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Amnoranisi. 3a gonomororo nepersopenns Hoprama-Biraepa CHiH—% XY
JIAHITIO2KKY MOXKYTb OyTu 300parkeHi HEeB3a€MOII0YNMU Oe3CIiHOBUMU
depmionamu, moO J103BOJIA€ BUKOHATH 0AaraTo CTATHUCTUKO-MEXaHIIHUX
PO3PaxyHKIB TOYHO, HE BUKOPUCTOBYIOYH 2KOJIHUX CIIPOILYIOYUX IIPUILY-
menb. Hac nikasisrs JuHaMivuni BJacTHBOCTI TAKUX JIAHHIOXKKIB (4a-
COBO3aJIeXKHI CIIIHOBI KOpesmiitai GpyHKIl, tuHaMivHi cTPYyKTYpHI dak-
TOpU, IUHAMIYHI CIPUAHATIUBOCTI), AKi BUKOPUCTOBYIOTHCS IIPU TJLYMa-
9eHH] eKCIIePUMEHTAJBHIX JaHuX. Mu IpuBoINMO KiHIEBI Pe3yabTaTh y
3aMKHEHi# hopMi I psily AMHAMITHUX BEJIUIHH, & TAKOXK BHKOHYEMO
3araJbHUN aHaJI3 ABOMEPMIOHHNX KOHTHHIYMIB, SKi BU3HAYAIOTD P
JVHAMIYHAX BEJIUYINH.

Jordan-Wigner fermions and dynamic probes of quantum spin
chains

Oleg Derzhko and Taras Verkholyak

Abstract. With the help of the Jordan-Wigner transformation the spin-
% XY chains can be reformulated in terms of noninteracting spinless
fermions and as a result many statistical-mechanics calculations can be
performed rigorously, i.e. without making any simplifying approxima-
tions. We are interested in dynamic properties of such chains (time-
dependent spin correlation functions, dynamic structure factors, dynam-
ic susceptibilities) which are of great importance for interpretation of
experimental data. We have worked out a number of dynamic quantities
explicitly as well as have performed a general analysis of the two-fermion
continua which are relevant for different dynamic quantities.
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1. Introductory remarks

The Spin—% XY chains are known as a simplest quantum interacting
system for which a lot of statistical-mechanics calculations can be per-
formed exactly [1]. The properties of such quantum spin chains were
studied intensively during last more than forty years and the interest
in such models may be renewed owing to a discovery of almost spin—%
XY chain compounds (see, e.g. [2,3]). On the other hand, such studies
are interesting by their own rights since they provide a set of reference
results which may be useful for understanding the much more common
Heisenberg chains.

In what follows we consider the sp1n—§ anisotropic XY chain in
a transverse field with an additional Dzyaloshinskii-Moriya interac-
tion directed along z-axis in spin space to elucidate the effects of the
Dzyaloshinskii-Moriya interaction on the dynamic properties of quantum
spin chains. The Dzyaloshinskii-Moriya interaction plays important role
in a number of quasi-one-dimensional materials and although it is gener-
ally small its effects could be very important [4-6]. The Dzyaloshinskii-
Moriya interaction also arises in a description of the nonequlibrium
steady states of spin chains [7]. Let us recall what is known about the
dynamics of the considered quantum spin chains. The Spin—% XY chain
with the Dzyaloshinskii-Moriya interaction was introduced in Ref. [8] (see
also Ref. [9]) and the effects of this interaction on the zz dynamics were
analyzed in Refs. [10,11]. In particular, the zz dynamic susceptibility
Xzz(K,w) of the spin—% anisotropic XY chain with the Dzyaloshinskii-
Moriya interaction was derived explicitly for x = 0 [10] and & # 0 [11].
Nevertheless, the effects of the Dzyaloshinskii-Moriya interaction on the
two-fermion excitation continuum which governs zz dynamics [12,13]
have not been examined yet. There are notorious difficulties in calcula-
tions of the zx, zy, yx, yy dynamic quantities (for references see [14]) and
to our best knowledge the effects of the Dzyaloshinskii-Moriya interac-
tion on such quantities have not been reported until now. On the other
hand, we should mentioned here the recent papers on the Heisenberg
chains with the Dzyaloshinskii-Moriya interaction [15,16]. Thus, using
the symmetry arguments for the antiferromagnetic isotropic Heisenberg
(XX X) chain with the Dzyaloshinskii-Moriya term directed along z-
axis in spin space it was shown that although the Dzyaloshinskii-Moriya
interaction may leave the spectrum of the problem unchanged it can
essentially influence the spin correlations / dynamic susceptibilities. In
what follows we also derive such a conclusion in the case of the isotropic
XY (i.e. XX0) chain, however, calculated different dynamic structure
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factors explicitly.

