя електромагнетних хвиль (спiзнених розв’язкiв
Лiєнара-Вiхерта) веде до взаємодiї мiж зарядами.

Interference of outgoing electromagnetic waves

generated by two point-like sources

Yu.Yaremko

Abstract. An energy-momentum carried by electromagnetic field pro-
duced by two point-like charged particles is calculated. Integration region
considered in the evaluation of the bound and emitted quantities pro-
duced by all points of world lines up to the end points at which particles’
trajectories puncture an observation hyperplane y0 = t. Radiative part
of the energy-momentum contains, apart from usual integrals of Larmor
terms, also the sum of work done by Lorentz forces of point-like charges
acting on one another. Therefore, that the combination of wave motions
(retarded Liénard-Wiechert solutions) leads to the interaction between
the sources.
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1. Introduction

We consider a closed system of two point electric charges and their elec-
tromagnetic field. A charge ea produces an electromagnetic vector po-
tential Aα

a that satisfies the wave equation

�Aα
a = −4πjα

a (1.1)

together with the Lorentz gauge condition ∂αAα
a = 0. The vector jα

a

is the charge’s current density which is zero everywhere, except at the
particle’s position it is infinite. For concreteness we imagine that the
particles are asymptotically free in the remote past.

The dynamics of electromagnetic field is governed by Maxwell equa-
tions with point-like sources. The action of the field of one source on
another is described by Lorentz force. The evolution of a-th particle is
determinated by the relativistic generalization of Newton’s second law
where loss of energy due to radiation is taken into account.

The dynamics of the entire system is governed by the action

S =

2
∑

a=1

(

−ma

∫

dτa

√

−(ża)2 + ea

∫

dτaAa,µżµ
a

)

(1.2)

− 1

16π

∫

d4yfµνfµν

where fµν =
∑

a(∂µAa,ν − ∂νAa,µ). (a-th point particle carries electric
charge ea and moves on a world line ζa described by functions zµ

a (τa), in
which τa is an evolution parameter; żµ

a := dzµ
a /dτa.) Variation on field

variables Aα
a yields the Maxwell equations. Liénard-Wiechert fields are

the solutions of Maxwell equations with point-like sources.
Since the field fa,µν := ∂µAa,ν − ∂νAa,µ generated by a-th source

has a singularity on its world line, demanding that the total action (1.2)
be stationary under a variation δzµ

a (τa) of the world line does not give
sensible motion equations. To make sense of the retarded field’s action on
the particle we should perform the so-called renormalization procedure.
It involves manipulation of the divergent self-energy of a point charge.
As usual, the infinite Coulomb-like term is linked with the “bare” mass
ma, so that the renormalized mass of particle is considered to be finite.

The principle of least action (1.2) is invariant under ten infinitesi-
mal transformations which constitute the Poincaré group. According to
Noether’s theorem, these symmetry properties imply conservation laws,
i.e. those quantities that do not change with time. In his classical pa-
per [1], Dirac used retarded Liénard-Wiechert solution in the law of
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Figure 1. The regularization procedure can be performed in two different
ways: (i) one when Green’s functions are used in variational equations
of motion; (ii) the other when wave solutions are substituted for field
variables in Noether conservation laws.

conservation of the total four-momentum of a composite (one particle
plus field, its own and external) system. It provides the foundation for
his derivation of the radiation-reaction force. López and Villarroel [2]
substitute the retarded Liénard-Wiechert field in the angular momen-
tum conserved quantity which arises from the invariance of the system
under space rotations and Lorentz transformations. The authors arrive
at the angular momentum balance equations which is consistent with
the Lorentz-Dirac equation.

To find out Noether quantities Gα
em carried by electromagnetic field

we integrate the Maxwell stress-energy tensor and angular momentum
tensor density over a space-like three-surface [3–6]. We obtain terms
of two quite different types: (i) bound, Gα

bnd, which are permanently
“attached” to the sources and carried along with them; (ii) radiative,
Gα

rad, which detach themselves from the charges and lead independent
existence (see Fig.2). Within regularization procedure the bound terms
are coupled with energy-momentum and angular momentum of “bare”
sources, so that already renormalized characteristics Gα

part of charged
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Figure 2. The bound term Gα
bnd and the radiative term Gα

rad constitute
Noether quantity Gα

em carried by electromagnetic field. The former di-
verges while the latter is finite. Bound component depends on instant
characteristics of charged particles while the radiative one is accumulat-
ed with time. The form of the bound term heavily depends on choosing
of an integration surface Σ while the radiative term does not depend on
Σ.

particles are proclaimed to be finite. Noether quantities which are prop-
erly conserved become:

Gα = Gα
part + Gα

rad. (1.3)

Recently [4] a frontal collision of two asymptotically free charges has
been considered. We have calculated how much electromagnetic field
momentum and angular momentum flow across hyperplane Σt = {y ∈
M4 : y0 = t}. The crucial issue is that the Maxwell energy-momentum
tensor density of entire system

4πT µν = fµλfν
λ − 1/4ηµνfκλfκλ (1.4)

is the sum of individual “one-particle” densities and an “interference”
term:

T µν = T µν
(1) + T µν

(2) + T µν
int

. (1.5)

An intrigue feature is that the radiative contribution from the combina-
tion of the retarded Liénard-Wiechert fields

4πT µν
int

= fµλ
(1)f

ν
(2)λ + fµλ

(2)f
ν
(1)λ − 1/4ηµν

(

fκλ
(1)f

(2)
κλ + fκλ

(2)f
(1)
κλ

)

(1.6)
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is then nothing but the sum of work done by Lorentz forces of point-like
charges acting on one another. Therefore, an interference of outgoing
electromagnetic waves in an observation hyperplane Σt leads to the in-
teraction between the collided sources. (The differentiation of energy-
momentum conserved quantity gives the relativistic generalization of
Newton’s second law [5].) This observation gives us an alternative in-
terpretation for the label “int”: it stands for “interaction” as well as “in-
terference”.

In this paper we study a closed system of two arbitrarily moving

point-like charges which are asymptotically free in the remote past. The
expressions for work done by (retarded) Lorentz forces will be obtained
via the rigorous integration of interference parts (1.6) of energy and
momentum densities (1.5) over three-dimensional hyperplane Σt.

2. Preliminaries

We choose metric tensor ηµν = diag(−1, 1, 1, 1) for Minkowski space
M4. We use Heaviside-Lorentz system of units with the velocity of light
c = 1. Summation over repeated indices is understood throughout the
paper; Greek indices run from 0 to 3, and Latin indices from 1 to 3. The
particles’ coordinates, velocities etc are labelled a or b.

We consider an arbitrarily moving particles which are asymptotically
free in the remote past. Average velocities are not large enough to initiate
particle creation and annihilation.

We suppose that the components of momentum four-vector carried
by electromagnetic field of particles are [7]

pν
em(t) = P

∫

Σt

dσµT µν , (2.1)

where dσµ is the vectorial surface element on a observation hyperplane

Σt = {y ∈ M4 : y0 = t}. Particles’ world lines

ζa : R → M 4

t 7→ (t, zi
a(t)) (2.2)

are meant as local sections of trivial bundle (M 4, i, R) where the projec-
tion

i : M 4 → R

(y0, yi) 7→ y0 (2.3)

defines the instant form of dynamics [8].
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By T µν we denote the components of the Maxwell energy-momentum
density (1.4) where field strengths fµν are the sum of the retarded
Liénard-Wiechert solutions fµν

(1) and fµν
(2) associated with the first and

second particles, respectively. So, the total electromagnetic field stress-
energy tensor (1.4) becomes the sum (1.5) where the T µν

(a) term is given

by the expression (1.4) where “total” field strengths fµν are replaced by
“individual” ones fµν

(a). The interference term (1.6) describes the combi-

nation of the outgoing electromagnetic waves.
The components T µν have singularities on particles’ trajectories. In

equations (2.1) capital letter P denotes the principal value of the singu-
lar integral, defined by removing from Σt an εa-sphere around the a-th
particle and then passing to the limit εa → 0.

3. “Interference” coordinate system

The main goal of the present paper is to compute the interference parts
of Poincaré group conserved quantities carried by radiation. To perform
the volume integration an appropriate coordinate system for flat space-
time is necessary.

3.1. Local expressions

The interference terms of energy-momentum and angular momentum at
point y ∈ M4 depend on the state of the charges’ motion at the instants
t1 and t2 at which their world lines intersect the past light cone (see
Fig.3). Coordinates of an observation point y are given by

yα = zα
a (ta) + Kα

a (3.1)

where Kα
a is the null vector pointing from za(ta) ∈ ζa to y. Our next task

is to find out local expressions for the “light-cone mapping” [9] pictured
in Fig.3. We generalise coordinate system presented in [4] where a frontal
collision is considered.

The set of curvilinear coordinates contains the “laboratory” time t as
well as both the “retarded” times t1 and t2. The “laboratory” is a single
common parameter defined along all the world lines of the system. To
find out local expressions for the components of null-vectors K1 and
K2 we consider an interference of outgoing electromagnetic waves in
hyperplane Σt (see Fig.4). By this we mean the intersection of spherical
fronts S1(O1, t − t1) and S2(O2, t − t2) pictured in Fig.4. It is the circle
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Figure 3. The past light cone with vertex at point y ∈ Σt is punctured
by the world lines of the 1-st particle and the 2-nd particle at points
z1(t1) and z2(t2), respectively. The vector Kα

a is a null vector pointing
from za(ta) = (ta, zi

a(ta)) to y.

