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Анотацiя. За допомогою перетворення Йордана-Вiгнера спiн- 1
2 XY

ланцюжки можуть бути зображенi невзаємодiючими безспiновими
фермiонами, що дозволяє виконати багато статистико-механiчних
розрахункiв точно, не використовуючи жодних спрощуючих припу-
щень. Нас цiкавлять динамiчнi властивостi таких ланнцюжкiв (ча-
совозалежнi спiновi кореляцiйнi функцiї, динамiчнi структурнi фак-
тори, динамiчнi сприйнятливостi), якi використовуються при тлума-
ченнi експериментальних даних. Ми приводимо кiнцевi результати у
замкненiй формi для ряду динамiчних величин, а також виконуємо
загальний аналiз двофермiонних континiумiв, якi визначають ряд
динамiчних величин.

Jordan-Wigner fermions and dynamic probes of quantum spin
chains

Oleg Derzhko and Taras Verkholyak

Abstract. With the help of the Jordan-Wigner transformation the spin-
1
2 XY chains can be reformulated in terms of noninteracting spinless
fermions and as a result many statistical-mechanics calculations can be
performed rigorously, i.e. without making any simplifying approxima-
tions. We are interested in dynamic properties of such chains (time-
dependent spin correlation functions, dynamic structure factors, dynam-
ic susceptibilities) which are of great importance for interpretation of
experimental data. We have worked out a number of dynamic quantities
explicitly as well as have performed a general analysis of the two-fermion
continua which are relevant for different dynamic quantities.
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1. Introductory remarks

The spin- 1
2 XY chains are known as a simplest quantum interacting

system for which a lot of statistical-mechanics calculations can be per-
formed exactly [1]. The properties of such quantum spin chains were
studied intensively during last more than forty years and the interest
in such models may be renewed owing to a discovery of almost spin- 1

2
XY chain compounds (see, e.g. [2,3]). On the other hand, such studies
are interesting by their own rights since they provide a set of reference
results which may be useful for understanding the much more common
Heisenberg chains.

In what follows we consider the spin- 1
2 anisotropic XY chain in

a transverse field with an additional Dzyaloshinskii-Moriya interac-
tion directed along z-axis in spin space to elucidate the effects of the
Dzyaloshinskii-Moriya interaction on the dynamic properties of quantum
spin chains. The Dzyaloshinskii-Moriya interaction plays important role
in a number of quasi-one-dimensional materials and although it is gener-
ally small its effects could be very important [4–6]. The Dzyaloshinskii-
Moriya interaction also arises in a description of the nonequlibrium
steady states of spin chains [7]. Let us recall what is known about the
dynamics of the considered quantum spin chains. The spin- 1

2 XY chain
with the Dzyaloshinskii-Moriya interaction was introduced in Ref. [8] (see
also Ref. [9]) and the effects of this interaction on the zz dynamics were
analyzed in Refs. [10,11]. In particular, the zz dynamic susceptibility
χzz(κ, ω) of the spin- 1

2 anisotropic XY chain with the Dzyaloshinskii-
Moriya interaction was derived explicitly for κ = 0 [10] and κ 6= 0 [11].
Nevertheless, the effects of the Dzyaloshinskii-Moriya interaction on the
two-fermion excitation continuum which governs zz dynamics [12,13]
have not been examined yet. There are notorious difficulties in calcula-
tions of the xx, xy, yx, yy dynamic quantities (for references see [14]) and
to our best knowledge the effects of the Dzyaloshinskii-Moriya interac-
tion on such quantities have not been reported until now. On the other
hand, we should mentioned here the recent papers on the Heisenberg
chains with the Dzyaloshinskii-Moriya interaction [15,16]. Thus, using
the symmetry arguments for the antiferromagnetic isotropic Heisenberg
(XXX) chain with the Dzyaloshinskii-Moriya term directed along z-
axis in spin space it was shown that although the Dzyaloshinskii-Moriya
interaction may leave the spectrum of the problem unchanged it can
essentially influence the spin correlations / dynamic susceptibilities. In
what follows we also derive such a conclusion in the case of the isotropic
XY (i.e. XX0) chain, however, calculated different dynamic structure
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factors explicitly.
In the present paper we report the first results for the Dzyaloshinskii-