In the present paper we report the first results for the Dzyaloshinskii-
Moriya effects on the two-fermion excitation continuum which governs
the zz dynamics of spin—% XY chains and on the zx, xy, yx, yy dynam-
ics of such chains. We start with presenting the basic formulas of the
Jordan-Wigner fermionization approach (Section 2). Then we consider
the case of isotropic XY exchange interaction. This case is essential-
ly simpler than the case of anisotropic XY exchange interaction since
the Dzyaloshinskii-Moriya interaction can be eliminated by a spin ax-
es rotation. As a result we can examine the dynamic structure factors
of the chain with the Dzyaloshinskii-Moriya interaction using the ob-
tained earlier results for such a chain without the Dzyaloshinskii-Moriya
interaction (Section 3). Finally, we summarize our results (Section 4).

2. Dzyaloshinskii-Moriya interaction and Jordan-
Wigner fermions

In what follows we consider N — oo spins % arranged in a circle and

governed by the Hamiltonian

H ZQS +Z Jwifln+1+’]8n n+1)

n=1

N
1
+§Z (I +iD) sts, .+ (IT —iD) s, st 4
n=1

+I~ (SIS:ZH + 3;5;“)) . (2.1)

Here J* = 2], a = z,y is the anisotropic XY exchange interaction,
I* = I* + Y, D is the Dzyaloshinskii-Moriya interaction and 2 is the
transverse field. It is worthwhile to note that making use of the transfor-
mation §7 = s¥, 5¥ = —s¥, 52 = —s? (a m rotation of all spins about the
x-axis) one gets again (2.1) with the parameters —Q, J*, J¥, —D, where-
as a similar transformation, 52 = (—1)"s*, §¥ = (— 1) s¥, 8% = s,

yields (2.1) with the parameters Q, —J% —JY, —D. The renumberlng of
sites j = N—j+1,7=1,2,...,N in (2.1) yields again (2.1) with the
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parameters 2, J%, JY, —D. These symmetry remarks permit to reduce
the range of parameters for a study of the properties the model.

We are interested in dynamics of quantum spin chain (2.1). For
this purpose we need the two-spin time-dependent correlation functions,

<Sﬁ(t)s§+m(0)>7 o, 3 = z,y, z, the angular brackets denote the canoni-

cal thermodynamic averaging, which yield the dynamic structure factors

Sap(k,w) Z exp (ikm / dtexp (1wt)< (t)s§+m(0)>. (2.2)
m=1

Another dynamic quantity, the dynamic susceptibility xqs(%,w) can be
obtained from the dynamic structure factor (2.2) using the fluctuation-
dissipation theorem and the Kramers-Kronig transformation.

To derive the statistical-mechanics quantities of the spin model (2.1)
we first use the Jordan-Wigner transformation

=sf, ¢ =(-2s])...(-2sZ_)st, n=2,...,N,

n?