C(O, h) centred at point

Z =
1

2

[

z1(t1) + z2(t2)
]

+
(t1 − t2)(2t − t1 − t2)

2q2

[

z1(t1) − z2(t2)
]

. (3.2)

Since |O1O| = |Z− z1| and |OO2| = |Z− z2|, the square of the radius h
of the circle can be expressed in the following alternative ways:

h2 = (t − t1)
2 − |Z − z1|2

= (t − t2)
2 − |Z − z2|2. (3.3)

The characteristics of the circle are obtained from analysis of the triangle
O1O2H with sides |O1H | = t−t1, |O2H | = t−t2, and |O1O2| = |z1(t1)−
z2(t2)| := q.

To define the coordinates of the points of the circle we translate the
origin at the centre (3.2) of the circle C(O, h) and then rotate space axes
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Figure 4. The sphere S1(O1, t− t1) is the intersection of the future light
cone with vertex at point z1(t1) ∈ ζ1 and hyperplane Σt. The sphere
S2(O2, t − t2) is the intersection of Σt and the forward light cone of
z2(t2) ∈ ζ2. Intersection S1∩S2 is the circle C(O, h) with radius |OH | :=
h. It contains an observation point y ∈ Σt (see Fig.3).

till new z-axis be directed along three-vector q := z1 − z2 (see Fig.5).
Orthogonal matrix

ω =





cosϕq − sinϕq 0
sin ϕq cosϕq 0

0 0 1









cosϑq 0 sinϑq

0 1 0
− sinϑq 0 cosϑq



 (3.4)

determines the rotation. Finally we obtain coordinate transformation
locally written as

y0 = t

yi = Zi(t, t1, t2) + h(t, t1, t2)ω
i
j(t1, t2)n

j (3.5)

where nj = (sin ϕ, cosϕ, 0). Polar angle ϕ distinguishes the points of
circle C(O, h).

ICMP–04–04E 8

To present the local expressions for the a coordinate system centred

on an accelerated world line of the a-th particle, we rewrite eqs.(3.5) in
a manifestly covariant fashion:

yα = zα
a (ta) + Ωα

α′(t1, t2)k
α′

a . (3.6)

Four components

k0
a = t − ta, k1

a = h sin ϕ, k2
a = h cosϕ, k3

a = (−1)a|Z − za| (3.7)

satisfy the relations (3.3) and, therefore, constitute null-vector ka. Hav-
ing rotated it by orthogonal matrix Ω with components Ω0µ = Ωµ0 =
δµ0, Ωij = ωij we obtain the vector Ka pointing from za(ta) ∈ ζa to
y ∈ Σt (see Fig.3). The orthogonal matrix ω is given by eq.(3.4); it
rotates space axes of the laboratory Lorentz frame (see Fig.5).

Third component of ka is determined by

|Z − za| =
q

2
+ (−1)a (k0

2)
2 − (k0

1)
2

2q
. (3.8)

The characteristics |Z− z1| and |Z− z2| are obtained from the analysis
of the triangle O1O2H with sides |O1H | = t − t1, |O2H | = t − t2 and
|O1O2| = |z1(t1) − z2(t2)| := q; they are pictured in Fig.(5).

3.2. Global mapping

To cover the sphere S1(z1(t1), t− t1) where t1 is fixed we change the pa-
rameter t2. The starting point is the solution tret

2 (t1) of algebraic equa-
tion

t1 − tret
2 = q(t1, t

ret
2 ) (3.9)

which describes the future light cone with vertex at (tret
2 , zi

2(t
ret
2 )) (see

Fig.6). The sphere S2(z
ret
2 , t−tret

2 ) touches a given sphere S1(z1(t1), t−t1)
at point N (see Fig.7). If parameter t2 increases to tadv

2 (t1) being the
solution of algebraic equation

tadv
2 − t1 = q(t1, t

adv
2 ) (3.10)

the intersection S1 ∩ Sadv
2 contains the only point S. Equation (3.10)

looks as the equation of backward light cone of (tadv
2 , zi

2(t
adv
2 )), but it

defines the future light cone with vertex at (t1, z
i
1(t1)) (see Fig.6). The

sphere S1 becomes the disjoint union of circles C(O, h) = S1 ∩ S2 if the
parameter t2 changes from tret

2 (t1) to tadv
2 (t1).
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Figure 5. In “momentarily rotating” Lorentz frame z−axis is directed
along three-vector q. Circle C(O, h) = S1 ∩ S2 lies in Oxy plane; it is
centred at the coordinate origin (cf. Fig.4). Polar angle ϕ distinguishes
an observation point H ∈ C(O, h). Space parts k1 and k2 of null vectors
k1 and k2 are equal to h sin ϕi+h cosϕj+k3

1k and h sin ϕi+h cosϕj+k3
2k,

respectively.

Going along the world line of the first charge we arrive unavoidably
at the point tret

1 (t) being the solution of the algebraic equation

t − tret
1 = q(tret

1 , t). (3.11)

The forward light cone of this point touches the world line of second
charge at point (t, zi

2(t)) (see Fig.8). Light cones of upper vertices do not
intersect the second world line at all. Spheres S1(z1(t1), t−t1) determined
by t1 ∈ [tret

1 (t), t] constitute the region of hyperplane Σt which requires
another parametrization. For a given instant t1 from this interval the
point S (see Fig.9) is associated with the solution t′2(t1) of the following
equation:

2t − t1 − t′2 = q(t1, t
′
2) . (3.12)

The point N in this figure is still connected with the solution tret
2 (t1) of

equation (3.9).
So, we construct the global coordinate system centred on the world

line of the first particle. It bases on the trivial fibre bundle (2.3). A fibre
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Figure 6. For a given t1 the retarded time t2 increases from tret

2 (t1) to
tadv
2 (t1). Minimal value tret

2 (t1) labels the vertex of forward light cone
which is punctured by the world line of the first charge at a given point
(t1, z

i
1(t1)). The world line of the second charge punctures the future

light cone of this point at point (tadv
2 (t1), z

i
2(t

adv
2 )).

Σt is a disjoint union of retarded spheres S1 centred on the world line of
the first particle. A sphere is parametrized by the retarded time of the
second particle and the polar angle. Locally the coordinate transforma-
tion is given by equations (3.5).

In an analogous way we construct the coordinate system centred
on the world line of the second particle. If t2 ∈] − ∞, tret

2 (t)] then
t1 ∈ [tret

1 (t2), t
adv
1 (t2)]; if t2 ∈ [tret

2 (t), t] then t1 ∈ [tret
1 (t2), t

′
1(t, t2)],

ϕ ∈ [0, 2π[. The ends of intervals are defined by the following algebraic
equations:

t2 − tret
1 = q(tret

1 , t2) (3.13)

tadv
1 − t2 = q(tadv

1 , t2) (3.14)

t − tret
2 = q(t, tret

2 ) (3.15)
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Figure 7. The sphere S2(O
ret
2 , t − tret

2 ) is the intersection of the future
light cone at (tret

2 , zi
2(t

ret
2 )) and Σt. It touches a given sphere S1(O1, t−t1)

at point N . The sphere S2(O
adv
2 , t− tadv

2 ) touches S1(z1, t− t1) at point
S. If retarded time t2 increases from tret

2 (t1) to tadv
2 (t1) the sphere S1

is covered by circles C(O, h) = S1 ∩ S2. (A circle S1 ∩ S2 is pictured in
Figs.4,5.)

2t − t′1 − t2 = q(t′1, t2) . (3.16)

It is worth noting that the functions tret
1 (t2) and tadv

2 (t1) are inverted
to each other as well as the pair of functions tadv

1 (t2) and tret
2 (t1) (see

Fig.11). For a fixed observation time t the functions t′1(t, t2) and t′2(t, t1)
are inverses too.
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Figure 8. The forward light cone of (tret
1 (t), zi

1(t
ret
1 )) touches the second

world line at the instant of observation. Future light cones of upper
vertices do not intersect it at all. For a given t1 ∈ [tret

1 (t), t] the parameter
t2 increases from tret

2 (t1) to t′2(t, t1). The maximal value t′2(t, t1) labels
the vertex of future light cone which touches the forward light cone of
(t1, z

i
1(t1)). The minimal value of t2 is the solution tret

2 (t1) of equation
(3.9).

4. Electromagnetic fields in terms of “interference”

coordinates

Electromagnetic field generated by a−th particle is given by [9, eq.(5.2)]

f
(a)
αβ = ea

ua,αka,β − ua,βka,α

(ra)2
[1 + ra(ka · aa)]

+ ea
aa,αka,β − aa,βka,α

ra
. (4.1)

We use sans-serif symbols for the retarded distance [9, 10]

ra(y) = −ηαβ(yα − zα(ta))uβ(ta), (4.2)
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Figure 9. For a given t1 ∈ [tret
1 (t), t] the sphere S1(O1, t− t1) is a disjoint

union of circles C(O, h) = S1 ∩S2. Their radius h and centre coordinate
Z are determined by t2. The parameter t2 increases from tret

2 (t1) (circle
S2(O

ret
2 , t − tret

2 )) to t′2(t, t1) (circle S2(O
′
2, t − t′2)); ϕ ∈ [0, 2π].

and for the null vector Ka rescaled by a factor r
−1
a :

k
α
a =

1

ra
[yα − zα

a (ta)] . (4.3)

To rewrite expression (4.1) in terms of “interference” curvilinear coordi-
nates consisting of the common evolution parameter t, individual times
t1 and t2, and angle variable ϕ, it is advantageous to replace proper time
τa by evolution parameter ta. The components of particles’ 4-velocities
ua and 4-accelerations aa, a = 1, 2, become [7]

uµ
a = γavµ

a (ta) (4.4)

aµ
a = γ4

a(va · v̇a)vµ
a + γ2

av̇µ
a (4.5)

ICMP–04–04E 14

where 4-vectors vµ
a = (1, vi

a(ta)), v̇µ
a = (0, v̇i

a(ta)) and factor γa :=
[1 − v2]−1/2. After some algebra, using the relation k

µ
a = Kµ

a /ra, we
obtain

f
(a)
αβ = ea

vα(ta)Ka,β − vβ(ta)Ka,α

r3
a

ca

+ ea
v̇α(ta)Ka,β − v̇β(ta)Ka,α

r2
a

(4.6)

where
ca = γ−2

a + (Kav̇a), ra = K0
a − (Kava). (4.7)

Having used differential chart (5.2), one can derive the electromag-
netic field (4.6) from Liénard-Wiechert potential

A(a)
α = ea

uα(ta)

ra(y)
(4.8)

via the relations f
(a)
αβ = A

(a)
β,α − A

(a)
α,β .