Moriya effects on the two-fermion excitation continuum which governs
the zz dynamics of spin- 1

2 XY chains and on the xx, xy, yx, yy dynam-
ics of such chains. We start with presenting the basic formulas of the
Jordan-Wigner fermionization approach (Section 2). Then we consider
the case of isotropic XY exchange interaction. This case is essential-
ly simpler than the case of anisotropic XY exchange interaction since
the Dzyaloshinskii-Moriya interaction can be eliminated by a spin ax-
es rotation. As a result we can examine the dynamic structure factors
of the chain with the Dzyaloshinskii-Moriya interaction using the ob-
tained earlier results for such a chain without the Dzyaloshinskii-Moriya
interaction (Section 3). Finally, we summarize our results (Section 4).

2. Dzyaloshinskii-Moriya interaction and Jordan-

Wigner fermions

In what follows we consider N → ∞ spins 1
2 arranged in a circle and

governed by the Hamiltonian

H =
N

∑

n=1

Ωsz
n +

N
∑

n=1

(

Jxsx
nsx

n+1 + Jysy
nsy

n+1

)

+

N
∑

n=1

D
(

sx
nsy

n+1 − sy
nsx

n+1

)

=

N
∑

n=1

Ω

(

s+
n s−n − 1

2

)

+
1

2

N
∑

n=1

((

I+ + iD
)

s+
n s−n+1 +

(

I+ − iD
)

s−n s+
n+1

+I−
(

s+
n s+

n+1 + s−n s−n+1

))

. (2.1)

Here Jα = 2Iα, α = x, y is the anisotropic XY exchange interaction,
I± = Ix ± Iy, D is the Dzyaloshinskii-Moriya interaction and Ω is the
transverse field. It is worthwhile to note that making use of the transfor-
mation s̃x

n = sx
n, s̃y

n = −sy
n, s̃z

n = −sz
n (a π rotation of all spins about the

x-axis) one gets again (2.1) with the parameters −Ω, Jx, Jy,−D, where-
as a similar transformation, s̃x

n = (−1)nsx
n, s̃y

n = (−1)nsy
n, s̃z

n = sz
n,

yields (2.1) with the parameters Ω,−Jx,−Jy,−D. The renumbering of
sites j → N − j + 1, j = 1, 2, . . . , N in (2.1) yields again (2.1) with the
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parameters Ω, Jx, Jy,−D. These symmetry remarks permit to reduce
the range of parameters for a study of the properties the model.

We are interested in dynamics of quantum spin chain (2.1). For
this purpose we need the two-spin time-dependent correlation functions,
〈

sα
n(t)sβ

n+m(0)
〉

, α, β = x, y, z, the angular brackets denote the canoni-

cal thermodynamic averaging, which yield the dynamic structure factors

Sαβ(κ, ω) =

N
∑

m=1

exp (iκm)

∫ ∞

−∞
dt exp (iωt)

〈

sα
n(t)sβ

n+m(0)
〉

. (2.2)

Another dynamic quantity, the dynamic susceptibility χαβ(κ, ω) can be
obtained from the dynamic structure factor (2.2) using the fluctuation-
dissipation theorem and the Kramers-Kronig transformation.

To derive the statistical-mechanics quantities of the spin model (2.1)
we first use the Jordan-Wigner transformation

c+
1 = s+

1 , c+
n = (−2sz

1) . . .
(

−2sz
n−1

)

s+
n , n = 2, . . . , N,

c1 = s−1 , cn = (−2sz
1) . . .