=587, C=(-2s)...(-2sZ_))s,, n=2,...,N (2.3)

to express the spin Hamiltonian in fermionic language
al 1
H= ;Q (c;cn - 5)

N
—&-%Z I+—|—1D c Cnt1 — (I*—iD)cncL_l
n=1

+1- (CTTCIH - cncn+1)) . (2.4)

Here the periodic boundary conditions are implied (the boundary term
not important for further calculations when N — oo has been omitted).
Then we perform the Fourier transformation

1 1
o = — exp (ikn) ¢, cp = — exp (—ikn) ¢y,
1 1
= — exp (—ikn) ¢, ¢, = — exp (ikn) cp, 2.5
TR e il o= Y ewm)e,  (25)

L -8 +1,...,8 -1 (if N is even) or
n=-NZ1 N1l . N-1(if Nisodd) and the Bogolyubov trans-
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ﬂn _ i, Ve Cr
[CAIY B N TR (T ct,. )’
Q+ Itcosk

U, = sgn (I blnli 7,
f\/

1 1 Q+Itcosk
Vp = —= -
V2 Ar

A = \/(Q + It cosk)” + (I~ sink)? (2.6)

formation

to get instead of (2.4) the final fermionic Hamiltonian
H=>" —g+(Q+I+cosm+Dsinm)c+c
K 2 "

—i%[ﬁ sin Kk (chc’L + cnc,{)>

=S (e e )

[ Q+ It cosk+ Dsink —il~sink Cr
i~ sink —Q —TI"cosk+ Dsink ct,
—Dsink)
Dsink + Ay 0 Br
o 0 Dsink — A Bt
—Dsink)

Z Dsink ﬁJrﬁ,{—i—ﬁ B — ) (5+ﬁn— BBt ))
:;(Dsinfi—i—)\ <ﬂ m-%)
-3 (6.~ 3)- )

Here the prime denotes that x varies (when N — o0) from 0 to 7 and
the elementary excitations energies are given by
A, =Dsink + A\,
= Dsink + \/(Q—i—l”r cosk)® + (I~ sink)® # A_,. (2.8)
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It should be noted here that the Bogolyubov transformation (2.6) does
not depend on the Dzyaloshinskii-Moriya interaction D.

3. Isotropic XY chain

The isotropic case J* = JY = J is essentially simpler than a general
anisotropic case J* # JY since the Dzyaloshinskii-Moriya interaction
can be eliminated from the Hamiltonian (2.1) by a simple spin axes
rotation (see, e.g. [4]). Really, introducing new spin variables

57 = sy cos ¢, + Y sin ¢y,
5 = —s7 sin gy, + s cos ¢y,
52 =i,
D

¢ =(n—1)p, tanp=— (3.1)

one finds that
N N
H= Z QsZ + Z J(shsr iy +sYsh )

n=1

n=1
N
+ Z D (*SZSZH - 5%5:}14-1)
N N
=3 Q& + > sgn(J)VJ2+ D2 (3850, + 8450 ) . (3.2)
n=1 n=1

Obviously, the thermodynamic properties of the model with Dzyalo-
shinskii-Moriya interaction are the same as of the model without such
interaction but with renormalized isotropic exchange interaction |J| —
VJ? 4+ D2. As a result the Dzyaloshinskii-Moriya interaction cannot be
revealed from the measurements of thermodynamic quantities. Let us
pass to the dynamic quantities.

3.1. zz dynamics and two-fermion excitation continuum

The spin rotations (3.1) do not effect the z spin component and therefore

(55055 0m O] p = (52051 sgneyvgmrpro-  (3:3)
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As a result we may use the long-known results for the zz dynamics (see,
e.g. [12,13])

Sz (K, w)|J7D = Sz(k, uJ)|sgn(J)\/J2+D27O

™

= diing, (1 —ng—w) 0 (w4 Ag, — Ay —ic) - (3.4)

—T

Here A, = Q+sgn(J)v/J? + D? cos « is the elementary excitation energy
and n, = m is the Fermi function. From Refs. [12,13] we know
that the zz dynamic structure factor (3.4) is governed by the two-fermion
excitation continuum. The lower, middle, and upper boundaries of the
continuum in the plane wavevector s — frequency w are given by