5. Interference part of electromagnetic field

four-momentum

Now, we calculate the interference part of the energy and momentum
carried by “two-particle” electromagnetic field:

pµ
int

(t) =

∫

Σt

dσ0T
0µ
int

. (5.1)

An integration hypersurface Σt = {y ∈ M4 : y0 = t} is a surface of
constant t. The surface element is given by dσ0 =

√−gdt1dt2dϕ where√−g is the determinant of metric tensor of Minkowski space viewed in
curvilinear coordinates (3.5). Differentiation of coordinate transforma-
tion (3.5) yields differential chart
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Its Jacobian gives the determinant of metric tensor mentioned above

√−g =
r1r2

q
. (5.3)

The volume integration (5.1) can be performed via the coordinate
system centred on a world line either of the first particle







tret

1
(t)

∫

−∞

dt1

tadv

2
(t1)

∫

tret

2
(t1)

dt2 +

t
∫

tret

1
(t)

dt1

t′
2
(t,t1)
∫

tret

2
(t1)

dt2







∫ 2π

0

dϕ
r1r2

q
(5.4)

or of the second particle






tret

2
(t)

∫

−∞

dt2

tadv

1
(t2)

∫

tret

1
(t2)

dt1 +

t
∫

tret

2
(t)

dt2

t′
1
(t,t2)
∫

tret

1
(t2)

dt1







∫ 2π

0

dϕ
r1r2

q
. (5.5)

The end points of these integrals arise from the interference pictured in
Figs.4-9.

5.1. Interference part of zeroth component

In this subsection we trace a series of stages in calculation of the volume
integral

p0
int

=

∫

Σt

dσ0T
00
int

. (5.6)

In Appendix A we perform the computation in detail.
It is straightforward to substitute the components (4.6) into equation

(1.6) to calculate the interference part of electromagnetic field stress-
energy tensor. We obtain the following energy density:

4πT 00
int

=
e1e2

r1r2

(

∂2Γ0

∂t1∂t2

1

r1r2
+

∂Γ0

∂t1

c2

r1(r2)
2 (5.7)

+
∂Γ0

∂t2

c1

(r1)
2r2

+ Γ0
c1c2

(r1)
2(r2)

2

)
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where function

Γ0 = κ
∂2κ

∂t1∂t2
− ∂κ

∂t1

∂κ

∂t2
, κ =

1

2
(k0

1 + k0
2)

2 − 1

2
q2 (5.8)

does not depend on angle variable at all.
Taking into account the specific structure of the expression (5.7)

which contains the partial derivatives we rewrite the integrand
√−gT 00

int

as follows:

4π

e1e2

r1r2

q
T 00

int =
∂2

∂t1∂t2

(

Γ0

qr1r2

)

(5.9)

+
∂

∂t1

{

Γ0

[

c2

qr1(r2)2
− ∂

∂t2

(

1

qr1r2

)]}

+
∂

∂t2

{

Γ0

[

c1

q(r1)2r2
− ∂

∂t1

(

1

qr1r2

)]}

+ Γ0

[

c1c2

q(r1)2(r2)2
− ∂

∂t1

(

c2

qr1(r2)2

)

− ∂

∂t2

(

c1

q(r1)2r2

)

+
∂2

∂t1∂t2

(

1

qr1r2

)]

.

First of all we should perform the integration over ϕ (see integration
rules (5.4) and (5.5)). The crucial issue is that the integral of the brack-
eted expression (that which is proportional to Γ0) over ϕ vanishes (see
Appendix A). Hence the integral of (5.9) over the angle variable has the
remarkable properties of being the sum of partial derivatives:

2π
∫

0

dϕ
r1r2

q
T 00

int =
e1e2

2

{

∂2(Γ0D0)

∂t1∂t2
+

∂

∂t1

[

Γ0

(

B0 −
∂D0

∂t2

)]

+
∂

∂t2

[

Γ0

(

C0 −
∂D0

∂t1

)]}

. (5.10)

Here

D0 =
1

2π

2π
∫

0

dϕ
1

qr1r2
, B0 =

1

2π

2π
∫

0

dϕ
c2

qr1(r2)2
, (5.11)

C0 =
1

2π

2π
∫

0

dϕ
c1

q(r1)2r2
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where ra and ca are given by eqs.(4.7).
It is natural to integrate the expression being the time derivative

with respect to t1 according to the rule (5.5). The result is







tret

1
(t)

∫

−∞

dt1

tadv

2
(t1)

∫

tret

2
(t1)

dt2 +

t
∫

tret

1
(t)

dt1

t′
2
(t,t1)
∫

tret

2
(t1)

dt2







∂G2(t1, t2)

∂t2

=

tret

1
(t)

∫

−∞

dt1G2[t1, t
adv
2 (t1)] −

t
∫

−∞

dt1G2[t1, t
ret
2 (t1)]

+

t
∫

tret

1
(t)

dt1G2[t1, t
′
2(t, t1)]. (5.12)

Having applied the rule (5.4) to the expression of type ∂G1/∂t1, we
obtain







tret

2
(t)

∫

−∞

dt2

tadv

1
(t2)

∫

tret

1
(t2)

dt1 +

t
∫

tret

2
(t)

dt2

t′
1
(t,t2)
∫

tret

1
(t2)

dt1







∂G1(t1, t2)

∂t1

=

tret

2
(t)

∫

−∞

dt2G1[t
adv
1 (t2), t2] −

t
∫

−∞

dt2G1[t
ret
1 (t2), t2]

+

t
∫

tret

2
(t)

dt2G1[t
′
1(t, t2), t2] (5.13)

The double derivative involved in eq.(5.10) can be written in the form
either

∂

∂t1

[

∂G0

∂t2

]

(5.14)

or
∂

∂t2

[

∂G0

∂t1

]

. (5.15)

Now we choose (5.14) and add this term to ∂G1/∂t1.
Therefore, the end points are valuable only in the integration proce-

dure either (5.4) or (5.5). The retarded instant, tret
a (tb), and advanced

one, tret
a (tb), (a 6= b) arise naturally as the limits of integrals. They label
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the points S and N in which fronts of outgoing electromagnetic waves
produced by e1 and e2 touch each other (see Figs.7 and 9). Triangle
O1O2H (see Fig.5) reduces to the line at these moments.

An essential feature of integration is that the functions tadv
1 (t2) and

tret
2 (t1) are inverted to each other (see Fig.11). This cicumstance allows

us to change the variables in the “advanced” integral involved in eq.(5.13).
Further we couple it with the “retarded” integral of eq.(5.12). We obtain

t
∫

−∞

dt1

[

1 − V1

1 − V2
G1 − G2

]

t2=tret

2
(t1)

(5.16)

where
Va := (nqva). (5.17)

Scrupulous calculation results the terms of two quite different types: (i)
this depends on all previous evolution of the 1-st charge

−
t
∫

−∞

dt1γ
−1
1 F 0

21[t1, t
ret
2 (t1)] (5.18)

(ii) those determinated by the state of particles’ motion at the observa-
tion instant only:

e1e2

[

1 + V2

2[t − tret
2 (t1)](1 − V2)

− 1

q[t1, tret
2 (t1)](1 − V2)

]t1=t

t1→−∞

= − e1e2

2[t − tret
2 (t)]

(5.19)

(see Appendix E, Table 1, left column, first line). The integral (5.18)
over world line ζ1 is then nothing but the zeroth component of the work
done by “retarded” Lorentz force acting on the first charge.

It is reasonable that, starting with the retarded Liénard-Wiechert
solutions, we obtain the retarded direct field due the 2-nd charge on the
1-st one. A surprising feature is that we can arrive at the expression
for the advanced direct field within the framework of retarded causality.
E.g., one can perform change of variables (tret

1 (t2), t2) 7→ (t1, t
adv
2 (t1)) in

the retarded integral involved in eq.(5.13) and then couple it with the
advanced expression from eq.(5.12):

tret

1
(t)

∫

−∞

dt1

[

G2 −
1 + V1

1 + V2
G1

]t2=tadv

2
(t1)

. (5.20)



19 Препринт

Having integrated (5.20), we obtain the work done by advanced Lorentz
force due to the 2-nd charge plus functions of momentary positions of
particles:

−
tret

1
(t)

∫

−∞

dt1γ
−1
1 F 0

21[t1, t
adv
2 (t1)] +

[

1

2k0
2

1 − V2

1 + V2
(5.21)

+
1

q[1 + V2]

]t1→tret

1
(t)

t1→−∞

(see Appendix E, Table 1, left column, second line). The matter is that
the integral of advanced force due to 2-nd charge over worldline ζ1 is
intimately connected with integral of the retarded force due to 1-st charge
over ζ2:

t
∫

−∞

dt2γ
−1
2 F 0

12[t
ret
1 (t2), t2] −

tret

1
(t)

∫

−∞

dt1γ
−1
1 F 0

21[t1, t
adv
2 (t1)]

= −e1e2

[ −1 + (v1 · v2)

q[1 + V1][1 + V2]
+

1

q[1 + V1]
+

1

q[1 + V2]

]t2=t

t2→−∞

(5.22)

(see Appendix D, eq.(D.11)). Therefore, the advanced expression can be
replaced by the retarded one plus functions of momentary positions of
particles (see Appendix E, Table 2, left column, second line).