(

−2sz
n−1

)

s−n , n = 2, . . . , N (2.3)

to express the spin Hamiltonian in fermionic language

H =
N

∑

n=1

Ω

(

c+
n cn − 1

2

)

+
1

2

N
∑

n=1

((

I+ + iD
)

c+
n cn+1 −

(

I+ − iD
)

cnc+
n+1

+I−
(

c+
n c+

n+1 − cncn+1

))

. (2.4)

Here the periodic boundary conditions are implied (the boundary term
not important for further calculations when N → ∞ has been omitted).
Then we perform the Fourier transformation

c+
n =

1√
N

∑

κ

exp (iκn) c+
κ , cn =

1√
N

∑

κ

exp (−iκn) cκ,

c+
κ =

1√
N

∑

n

exp (−iκn) c+
n , cκ =

1√
N

∑

n

exp (iκn) cn (2.5)

with κ = 2π
N

n and n = −N
2 ,−N

2 + 1, . . . , N
2 − 1 (if N is even) or

n = −N−1
2 ,−N−1

2 +1, . . . , N−1
2 (if N is odd) and the Bogolyubov trans-
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formation
(

βκ

β+
−κ

)

=

(

iuκ vκ

vκ iuκ

) (

cκ

c+
−κ

)

,

uκ = sgn
(

I− sinκ
) 1√

2

√

1 +
Ω + I+ cosκ

λκ

,

vκ =
1√
2

√

1 − Ω + I+ cosκ

λκ

,

λκ =

√

(Ω + I+ cosκ)
2
+ (I− sinκ)

2 (2.6)

to get instead of (2.4) the final fermionic Hamiltonian

H =
∑

κ

(

−Ω

2
+

(

Ω + I+ cosκ + D sinκ
)

c+
κ cκ

−i
1

2
I− sin κ

(

c+
κ c+

−κ + cκc−κ

)

)

=
∑

κ

′ ((
c+
κ c−κ

)

·
(

Ω + I+ cosκ + D sin κ −iI− sinκ
iI− sin κ −Ω − I+ cosκ + D sin κ

) (

cκ

c+
−κ

)

−D sin κ)

=
∑

κ

′
(

(

β+
κ β−κ

)

(

D sinκ + λκ 0
0 D sin κ − λκ

) (

βκ

β+
−κ

)

−D sin κ)

=
∑

κ

′ (
D sin κ

(

β+
κ βκ + β−κβ+

−κ − 1
)

+ λκ

(

β+
κ βκ − β−κβ+

−κ

))

=
∑

κ

(D sin κ + λκ)

(

β+
κ βκ − 1

2

)

=
∑

κ

Λκ

(

β+
κ βκ − 1

2

)

. (2.7)

Here the prime denotes that κ varies (when N → ∞) from 0 to π and
the elementary excitations energies are given by

Λκ = D sin κ + λκ

= D sin κ +

√

(Ω + I+ cosκ)
2

+ (I− sin κ)
2 6= Λ−κ. (2.8)
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It should be noted here that the Bogolyubov transformation (2.6) does
not depend on the Dzyaloshinskii-Moriya interaction D.

3. Isotropic XY chain

The isotropic case Jx = Jy = J is essentially simpler than a general
anisotropic case Jx 6= Jy since the Dzyaloshinskii-Moriya interaction
can be eliminated from the Hamiltonian (2.1) by a simple spin axes
rotation (see, e.g. [4]). Really, introducing new spin variables

s̃x
n = sx

n cosφn + sy
n sin φn,

s̃y
n = −sx

n sin φn + sy
n cosφn,

s̃z
n = sz

n,

φn = (n − 1)ϕ, tan ϕ =
D

J
(3.1)

one finds that

H =

N
∑

n=1

Ωsz
n +

N
∑

n=1

J
(

sx
nsx

n+1 + sy
nsy

n+1

)

+

N
∑

n=1

D
(

sx
nsy

n+1 − sy
nsx

n+1

)

=

N
∑

n=1

Ωs̃z
n +

N
∑

n=1

sgn(J)
√

J2 + D2
(

s̃x
ns̃x

n+1 + s̃y
ns̃y

n+1

)

. (3.2)

Obviously, the thermodynamic properties of the model with Dzyalo-
shinskii-Moriya interaction are the same as of the model without such
interaction but with renormalized isotropic exchange interaction |J | →√

J2 + D2. As a result the Dzyaloshinskii-Moriya interaction cannot be
revealed from the measurements of thermodynamic quantities. Let us
pass to the dynamic quantities.