. sinM sin (M - oz)' (3.5)
VJ?2 + D2 2 ’
I U B Al
\/ﬁ = 251n7 sin (7 + OZ) y (36)
and
Wy B ZSin%‘sin(‘—gl—Fa), if 0< |k <7m—2a, (3.7)
VJ2+ D? 28111'%‘, if ™—2a<|k|<m, '

respectively; here o = arccos ﬁ. The soft modes (i.e. the values of k
at which w; = 0) occur at |kg| =0, 2a. The zz dynamic structure factor
may exhibit a one-dimensional Van Hove’s singularity (i.e. S..(k,w =

ws —0) ~ \/wli—w) while approaching the curve

= 2sin —. (3.8)

As temperature increases the lower boundary of the continuum

smears out, i.e. ﬁ = 0, and the upper boundary becomes
w _ . ‘Kl . .
T = 2sin 5. To conclude, the zz dynamics in the presence of

the Dzyaloshinskii-Moriya interaction remains as for the chain without
such interaction but with renormalized isotropic exchange interaction
|J| — v/ J? + D2?. As a result the Dzyaloshinskii-Moriya interaction does
not manifest itself in the zz dynamic quantities.
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3.2. zz and xy dynamics

Let us pass to the rest spin correlation functions. Employing Eq. (3.1)
one finds

<Sﬁ(t)8ﬁ+m>‘J,D = CO8 P, COS P (57, (1) ﬁ+m>’bgn(<} VIZFD?,0
— COS Gy, SIN Py (55 () Z+m>|sgn(J VITEDZ,0
— sin ¢y, COS P (54 (¢) i+m>’bgnu VIZEDZ,0
+ 50 ¢, SIN G (54 (£)3 +7n>’bgn(J VIZ¥D2,0 (3.9)

and similar formulas for <Si(t)5%+m>|JD, <8§’L(t)si+m>|JD and
(su(t) i’l+m>’JD Using further the relations <§,"’”L(t)§ﬁ+m>‘(}70 =
<Sy n+m>|J07 <§ﬁ(t)§g+m>|J70 == <§%(t)§$b+m>|J7O one gets
1
Sza(k, W)l p = B (Szz(’f +¢,w)lsgn(s)vTTTD7.0
+ Sea(k — o, Wﬂsgn(J)W,o
+i (Sxy(ff + @, w)lsgn(J)\/W,O
- Sﬂﬂy(H - <:07‘*‘J)|sgn(J)\/W,0>> = Syy(’iaw)b,[) ) (3.10)
1
Say(K,w)|; p = 3 (Szy(’f + %w)|sgn(J)¢J2+D27o
+ Say (K — 0,0)lsgn 1) v7257,0
—i (Szz@{ + ®, w)|sgn(J)\/W,o
= Sza(k — 9, w”sgn(J)JW,o)) == Sy (K, w)|; p - (3.11)

We may use now the results available for the isotropic XY chain
without the Dzyaloshinskii-Moriya interaction to follow the effects of
the latter interaction on zz (yy) and xy (yz) dynamics. We start from
the exact analytical result for zero temperature § = oo and strong
fields Q > +/J2 + D? [17,14]. The ground-state is completely polarized
|GSs) =1, | ln) (in spin language) or completely empty ¢, |GS.) = 0
(in fermionic language). Therefore, a crucial simplification occurs

st |GS,) = ¢t |GS.) \/_Zexp ikm) ¢ |GS,) ,

s; |GS,) = 0. (3.12)
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As a result

T T 1 —
<Sn(t)sn+m>|sgn(J)\/m’0 = Z <GSS|S’I’L( ) n+m|GS >

= ﬁZexp (imm—i(Q—Fsgn(J)\/ J? + D? COSK) t) ) (3.13)

T4 1 D
<Sn(t)sz+m>|sgn(J)\/W,0 = Z <GSS|Sn (t)8n+m|GSS>
=i <Si(t)$i+7n>|sgn(J)\/W,o’ (3.14)
and therefore
Sm(/a,w)|J7D =i Sry(“v“’”J,D
= 5(w— —sgn(J)v J?2 + D2 cos (Ii+90)) . (3.15)
If Q < —v/J? + D? instead of (3.12) one has
st |GSs) =0
s |GSs) = (=1)™ e |GS.) \/_Zexp i(k+7m)m) e |GS.) (3.16)
As a result
(sn ) 4m) senryvrzrpro = 1 (SR B)h4m)|seniryvrzrp.0

. % (GSalst (£)s5 0 ]CS.)

n+m

= gy e (il (04 ) VT D cosn) 1) (310

and therefore

Sea(k,w)|; p = =1 Say(k,w)|; p
= g& (w+Q—sgn(J)\/J2+D2cos (/i—gp)) . (3.18)

Another exact analytical results may be obtained for infinite temperature
8 =0.