Now we consider the last terms in both eq.(5.13) and eq.(5.12). Since
the functions t′1(t, t2) and t′2(t, t1) are inverses, the sum of these integrals
can be written in the form either

t
∫

tret

1
(t)

dt1

[

G2 +
1 + V1

1 − V2
G1

]t2=t′
2
(t,t1)

(5.23)

or
t
∫

tret

2
(t)

dt2

[

G1 +
1 − V2

1 + V1
G2

]t1=t′
1
(t,t2)

. (5.24)

Both the expressions result the same function of the end points only:

− 1

2(t − t2)

∣

∣

∣

∣

t2→t

t2=tret

2
(t)

= − lim
t2→t

e1e2

2(t − t2)
+

e1e2

2[t − tret
2 (t)]

(5.25)

ICMP–04–04E 20

(see Appendix E, Table 1, left column, third line).
Summing up all the contributions (5.18), (5.19), (5.21) where (5.22)

is taken into account, and (5.25) we obtain the expression

p0
int = −

∑

b6=a

t
∫

−∞

dtaγ−1
a F 0

ba(ta, tret
b (ta)) (5.26)

− e1e2

q[tret
1 (t), t]

(v2 · v1) + V2

[1 + V1] [1 + V2]
− lim

t2→t

e1e2

t − t2

V2

1 + V2

Now we take the double derivative in the form (5.15) and add it to
∂G2/∂t2. Analogous calculations give

p0
int = −

∑

b6=a

t
∫

−∞

dtaγ−1
a F 0

ba(ta, tret
b (ta)) (5.27)

− e1e2

q[t, tret
2 (t)]

(v1 · v2) − V1

[1 − V1] [1 − V2]
+ lim

t1→t

e1e2

t − t1

V1

1 − V1
.

(see Appendix E, Table 1, right column).
Having compared eq.(5.26) with (5.27) we are sure that the calcula-

tions result the “immovable core” which describes the action of the fields
due to one charge on another, and “changeable shell” which expresses the
deformation of electromagnetic “clouds” of charged particles due to mu-
tual interaction. Only the immovable terms should be taken into account
in the total energy balance equation.

5.2. Interference part of space components

To calculate interference part pi
int of electromagnetic field momentum

pi
em we have to integrate the expression

4πT 0i
int = f0j

(1)f
i
(2)j + f0j

(2)f
i
(1)j (5.28)

over three-dimensional hyperplane y0 = t. The electromagnetic field
components are given in Section 3.

According to the integration rules (5.4) and (5.5), first of all we per-
form the angle integration. Then integrand (5.28) looks as follows:

2

e1e2

2π
∫

0

dϕ
√−gT 0i

int = (5.29)
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= Ai
2

[

k0
1

∂2λ

∂t1∂t2
+

∂λ

∂t2

]

+ Ci
2

[

k0
1

∂3λ

∂t1∂t22
+

∂2λ

∂t22

]

+ Bi
2k

0
1

∂3λ

∂t21∂t2
+ Di

2k
0
1

∂4λ

∂t21∂t22

+ Ai
1

[

k0
2

∂2λ

∂t1∂t2
+

∂λ

∂t1

]

+ Ci
1k

0
2

∂3λ

∂t1∂t22

+ Bi
1

[

k0
2

∂3λ

∂t21∂t2
+

∂2λ

∂t21

]

+ Di
1k

0
2

∂4λ

∂t21∂t22

+ A0

[

λ(vi
1 + vi

2) + k0
2v

i
1

∂λ

∂t2
+ k0

1v
i
2

∂λ

∂t1

]

+ C0

[

λv̇i
2 + k0

2v
i
1

∂2λ

∂t22
+ k0

1 v̇
i
2

∂λ

∂t1

]

+ B0

[

λv̇i
1 + k0

1v
i
2

∂2λ

∂t21
+ k0

2 v̇
i
1

∂λ

∂t2

]

+ D0

[

k0
2 v̇i

1

∂2λ

∂t22
+ k0

1 v̇
i
2

∂2λ

∂t21

]

where
λ = 1/2

[

(k0
1 − k0

2)
2 − q2

]

. (5.30)

Calligraphic letters A,B, C and D denote the following integrals over ϕ:

Ai
b =

1

2π

2π
∫

0

dϕKi
b

c1c2

q(r1)2(r2)2
, Bi

b =
1

2π

2π
∫

0

dϕKi
b

c2

qr1(r2)2
,

Ci
b =

1

2π

2π
∫

0

dϕKi
b

c1

q(r1)2r2
, Di

b =
1

2π

2π
∫

0

dϕKi
b

1

qr1r2
, (5.31)

where ra and ca are given by eqs.(4.7). Functions B0, C0 and D0 are
defined by eqs.(5.11) and function A0 is

A0 =
1

2π

2π
∫

0

dϕ
c1c2

q(r1)2(r2)2
. (5.32)

After some algebra one can rewrite the terms which involve Ai
b,Bi

b, Ci
b

and Di
b (see the 1-st and the 2-nd lines of eq.(5.29) as follows:

∂

∂t1

[

Λb

(

Bi
b −

∂Di
b

∂t2

)]

+
∂

∂t2

[

Λb

(

Ci
b −

∂Di
b

∂t1

)]

+
∂2(ΛbDi

b)

∂t1∂t2
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+ Λb

(

Ai
b −

∂Bi
b

∂t1
− ∂Ci

b

∂t2
+

∂2Di
b

∂t1∂t2

)

. (5.33)

Here

Λ1 = k0
2

∂2λ

∂t1∂t2
+

∂λ

∂t1
, Λ2 = k0

1

∂2λ

∂t1∂t2
+

∂λ

∂t2
. (5.34)

Routine scrupulous calculations performed in Appendix B explain that
the “non-derivative tails” in eq.(5.33) are proportional to three-velocities:

Ai
1 −

∂Bi
1

∂t1
− ∂Ci

1

∂t2
+

∂2Di
1

∂t1∂t2
= vi

1(t1)

(

B0 −
∂D0

∂t2

)

(5.35)

Ai
2 −

∂Bi
2

∂t1
− ∂Ci

2

∂t2
+

∂2Di
2

∂t1∂t2
= vi

2(t2)

(

C0 −
∂D0

∂t1

)

.

We add them to the part of integrand (5.29) which involve “zeroth”
functions A0,B0, C0, and D0. It is now straightforward (but tedious)
matter to rewrite it as the following sum of partial derivatives:

∂

∂t1

[

Λi
2

(

B0 −
∂D0

∂t2

)]

+
∂

∂t2

[

Λi
2

(

C0 −
∂D0

∂t1

)]

(5.36)

+
∂2(Λi

2D0)

∂t1∂t2
− ∂(vi

2Λ2D0)

∂t1

+
∂

∂t1

[

Λi
1

(

B0 −
∂D0

∂t2

)]

+
∂

∂t2

[

Λi
1

(

C0 −
∂D0

∂t1

)]

+
∂2(Λi

1D0)

∂t1∂t2
− ∂(vi

1Λ1D0)

∂t2

+
∂

∂t1

[

λ
(

vi
1 + vi

2

)

(

B0 −
∂D0

∂t2

)]

+
∂

∂t2

[

λ
(

vi
1 + vi

2

)

(

C0 −
∂D0

∂t1

)]

+
∂2

∂t1∂t2

[

λ
(

vi
1 + vi

2

)

D0

]

(We keep in mind the identity (A.40)). Recall that Λ1, Λ2 are given by
eq.(5.34) and

Λi
1 = vi

1k
0
2

∂λ

∂t2
, Λi

2 = vi
2k

0
1

∂λ

∂t1
. (5.37)

Therefore, the integrand (5.29) also becomes the combinations of
partial derivatives with respect to time variables, namely the sum of
the expressions written in the first line of eq.(5.33) for both b = 1 and
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b = 2, and eq.(5.36). Now we apply the integration procedure developed
in previous subsection.

Each double derivative involved in (5.29) can be integrated according
to the rule either (5.4) or (5.5). There are five terms of this type in this
expression. This circumstance implies ten possible ways of integrations.
In Appendix E we study two of them in detail (see Table 2 and Table
3).

Firstly we write all the double derivatives in the form (5.14). The
integration gives

pi
int = −

∑

b6=a

t
∫

−∞

dtaγ−1
a F i

ba(ta, tret
b (ta)) (5.38)

+
e1e2

q[tret
1 (t), t]

[−1 + (v1 · v2)] n
i
q[t

ret
1 (t), t]

[1 + V1] [1 + V2]

− e1e2

q[tret
1 (t), t]

vi
1[t

ret
1 (t)]

1 + V1

+ lim
t2→t

e1e2

t − t2

{

ni
q[t

ret
1 (t2), t2] − vi

2(t2)
}

V2

1 − (V2)2

Secondly, we express all the mixed derivatives in the form (5.14). We
obtain

pi
int = −

∑

b6=a

t
∫

−∞

dtaγ−1
a F i

ba(ta, tret
b (ta)) (5.39)

− e1e2

q[t, tret
2 (t)]

[−1 + (v1 · v2)] n
i
q[t, t

ret
2 (t)]

[1 − V1] [1 − V2]

− e1e2

q[t, tret
2 (t)]

vi
2[t

ret
2 (t)]

1 − V2

+ lim
t1→t

e1e2

t − t1

{

ni
q[t1, t

ret
2 (t1)] + vi

1(t1)
}

V1

1 − (V1)2

Comparing eq.(5.38) with eq.(5.39), we are sure that the form of func-
tions of momentary positions of particles heavily depend on the method
of integration. It reinforce our conviction that the changeable “shell”
expresses the deformation of electromagnetic “clouds” of “bare” charges
due to mutual interaction. Thus only the immovable “core”, i.e. sum of
work done by Lorentz forces of point-like charges acting on one another,
possesses relevant physical sense.
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6. Conclusions

Inspection of the energy-momentum carried by the electromagnetic field
of two point-like charged particles reveals the essence of renormal-
ization procedure in classical electrodynamics. Volume integration of
Maxwell energy-momentum tensor density over three-dimensional hyper-
plane y0 = t gives terms of two quite different types: (i) these depend on
the state of the particles’ motion in the vicinity of the instant of observa-
tion t; (ii) those depend on all previous time development of the sources.
The former involves diverging quantities while the latter contains finite
terms only. Structure of the quantities which are accumulated with time
does not depend on choice of integration three-surface while the form of
“instant” expression heavily depends on the way of integration.