3.1. zz dynamics and two-fermion excitation continuum

The spin rotations (3.1) do not effect the z spin component and therefore
〈

sz
n(t)sz

n+m(0)
〉∣

∣

J,D
=

〈

s̃z
n(t)s̃z

n+m(0)
〉∣

∣

sgn(J)
√

J2+D2,0
. (3.3)
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As a result we may use the long-known results for the zz dynamics (see,
e.g. [12,13])

Szz(κ, ω)|J,D = Szz(κ, ω)|sgn(J)
√

J2+D2,0

=

∫ π

−π

dκ1nκ1
(1 − nκ1−κ) δ (ω + Λκ1

− Λκ1−κ) . (3.4)

Here Λκ = Ω+sgn(J)
√

J2 + D2 cosκ is the elementary excitation energy
and nκ = 1

1+exp(βΛκ) is the Fermi function. From Refs. [12,13] we know
that the zz dynamic structure factor (3.4) is governed by the two-fermion
excitation continuum. The lower, middle, and upper boundaries of the
continuum in the plane wavevector κ – frequency ω are given by

ωl√
J2 + D2

= 2 sin
|κ|
2

∣

∣

∣

∣

sin

( |κ|
2

− α

)∣

∣

∣

∣

, (3.5)

ωm√
J2 + D2

= 2 sin
|κ|
2

sin

( |κ|
2

+ α

)

, (3.6)

and

ωu√
J2 + D2

=

{

2 sin |κ|
2 sin

(

|κ|
2 + α

)

, if 0 ≤ |κ| ≤ π − 2α,

2 sin |κ|
2 , if π − 2α ≤ |κ| ≤ π,

(3.7)

respectively; here α = arccos Ω√
J2+D2

. The soft modes (i.e. the values of κ

at which ωl = 0) occur at |κ0| = 0, 2α. The zz dynamic structure factor
may exhibit a one-dimensional Van Hove’s singularity (i.e. Szz(κ, ω =
ωs − 0) ∼ 1√

ωs−ω
) while approaching the curve

ωs√
J2 + D2

= 2 sin
|κ|
2

. (3.8)

As temperature increases the lower boundary of the continuum
smears out, i.e. ωl√

J2+D2
= 0, and the upper boundary becomes

ωu√
J2+D2

= 2 sin |κ|
2 . To conclude, the zz dynamics in the presence of

the Dzyaloshinskii-Moriya interaction remains as for the chain without
such interaction but with renormalized isotropic exchange interaction
|J | →

√
J2 + D2. As a result the Dzyaloshinskii-Moriya interaction does

not manifest itself in the zz dynamic quantities.
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3.2. xx and xy dynamics

Let us pass to the rest spin correlation functions. Employing Eq. (3.1)
one finds

〈

sx
n(t)sx

n+m

〉
∣

∣

J,D
= cosφn cosφn+m

〈

s̃x
n(t)s̃x

n+m

〉
∣

∣

sgn(J)
√

J2+D2,0

− cosφn sin φn+m

〈

s̃x
n(t)s̃y

n+m

〉∣

∣

sgn(J)
√

J2+D2,0

− sinφn cosφn+m

〈

s̃y
n(t)s̃x

n+m

〉∣

∣

sgn(J)
√

J2+D2,0

+ sinφn sin φn+m

〈

s̃y
n(t)s̃y

n+m

〉∣

∣

sgn(J)
√

J2+D2,0
(3.9)