Let us pass to the case of finite temperatures 0 < [ < oo (and
0 < Q < v/ J? + D?). Unfortunately in this case we can calculate the dy-
namic structure factors Sz (k,w), Szy(k,w) of the isotropic XY chain
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Figure 2. S;.(k,w) for @ =0.001, J = -1, D =1, 8 = 20.

which enter (3.10), (3.11) only numerically. The za dynamic structure
factor (grey-scale plots) of the finite-size (N = 400) isotropic XY chain
(J = —1) with the Dzyaloshinskii-Moriya interaction at low tempera-
ture (8 = 20) for different strengths of the transverse field Q = 0.001
and © = 0.5 can be seen in Figs. 1, 2 and Figs. 3, 4, respectively.

From the earlier studies for isotropic XY chains [14] we know that
the zz dynamic structure factor at low temperatures is concentrated
in the plane wavevector k — frequency w roughly along the boundaries
of the two-fermion continuum (3.5), (3.6), (3.7) (Figs. 1 and 3). If the
Dzyaloshinskii-Moriya interaction is present it is not true any more (Figs.
2 and 4). The zz dynamic structure factor is concentrated mostly along
the curves which correspond to the boundaries of two two-fermion con-
tinuum (3.5), (3.6), (3.7) which are shifted by ¢ along the wavevector
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Figure 4. Sy (k,w) for Q =0.5, J =—-1,D =1, 8 = 20.

axis k and are renormalized |J| — v/ J? + D? along the frequency axis
w. Thus, the correspondence between the zx and zz dynamic quanti-
ties becomes violated. From Figs. 1, 2, 3, 4 we can also see arising of
the asymmetry in S, (x,w) with respect to the change kK — —k owing
to the Dzyaloshinskii-Moriya interaction as the transverse field deviates
from zero. As ) increases (at fixed D) a redistribution of a weight of
Sez(K,w) between “left” and “right” two-fermion continua takes place
until the “left” one completely disappears as Q exceeds v/ J? + D2. (Ob-
viously, we should change “left” to “right” and vice versa when {2 increases
its value being negative.) It is important to note, that the soft modes of
“left” and “right” continua originating from the soft mode of the original
continuum at kK = 0 occur at kK = £ and they are field independent;
they can be used for determining of the value of the Dzyaloshinskii-
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Moriya interaction in the corresponding compounds. For electron-spin
resonance experiments the frequency profiles of S, (k,w) at kK = 0 and
k = m are relevant [18]. We see that both profiles change drastical-
ly if the Dzyaloshinskii-Moriya interaction is present. For example, the
zero-frequency peak at k = 0 which is relevant for the ferromagnet-
ic case moves towards higher frequency and its position is determined
by the value of the Dzyaloshinskii-Moriya interaction. Similarly, the
Dzyaloshinskii-Moriya interaction spectacularly changes the frequency
profile at k = w which is relevant for the antiferromagnetic case. Obvious-
ly, these effects can be used for experimental determining of the value of
the Dzyaloshinskii-Moriya interaction in the corresponding compounds.

4. Concluding remarks

To summarize, we have studied the zz (yy) and zy (yx) dynamic struc-
ture factors of the spin—% isotropic XY chain with the Dzyaloshinskii-
Moriya interaction and have demonstrated how the relation between
these quantities and the zz dynamic structure factor is modified due
to the Dzyaloshinskii-Moriya interaction. We have discussed how the
Dzyaloshinskii-Moriya interaction may manifest itself in the dynamic
experiments.
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