“Instant” terms are permanently attached to the charges and are
carried along with them. By this we mean that a charged particle cannot
be separated from its bound electromagnetic “cloud” which has its own
4-momentum [11]. This quantity together with 4-momentum of “bare”
charge constitute the finite 4-momentum of “dressed” charged particle.
(Note that the electromagnetic “clouds” of sources are deformed due to
mutual interaction.) All diverging quantities have thus disappeared into
the process of energy-momentum renormalization.

The terms which are accumulated with time lead to independent ex-
istence. They constitute the radiative part of energy-momentum carried
by “two-particle” field. It consists of the integrals of individual Larmor
relativistic rates over corresponding world lines and the work done by
Lorentz forces of point-like charges acting on one another.

The situation considered here, in which the radiation is propagat-
ing outward, breaks the time-reversal invariance of Maxwell’s theory.
Choosing the retarded solution of wave equation (1.1) as the physically-
relevant solution, we adopt a specific time direction, when an interference

of outgoing electromagnetic waves leads to the interaction between the
sources. The interference are pictured in a fixed observation hyperplane
Σt = {y ∈ M4 : y0 = t}. To restore time-reversal invariance we take the
limit t → +∞ and suppose that particles are asymptotically free in the
distant future. The relation (D.12) takes the form

+∞
∫

−∞

dtaγ−1
a Fµ

ba[ta, tret
b (ta)] =

+∞
∫

−∞

dtbγ
−1
b Fµ

ab[t
adv
a (tb), tb]. (6.1)

The work done by retarded Lorentz force of b-th charge over entire world
line of a-th one is equal to the work done by advanced Lorentz force of a-
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Figure 10. To restore time-reversal invariance we locate the observation
hyperplane y0 = t in the distant future. We suppose that particles are
asymptotically free.

th particle acting on b-th charge backward in time! The sum of “retarded”
works involved in the total energy-momentum of our closed (two particles
plus field) system

+∞
∫

−∞

dt1γ
−1
1 Fµ

21[t1, t
ret
2 (t1)] +

+∞
∫

−∞

dt2γ
−1
2 Fµ

12[t
ret
1 (t2), t2], (6.2)

may be replaced by the linear superposition

1

2





+∞
∫

−∞

dt1γ
−1
1

(

Fµ
21[t1, t

ret
2 (t1)] + Fµ

21[t1, t
adv
2 (t1)]

)

+

+∞
∫

−∞

dt2γ
−1
2

(

Fµ
12[t

ret
1 (t2), t2] + Fµ

12[t
adv
1 (t2), t2]

)



 (6.3)

which restore time-reversal invariance. Indeed, the retarded Lorentz force
Fµ

ba[ta, tret
b (ta)] becomes the advanced one Fµ

ba[ta, tadv
b (ta)] (and vice ver-

sa) if the time direction is reversed. But the retarded causality is still
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not violated. We consider the interference of outgoing waves at distant
future instead of a picture in which the radiation is propagated inward.

The situation looks as that described by Wheeler and Feynman [12]
where the absorber theory of radiation is elaborated. The basic assump-
tion is that the fields which act on a given particle are represented by
one-half the retarded plus one-half the advanced Liénard-Wiechert solu-
tions of wave equations. To disappear “incoming” radiation, the authors
introduce a perfect absorber which cancels the (acausal) advanced part
of the fields acting on a given particle and doubles the retarded one.

Our emphasis is on rigorous calculations and exact solutions based
on standard electrodynamics. It allows us to substitute the phenomenon
of interference of outgoing electromagnetic waves for acausal mechanism
of perfect absorbtion in time-symmetric action-at-a distance electrody-
namics. The interference of outgoing electromagnetic waves (retarded
Liénard-Wiechert solutions) ensures the action of the field of one source
on another (mutual interaction).
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A. Angle integration of T 00
int

In this Appendix we perform the integration over ϕ of “double ze-
roth” component (5.9) of the Maxwell energy-momentum tensor density.
Angle-dependent terms involved in energy density have the form

A0 =
1

2π

2π
∫

0

dϕ
c1c2

q(r1)2(r2)2
, B0 =

1

2π

2π
∫

0

dϕ
c2

qr1(r2)2
, (A.1)

C0 =
1

2π

2π
∫

0

dϕ
c1

q(r1)2r2
, D0 =

1

2π

2π
∫

0

dϕ
1

qr1r2

where the retarded distances are

ra = r0
a − r1

a sinϕ − r2
a cosϕ. (A.2)

The other scalars we use are:

ca = −c0
a + c1

a sin ϕ + c2
a cosϕ (A.3)
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Here

r0
a = k0

a − (va · nq)k
3
a, r1

a = ω1jv
j
ah, r2

a = ω2jv
j
ah (A.4)

c0
a = −

(

γ−2
a + (v̇a · nq)k

3
a

)

, c1
a = ω1j v̇

j
ah, c2

a = ω2j v̇
j
ah. (A.5)

It is convenient to introduce three-dimensional manifold Q with
space-favouring metric gαβ = diag(−1, 1, 1). For Q we put the tangent
bundle TQ being the disjoint union of all tangent spaces TxQ. A tangent
vector with foot point a ∈ Q is simply a pair (a, r) with

r = rαeα ∈ R3,

where eα := ∂/∂xα, α = 0, 1, 2, is the standard basis of R3. We define
also cotangent bundle T ∗Q being the disjoint union of T ∗

x Q. An one-form
with foot point a ∈ Q is a pair (a, r̂) with

r̂ = rβ êβ ∈ R3,

where êβ, β = 0, 1, 2, constitute dual basis êβ(eα) = δβ
α. We shall use

gαβ = diag(−1, 1, 1) and its inverse gαβ = diag(−1, 1, 1) to lower and
raise indices, respectively.

For each differential manifold one can define the canonical pairing

〈, 〉 : T ∗Q ×Q TQ → R (A.6)

〈r̂1, r2〉 7→ r1,γrγ
2

where both one-form r̂1 and vector r2 are of the same foot point. We
introduce also the scalar product

(·) : TQ ×Q TQ → R (A.7)

(r1 · r2) 7→ gαβrα
1 rβ

2

which is connected with canonical pairing by the operation of raising
indices. And finally, we shall need the norm of vector r ∈ TQ

‖r‖ =
√

−gαβrαrβ (A.8)

=
√

(r0)2 − (r1)2 − (r2)2

So, a-th retarded distance ra becomes the scalar product of the vector
with components (A.4) and the null-vector nϕ := (1, sin ϕ, cosϕ) taken
with opposite sign.
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To go further we express a term of type (b · nϕ)/r1r2 as follows

b

r1r2
=

−A − C|r1| cos(ϕ + β1)

r0
1 − |r1| sin(ϕ + β1)

+
−B + C|r2| cos(ϕ + β2)

r0
2 − |r2| sin(ϕ + β2)

(A.9)

where scalar b denotes the product (b · nϕ). The a-th phase βa is deter-
mined by the relations

cosβa = r1
a/|ra|, sin βa = r2

a/|ra|, (A.10)

where

|ra| =
√

(r1
a)2 + (r2

a)2

= h
√

v2
a − (va · nq)2. (A.11)

The coefficients A, B and C are the solutions of the following system of
algebraic equations

(C A B)






L0 L1 L2

r2,0 r2,1 r2,2

r1,0 r1,1 r1,2






=

(b0 b1 b2)
(A.12)

where Lα = gαβLβ and Lβ is β-th component of the vector

L =







e0 e1 e2

r2,0 r2,1 r2,2

r1,0 r1,1 r1,2






(A.13)

This can be written more compactly

Lα = εαβγr2,βr1,γ

by use of the Ricci symbol in three dimensions:

εαβγ =











+1 when αβγ is an even permutation of 0, 1, 2

−1 when αβγ is an odd permutation of 0, 1, 2

0 otherwise

(A.14)

In solving the problem (A.9) one is soon led into rather complex
expression. Great simplification arise, however, when one uses the binary
operation of vector product which is defined as follows:

[× ] : T ∗Q ×Q T ∗Q → TQ (A.15)

[r̂1 × r̂2] 7→ εαβγr1,βr2,γ
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So, the determinant D of 3 × 3 matrix in eq.(A.12) becomes the square
of vector product of one-forms r̂1 and r̂2 given by eqs.(A.4):

D = 〈L̂,L〉 = (L)2 (A.16)

= [r̂2 × r̂1]
2

= −〈r̂2, r2〉〈r̂1, r1〉 + 〈r̂2, r1〉2

= −(r2 · r2)(r1 · r1) + (r2 · r1)
2

Having solved the system of linear equations (A.12) we obtain

A =
(b · [̂r1 × L̂])

D
(A.17)

= − 1

D

{

(b · r2)(r1 · r1) − (b · r1)(r1 · r2)

}

B = − (b · [̂r2 × L̂])

D
(A.18)

=
1

D

{

(b · r2)(r2 · r1) − (b · r1)(r2 · r2)

}

C =
(b · L)

D
. (A.19)

The expression of type (A.9) can be integrated over ϕ via the relations

∫ 2π

0

dϕ
1

1 − a sinϕ
=

2π√
1 − a2

,

∫ 2π

0

dϕ
cosϕ

1 − a sinϕ
= 0

0 ≤ a < 1. (A.20)

Having integrated (A.9) we obtain

∫ 2π

0

dϕ
b

r1r2
= −2π

(

A

‖r1‖
+

B

‖r2‖

)

. (A.21)

Having considered the simplest case of integral D0 (see eqs.(5.31)),
we put the one-form b̂ = (−1, 0, 0). We obtain

D0 = −1

q

(

A0

‖r1‖
+

B0

‖r2‖

)

, (A.22)

where

A0 =
ε0αβr1,αLβ

D
(A.23)
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= −r0
2(r1 · r1) − r0

1(r2 · r1)

D

B0 = −ε0αβr2,αLβ

D

=
r0
2(r2 · r1) − r0

1(r2 · r2)

D

C0 =
L0

D

To calculate B0 we rewrite the integrand as follows

c2

r1(r2)2
=

c2

r1r2

1

r2
(A.24)

=

(−A2 − C2|r1| cos(ϕ + β1)

r1

+
−B2 + C2|r2| cos(ϕ + β2)

r2

)

1

r2

=
−A′

2 − C′
2|r1| cos(ϕ + β1)

r0
1 − |r1| sin(ϕ + β1)

+
−B′

2 + C′
2|r2| cos(ϕ + β2)

r0
2 − |r2| sin(ϕ + β2)

+
−B2 + C2|r2| cos(ϕ + β2)

[r0
2 − |r2| sin(ϕ + β2)]

2 ,

where

A2 =
(c2 · [̂r1 × L̂])

D
, B2 = − (c2 · [̂r2 × L̂])

D
, (A.25)

C2 =
(c2 · L)

D
;

A′
2 = −A2A0 + C2C0‖r1‖2, B′

2 = −A2B0 + C2C0(r2 · r1),

C′
2 = −A2C0 − C2A0 (A.26)

Another relevant integration rules are

∫ 2π

0

dϕ
1

(1 − a sin ϕ)2
=

2π

(1 − a2)3/2
,

∫ 2π

0

dϕ
cosϕ

(1 − a sinϕ)2
= 0

0 ≤ a < 1. (A.27)

Combining these results together with the relations (A.20) for integral
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of expression (A.24) over ϕ gives

B0 = −1

q

(

A′
2

‖r1‖
+

B′
2

‖r2‖
+

B2r
0
2

‖r2‖3

)

. (A.28)

If one interchanges the indices “first” and “second” in the above ex-
pression (A.24), they obtain

C0 = −1

q

(

A′
1

‖r1‖
+

B′
1

‖r2‖
+

A1r
0
1

‖r1‖3

)

, (A.29)

where

A1 =
(c1 · [̂r1 × L̂])

D
, B1 = − (c1 · [̂r2 × L̂])

D
, (A.30)

C1 =
(c1 · L)

D
;

A′
1 = −B1A0 + C1C0(r2 · r1), B′

1 = −B1B0 + C1C0‖r2‖2,

C′
1 = −B1C0 − C1B0. (A.31)

We now turn to the calculation of A0. Transformation of the inte-
grand scales as (r1r2)

−2 proceeds with the help of eq.(A.9), using identity

c1c2

(r1r2)2
=

c1

r1r2

c2

r1r2
. (A.32)

The calculation is straightforward, although it involves a fair amount of
algebra. Finally we obtain

c1

r1r2

c2

r1r2
=

I1 + I0|r1| cos(ϕ + β1)

(r1)2

+
J1 − J0|r2| cos(ϕ + β2)

(r2)2
(A.33)

+
−A12 − C12|r1| cos(ϕ + β1)

r1

+
−B12 + C12|r2| cos(ϕ + β2)

r2

where

I1 = A1A2 − C1C2‖r1‖2, I0 = A1C2 + A2C1, (A.34)

J1 = B1B2 − C1C2‖r2‖2, J0 = B1C2 + B2C1,

A12 = [A1B2 + B1A2 − 2C1C2(r1 · r2)] A0
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− J0C0‖r1‖2 − I0C0(r1 · r2),

B12 = [A1B2 + B1A2 − 2C1C2(r1 · r2)] B0

− J0C0(r1 · r2) − I0C0‖r2‖2,

C12 = [A1B2 + B1A2 − 2C1C2(r1 · r2)] C0 + I0B0 + J0A0.

Using integration rules (A.20) and (A.27), we perform the integration of
(A.33) over the angle variable ϕ:

A0 = −1

q

(

A12

‖r1‖
+

B12

‖r2‖
− I1r

0
1

‖r1‖3
− J1r

0
2

‖r2‖3

)

. (A.35)

All the coefficients involved in resulting expressions (A.22), (A.28),
(A.29), and (A.35) should be rewritten in terms of three-dimensional
vectors which denote particles’ positions, velocities and accelerations.
Substituting components (A.4) and (A.5) into expressions (A.23), (A.25)
and (A.30) returns the root coefficients Ai, Bi and Ci, i = 0, 1, 2:

A0 = − ([nq × v1] · [nq × l])

∆
, (A.36)

B0 =
([nq × v2] · [nq × l])

∆
,

C0 =
(nq · [v2 × v1])

∆
,

where

∆ = [nq × l]2 − h2(nq[v2 × v1])
2, l = r0

2v1 − r0
1v2; (A.37)

A1 = ∆−1

{

c0
1 ([nq × v1] · [nq × l]) − r0

1 ([nq × v̇1] · [nq × l])

+ h2 (nq · [v̇1 × v1]) (nq · [v1 × v2])

}

, (A.38)

B1 = −∆−1

{

c0
1 ([nq × v2] · [nq × l]) − r0

2 ([nq × v̇1] · [nq × l])

+ h2 (nq · [v̇1 × v2]) (nq · [v1 × v2])

}

,

C1 = ∆−1

{

− c0
1 (nq · [v2 × v1]) + (nq · [v̇1 × l])

}

,

A2 = ∆−1

{

c0
2 ([nq × v1] · [nq × l]) − r0

1 ([nq × v̇2] · [nq × l])
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+ h2 (nq · [v̇2 × v1]) (nq · [v1 × v2])

}

, (A.39)

B2 = −∆−1

{

c0
2 ([nq × v2] · [nq × l]) − r0

2 ([nq × v̇2] · [nq × l])

+ h2 (nq · [v̇2 × v2]) (nq · [v1 × v2])

}

,

C2 = ∆−1

{

− c0
2 (nq · [v2 × v1]) + (nq · [v̇2 × l])

}

.

A complex calculation performed with the help of software system
“Maple 8” confirms the key identity

A0 −
∂B0

∂t1
− ∂C0

∂t2
+

∂2D0

∂t1∂t2
= 0. (A.40)

It allows us to rewrite the integral of “double zeroth” component of the
Maxwell energy-momentum tensor density over ϕ as the sum (5.10) of
partial derivatives in time variables.

It is worth noting that all the coefficients (A.36)-(A.39) and, there-
fore, expressions (A.22), (A.28), (A.29) and (A.35) depend on h2, i.e. on
the square of the radius of the circle C(O, h) = S1∩S2 (see Figs.4,5). One
can express functions A0, B0, C0 and D0 in form of expansions in powers
of h2. (To simplify the calculations as much as possible we can rewrite
the integrands of (A.1) as expansions in power h and then integrate over

ϕ.) Putting h2 → 0 we tend to convex neighbourhood of the end points,
either S or N (see Figs.7, 9). The identity (A.40) is also valid in the
immediate vicinity of the end points. (Differentiating functions B0, C0

and D0 in time variables we must keep in mind that ∂h2/∂ta does not
vanish even if h2 → 0.)

B. Angle integration of T 0i
int

To express the integral of T 0i
int over ϕ as a combination of partial deriva-

tives in time variables we have to calculate the following “tails”:

Ai
b −

∂Bi
b

∂t1
− ∂Ci

b

∂t2
+

∂2Di
b

∂t1∂t2
(B.1)

(see eq.(5.33). By calligraphic letters we denote the integrals over angle
variable:

Ai
b =

1

2π

2π
∫

0

dϕKi
b

c1c2

q(r1)2(r2)2
, Bi

b =
1

2π

2π
∫

0

dϕKi
b

c2

qr1(r2)2
,
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Ci
b =

1

2π

2π
∫

0

dϕKi
b

c1

q(r1)2r2
, Di

b =
1

2π

2π
∫

0

dϕ
Ki

b

qr1r2
(B.2)

where
Ki

b = k3
bni

q + hωi
1 sin ϕ + hωi

2 cosϕ. (B.3)

The integration can be handled via the relation (A.9). The simplest term
Di

b becomes:

Di
b = −1

q

(

Ai
b

‖r1‖
+

Bi
b

‖r2‖

)

. (B.4)

Here

Ai
b = k3

b ni
qA0 − 1

∆

{

[

vi
2 − ni

q(nqv2)
]

(r1 · r1)

−
[

vi
1 − ni

q(nqv1)
]

(r1 · r2)

}

, (B.5)

Bi
b = k3

bni
qB0 +

1

∆

{

[

vi
2 − ni

q(nqv2)
]

(r2 · r1)

−
[

vi
1 − ni

q(nqv1)
]

(r2 · r2)

}

where A0, B0 and ∆ are defined by eqs.(A.36) and (A.37). But we find
out the expressions (B.1) in another way.

To simplify the calculations as much as possible we express the in-
tegrands of eqs.(B.2) in form of expansions in powers of h. Thanks to
exponential operator

Y := exp

[

−
∑

a

hvj
a(ωj1 sin ϕ + ωj2 cosϕ)

d

dr0
a

]

(B.6)

we remove harmonic functions from denominators and then integrate
over ϕ. In fact, we deal with the flow of the vector field in between the
square brackets of eq.(B.6). It maps an open neighbourhood of end points
either S or N to an open vicinity of another point of integral curve of
this vector field [14]. It is sufficient to compute “tails” (B.1) at the end
points where h2 = 0 (see Figs.7 and 9).

At these end points the term Ai
b is as follows:

Ai
b =

2π
∫

0

dϕ Ki
b

c1c2

q(r1)2(r2)2

∣

∣

∣

∣

h2=0

(B.7)



35 Препринт

= k3
bni

q

c0
1c

0
2

q(r0
1)2(r0

2)2

= k3
bni

qA0

∣

∣

h2=0
.

Since derivatives ∂h2/∂ta, a = 1, 2, do not vanish whenever h2 = 0, we
should expand Ci

b and Bi
b up to the first order of this small parameter:

Bi
b = k3

bni
qB0 (B.8)

+
h2

2qr0
1(r

0
2)

2

[

−c0
2

(

2
vi
2 − ni

q(nqv2)

r0
2

+
vi
1 − ni

q(nqv1)

r0
1

)

+ v̇i
2 − ni

q(nqv̇2)
]

+ O(h2)

Ci
b = k3

bni
qC0 (B.9)

+
h2

2q(r0
1)

2r0
2

[

−c0
1

(

vi
2 − ni

q(nqv2)

r0
2

+ 2
vi
1 − ni

q(nqv1)

r0
1

)

+ v̇i
1 − ni

q(nqv̇1)
]

+ O(h2)

Symbols B0 and C0 denote the expansions of corresponding integrals
(5.31) in powers of h2:

B0 =
−c0

2

qr0
1(r

0
2)

2
(B.10)

+
−c0

2

2qr0
1(r

0
2)

2

[

3
[nqv2]

2

(r0
2)2

+ 2
([nqv1][nqv2])

r0
1r

0
2

+
[nqv1]

2

(r0
1)

2

]

h2

+
1

2qr0
1(r

0
2)

2

[

2
([nqv̇2][nqv2])

r0
2

+
([nqv̇2][nqv1])

r0
1

]

h2 + O(h2)

C0 =
−c0

1

q(r0
1)

2r0
2

(B.11)

+
−c0

1

2q(r0
1)

2r0
2

[

[nqv2]
2

(r0
2)

2
+ 2

([nqv1][nqv2])

r0
1r

0
2

+ 3
[nqv1]

2

(r0
1)

2

]

h2

+
1

2q(r0
1)

2r0
2

[

([nqv̇1][nqv2])

r0
2

+ 2
([nqv̇1][nqv1])

r0
1

]

h2 + O(h2)

The last expansion we shall need is

Di
b = k3

bni
qD0 (B.12)

ICMP–04–04E 36

+
h2

2qr0
1r

0
2

[

vi
2 − ni

q(nqv2)

r0
2

+
vi
1 − ni

q(nqv1)

r0
1

]

+
h4

8qr0
1r

0
2

{

3
[vi

2 − ni
q(nqv2)][nqv2]

2

(r0
2)3

+
2[vi

2 − ni
q(nqv2)]([nqv1][nqv2]) + [vi

1 − ni
q(nqv1)][nqv2]

2

r0
1(r

0
2)

2

+
2[vi

1 − ni
q(nqv1)]([nqv1][nqv2]) + [vi

2 − ni
q(nqv2)][nqv1]

2

(r0
1)

2r0
2

+ 3
[vi

1 − ni
q(nqv1)][nqv1]

2

(r0
1)

3

}

+ O(h4).

By D0 we denote the following expansion:

D0 =
1

qr0
1r

0
2

(B.13)

+
h2

2qr0
1r

0
2

{

[nqv1]
2

(r0
1)

2
+

([nqv1][nqv2])

r0
1r

0
2

+
[nqv2]

2

(r0
2)

2

}

+
h4

8qr0
1r

0
2

{

3
[nqv1]

4

(r0
1)4

+ 3
[nqv1]

2([nqv1][nqv2])

(r0
1)

3r0
2

+
2([nqv1][nqv2])

2 + [nqv1]
2[nqv2]

2

(r0
1)

2(r0
2)

2

+ 3
[nqv2]

2([nqv1][nqv2])

r0
1(r

0
2)

3
+ 3

[nqv2]
4

(r0
2)

4

}

+ O(h4).

Our final task will be to compute expression (B.1). When we differ-
entiate functions Bi

b, Ci
b and Di

b we must keep in mind that derivatives
of h2 with respect to ta do not vanish even if h2 → 0. With a degree of
accuracy sufficient for our purposes we obtain

Ai
1 −

∂Bi
1

∂t1
− ∂Ci

1

∂t2
+

∂2Di
1

∂t1∂t2
= vi

1

(

B0 −
∂D0

∂t2

)

(B.14)

Ai
2 −

∂Bi
2

∂t1
− ∂Ci

2

∂t2
+

∂2Di
2

∂t1∂t2
= vi

2

(

C0 −
∂D0

∂t1

)

Substituting these relations into eqs.(5.33) returns the integral (5.29) of
interference part of the momentum density T 0i

int over ϕ as the combina-
tion of partial derivatives in time variables.
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C. Direct particle fields and Lorenz forces

In classical electrodynamics the four-dimensional delta function of the
square of the interval between points A and B is Green’s function of
the wave operator. The delta function ensures that the typical points
A and B on the worldlines of point-like charges a and b interact if and
only if they are connectible by a null ray. The interaction is described
by Lorentz force, i.e. there is no self action.

Î ÏÎÐ
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Þß

Figure 11. Points A ∈ ζa and B ∈ ζb are connectible by a null ray. They
are defined by the pair of instants either (ta, tret

b (ta)) or (tadv
a (tb), tb).

Functions tret
b (ta) and tadv

a (tb) are inverses.

The particle a is acted on by the particle b via Lorentz force
Fα

ba = eaFα
(b)βuβ

a where Fα
(b)β is direct particle field [13]. By this we mean

electromagnetic field generated by b-th particle at point where a-th par-
ticle is located. It immediately implies h = 0 in expressions (4.6) for the
components of electromagnetic fields. Indeed, h is the radius of the circle
Sa∩Sb, i.e. of the intersection of spherical fronts of outgoing electromag-
netic waves generated by charges (see Figs.4, 5). If we consider the direct

particle field, the sphere Sa reduces to the point where a-th particle is
placed.

To evaluate the retarded field of the 2-nd particle at point z1(t1) ∈ ζ1

we put k0
1 = 0 and k0

2 = q[t1, t
ret
2 (t1)] in (4.6). It implies

K0
2 = q, Ki

2 = qni
q, r2 = q [1 − V2] , c2 = γ−2

2 + qV̇2 (C.1)
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in the expression for f
(2)
αβ . (It is obvious, that f

(1)
αβ vanishes.) All the

quantities are evaluated at the moments either t1 or tret
2 (t1), V2 := (nq ·

v2) and V̇2 := (nq · v̇2).
To find out the advanced field of the 1-st particle at point z2(t2) ∈ ζ2,

we put k0
2 = 0 and k0

1 = −q[tadv
1 (t2), t2] in f

(1)
αβ given by eq.(4.6). It means

K0
1 = −q, Ki

1 = −qni
q, r1 = −q [1 − V1] , c1 = γ−2

1 − qV̇1 (C.2)

where V1 := (nq · v1) and V̇1 := (nq · v̇1).
In general, to obtain the retarded/advanced field generated by a-th

particle at point where b-th particle is located, one should substitute the
quantities

K0
a = εq, Ki

a = (−1)aqni
q, ra = εq [1 − (−1)aεVa] , (C.3)

ca = γ−2
a + (−1)aqV̇a

in eq.(4.6). Parameter ε is equal to +1 for retarded fields and −1 for
advanced ones. Putting eqs.(C.3) in (4.6) we arrive at the following ex-
pressions:

F
(a)
0i (ε) = ea

{

−εani
q + vi

a

q2 (1 − εaVa)
3 γ−2

a + (−1)a
−εan

i
q + vi

a

q (1 − εaVa)
3 V̇a

+ ε
v̇i

a

q (1 − εaVa)2

}

F
(a)
ij (ε) = ea

{

εa

vi
anj

q − vj
ani

q

q2 (1 − εaVa)
3 γ−2

a + ε
vi

anj
q − vj

ani
q

q (1 − εaVa)
3 V̇a

+ (−1)a
v̇i

anj
q − v̇j

ani
q

q (1 − εaVa)
2

}

where parameters
εa = (−1)aε. (C.4)

The components of Lorentz force a-th charge acting on b-th one are
written as follows:

γ−1
b F 0

ab(ε) = −ebF
(a)
0i (ε)vi

b (C.5)

= ebea

{

εaVb − (va · vb)

q2 (1 − εaVa)
3 γ−2

a
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+ (−1)a εaVb − (va · vb)

q (1 − εaVa)
3 V̇a − ε

(v̇a · vb)

q (1 − εaVa)
2

}

γ−1
b F i

ab(ε) = −ebF
(a)
0i (ε) + ebF

(a)
ij (ε)vj

b (C.6)

= −ebea

{

εani
q

[

−1 + (va · vb)

q2 (1 − εaVa)
3 γ−2

a

+ (−1)a−1 + (va · vb)

q (1 − εaVa)
3 V̇a + ε

(v̇a · vb)

q (1 − εaVa)
2

]

+
1 − εaVb

1 − εaVa

[

vi
a

q2 (1 − εaVa)
2 γ−2

a

+ (−1)a vi
a

q (1 − εaVa)
2 V̇a + ε

v̇i
a

q (1 − εaVa)

]}

.

All the quantities labelled by a are referred to the instant tεa(tb) while
those supplemented with index b are evaluated at tb.

D. Difference of work done by “advanced” and retarded Lorenz

forces

The retarded, tret
a (tb), and “advanced”, tadv

b (ta), instants arise naturally
within the integration procedure developed in Section 5 as the end points
of “inner” integrals (see eqs.(5.4) and (5.5)). Typical points A (on the
worldline of charge a) and B (on the worldline of charge b) interact if
the line connecting them is a null ray. It seems, that the interaction can
be both forward (B to A) and backward (A to B) in time (see Fig.11).
And yet the retarded causality is not violated. Indeed, we consider the
interference of outgoing waves present at the observation time t. Both
the retarded and “advanced” moments are before t.

In this subsection we compare the work done by retarded Lorentz
force due to charge b on charge a

t
∫

−∞

dtaγ−1
a Fµ

ba[ta, tret
b (ta)] (D.1)

and the work done by “advanced” response of charge a on charge b

tret

b
(t)

∫

−∞

dtbγ
−1
b Fµ

ab[t
adv
a (tb), tb]. (D.2)
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To compare (D.1) and (D.2) we change the variables [tadv
a (tb), tb] 7→

[ta, tret
b (ta)] in “advanced” integral:

t
∫

−∞

dtaγ−1
a Fµ

ba[ta, tret
b (ta)] −

tret

b
(t)

∫

−∞

dtbγ
−1
b Fµ

ab[t
adv
a (tb), tb]

=

t
∫

−∞

dta
[

γ−1
a Fµ

ba[ta, tret
b (ta)] (D.3)

− 1 + (−1)bVa

1 + (−1)bVb
γ−1

b Fµ
ab[t

adv
a (tb), tb]

∣

∣

∣

∣

tadv

a
(tb)=ta

tb=tret

b
(ta)





The following identity generalises the derivatives of eqs.(3.9), (3.10),
(3.14) and (3.15):

dtεa(tb)

dtb
=

1 − εaVb

1 − εaVa
. (D.4)

Here
εa = (−1)aε; (D.5)

parameter ε is equal to +1 for retarded instants and −1 for advanced
ones. With the help of eq.(D.4) we obtain the following chain of identities:

dq[tεa(tb), tb]

dtb
= (−1)a Vb − Va

1 − εaVa
(D.6)

dni
q[t

ε
a(tb), tb]

dtb
=

(−1)a

q

[

vi
b − vi

a

1 − εaVb

1 − εaVa
− ni

q

Vb − Va

1 − εaVa

]

(D.7)

d(nq · vb)

dtb
=

(−1)a

q

[

−γ−2
b − [−1 + (v1 · v2)]

1 − εaVb

1 − εaVa

+ εa(Vb − Va)
1 − εaVb

1 − εaVa

]

+ V̇b (D.8)

d(nq · va)

dtb
=

(−1)a

q

[

γ−2
a

1 − εaVb

1 − εaVa
− 1 + (v1 · v2)

+ εa(Vb − Va)] + V̇a
1 − εaVb

1 − εaVa
(D.9)

Using identities (D.7)-(D.9) in the integrand of eq.(D.3), we derive
that it is the total time derivative. In other words, the difference of
“retarded” work (D.1) and “advanced” one (D.2) is the integral being a
function of the end points only:
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Figure 12. Difference of work done by retarded Lorentz force due to
charge 2 on charge 1 and the work done by advanced response of charge
1 is given by eqs.(D.10). All the quantities in the right-hand side of this
equation which are labelled by 1 are referred to the instant of observation
while those supplemented with index 2 are evaluated at tret

2 (t).

t
∫

−∞

dt1γ
−1
1 Fµ

21[t1, t
ret
2 (t1)] −

tret

2
(t)

∫

−∞

dt2γ
−1
2 Fµ

12[t
adv
1 (t2), t2] (D.10)

=



















µ = 0 −e1e2

[

−1 + (v1v2)
q[1 − V1][1 − V2]

+ 1
q[1 − V1]

+ 1
q[1 − V2]

]t1=t

t1→−∞

µ = i −e1e2

[

[−1 + (v1v2)]n
i
q

q[1 − V1][1 − V2]
+

vi
1

q[1 − V1]
+

vi
2

q[1 − V2]

]t1=t

t1→−∞

t
∫

−∞

dt2γ
−1
2 Fµ

12[t
ret
1 (t2), t2] −

tret

1
(t)

∫

−∞

dt1γ
−1
1 Fµ

21[t1, t
adv
2 (t1)] (D.11)
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Figure 13. Difference of work done by retarded Lorentz force due to
charge 1 on charge 2 and the work done by advanced response of charge
2 is defined by eqs.(D.11). All the quantities in the right-hand side of this
equation which are labelled by 2 are referred to the instant of observation
while those supplemented with index 1 are evaluated at tret

1 (t).

=



















µ = 0 e1e2

[

− −1 + (v1v2)
q[1 + V1][1 + V2]

− 1
q[1 + V1]

− 1
q[1 + V2]

]t2=t

t2→−∞

µ = i e1e2

[

[−1 + (v1v2)]n
i
q

q[1 + V1][1 + V2]
− vi

1
q[1 + V1]

− vi
2

q[1 + V2]

]t2=t

t2→−∞

It is convenient to rewrite the results (D.10) and (D.11) in a mani-
festly covariant fashion:

t
∫

−∞

dtaγ−1
a Fµ

ba[ta, tret
b (ta)] −

tret

b
(t)

∫

−∞

dtbγ
−1
b Fµ

ab[t
adv
a (tb), tb] (D.12)

= (−1)ae1e2

[

(u1 · u2)n
µ
q

q(nq · u1)(nq · u2)
− uµ

1

q(nq · u1)
− uµ

2

q(nq · u2)

]ta=t

ta→−∞

Symbols uµ
a , a = 1, 2, denotes the (normalized) four-velocity vector

(γ−1
a , γ−1

a vi
a). If the 2-nd particle moves in the retarded field of the 1-st

one while the 1-st particle moves in the “advanced” field of the 2-nd one,
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then nµ
q = (1, ni

q). Four-products of this null vector with four velocities
are as follows:

(nq · ua) = −γ−1
a [1 − Va] . (D.13)

If one interchanges the words “first particle” and “second particle” in the
above sentences, nµ

q = (−1, ni
q) and we have

(nq · ua) = γ−1
a [1 + Va] . (D.14)

in eq.(D.12).

E. Time integration of T 0µ
int

In this paper we integrate the interference part of energy-momentum
tensor density of two point-like charged particles over three-dimensional
hyperplane Σt = {y ∈ M4 : y0 = t}. An integration hypersurface is a
surface of constant value of the obsevation time parameter. Besides t, the
set of curvilinear coordinates includes the “individual” retarded times t1
and t2, associated with the particles’ worldlines, and the angle variable
ϕ. The integration over ϕ is performed in Appendix A and Appendix B.
The crucial issue is that the resulting expressions are the sum of partial
derivatives in individual times (see eqs.(5.10) and combination of (5.33)
and (5.36)). It allows us to perform the integration over one of the time
parameters, either t1 or t2. “Retarded” shifts in arguments of particles’
individual characteristics such us coordinates, velocities etc. appear on
this stage as well as “advanced” ones.

The first double integral involved in the rules either (5.4) or (5.5)
defines the integration over “causal” region which is pictured in Figs.6
and 7, while the second one deals with “acausal” region (see Figs.8 and
9). The integration of “causal” type can be handled via the relations
(D.4)-(D.9). Their counterparts for “acausal” region look as follows:

dt′1(t, t2)

dt2
= −1 − V2

1 + V1
(E.1)

dq[t′1(t, t2), t2]

dt2
= −V1 + V2

1 + V1
(E.2)

dni
q[t

′
1(t, t2), t2]

dt2
=

1

q

[

−vi
2 − vi

1

1 − V2

1 + V1
+ ni

q

V1 + V2

1 + V1

]

(E.3)

d(nq · v1)

dt2
=

1

q

[

γ−2
1

1 − V2

1 + V1
− [1 + (v1 · v2)] + V1 + V2

]

− V̇1
1 − V2

1 + V1
(E.4)
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Table 1. Integral
∫ 2π

0

√−gT 00
int has the form of ∂G1/∂t1 + ∂G2/∂t2 +

∂2G0/∂t1∂t2. Integration over time results the expressions in the left
column (if mixed derivative is coupled with ∂G1/∂t1) or in the right
column (if ∂2G0/∂t1∂t2 is added to ∂G2/∂t2). Integration over “acausal”
region gives the functions of the end points only (see third line).
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d(nq · v2)

dt2
=

1

q

[

γ−2
2 − [1 + (v1 · v2)]

1 − V2

1 + V1

− (V1 + V2)
1 − V2

1 + V1

]

+ V̇2 (E.5)

where Va := (nq · va) and V̇a := (nq · v̇a).
The way of integration where all the mixed derivatives are written

as ∂/∂t1[∂G0/∂t2] results the expressions placed in the left columnes of
Tables. We apply the rules (5.16), (5.20) and (5.24) for the 1-st, 2-nd
and 3-rd line, respectively.

If one changes the order of differentiations they obtain the expres-
sions in the right columnes of Tables. For the 1-st and 2-nd lines time
integration rules are as follows:

tret

2
(t)

∫

−∞

dt2

[

G1 −
1 − V2

1 − V1
G2

]t1=tadv

1
(t2)

(a), (E.6)

t
∫

−∞

dt2

[

−G1 +
1 + V2

1 + V1
G2

]

t1=tret

1
(t2)

(b).
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Table 2. Integral
∫ 2π

0

√−gT 0i
int becomes the combination of partial

derivatives in time variables. Structure of this Table is analogous to the
structure of Table 1.

5
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Acausal region is integrated according to the rule (5.24) (3-rd line of the
right column).

Taking into account the relationship (D.12) between work of the “ad-
vanced” Lorentz force and the work of the “retarded” one we remove
all the “advanced” integrals from these Tables. The final expressions are
written in Table 3.
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Table 3. The expressions which are placed above double line concern
with integration of energy density T 00

int while ones below double line result
from integration of T 0i

int.
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