and similar formulas for
〈

sx
n(t)sy

n+m

〉∣

∣

J,D
,

〈

sy
n(t)sx

n+m

〉∣

∣

J,D
and

〈

sy
n(t)sy

n+m

〉∣

∣

J,D
. Using further the relations

〈

s̃x
n(t)s̃x

n+m

〉∣

∣

J,0
=

〈

s̃y
n(t)s̃y

n+m

〉∣

∣

J,0
,

〈

s̃x
n(t)s̃y

n+m

〉∣

∣

J,0
= −

〈

s̃y
n(t)s̃x

n+m

〉∣

∣

J,0
one gets

Sxx(κ, ω)|J,D =
1

2

(

Sxx(κ + ϕ, ω)|sgn(J)
√

J2+D2,0

+ Sxx(κ − ϕ, ω)|sgn(J)
√

J2+D2,0

+i
(

Sxy(κ + ϕ, ω)|sgn(J)
√

J2+D2,0

− Sxy(κ − ϕ, ω)|sgn(J)
√

J2+D2,0

))

= Syy(κ, ω)|
J,D

, (3.10)

Sxy(κ, ω)|
J,D

=
1

2

(

Sxy(κ + ϕ, ω)|sgn(J)
√

J2+D2,0

+ Sxy(κ − ϕ, ω)|sgn(J)
√

J2+D2,0

−i
(

Sxx(κ + ϕ, ω)|sgn(J)
√

J2+D2,0

− Sxx(κ − ϕ, ω)|sgn(J)
√

J2+D2,0

))

= − Syx(κ, ω)|
J,D

. (3.11)

We may use now the results available for the isotropic XY chain
without the Dzyaloshinskii-Moriya interaction to follow the effects of
the latter interaction on xx (yy) and xy (yx) dynamics. We start from
the exact analytical result for zero temperature β = ∞ and strong
fields Ω >

√
J2 + D2 [17,14]. The ground-state is completely polarized

|GSs〉 =
∏

n | ↓n〉 (in spin language) or completely empty cκ |GSc〉 = 0
(in fermionic language). Therefore, a crucial simplification occurs

s+
m |GSs〉 = c+

m |GSc〉 =
1√
N

∑

κ

exp (iκm) c+
κ |GSc〉 ,

s−m |GSs〉 = 0. (3.12)
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As a result

〈

sx
n(t)sx

n+m

〉∣

∣

sgn(J)
√

J2+D2,0
=

1

4

〈

GSs|s−n (t)s+
n+m|GSs

〉

=
1

4N

∑

κ

exp
(

iκm − i
(

Ω + sgn(J)
√

J2 + D2 cosκ
)

t
)

, (3.13)

〈

sx
n(t)sy

n+m

〉∣

∣

sgn(J)
√

J2+D2,0
=

1

4i

〈

GSs|s−n (t)s+
n+m|GSs

〉

= −i
〈

sx
n(t)sx

n+m

〉
∣

∣

sgn(J)
√

J2+D2,0
, (3.14)

and therefore

Sxx(κ, ω)|J,D = i Sxy(κ, ω)|
J,D

=
π

2
δ
(

ω − Ω − sgn(J)
√

J2 + D2 cos (κ + ϕ)
)

. (3.15)

If Ω < −
√

J2 + D2 instead of (3.12) one has

s+
m |GSs〉 = 0,

s−m |GSs〉=(−1)mcm |GSc〉=
1√
N

∑

κ

exp (−i (κ + π) m) cκ |GSc〉 .(3.16)

As a result
〈

sx
n(t)sx

n+m

〉
∣

∣

sgn(J)
√

J2+D2,0
= −i

〈

sx
n(t)sy

n+m

〉
∣

∣

sgn(J)
√

J2+D2,0

=
1

4

〈

GSs|s+
n (t)s−n+m|GSs

〉

=
1

4N

∑

κ

exp
(

−i (κ + π)m + i
(

Ω + sgn(J)
√

J2 + D2 cosκ
)

t
)

,(3.17)

and therefore

Sxx(κ, ω)|J,D = −i Sxy(κ, ω)|
J,D

=
π

2
δ
(

ω + Ω − sgn(J)
√

J2 + D2 cos (κ − ϕ)
)

. (3.18)

Another exact analytical results may be obtained for infinite temperature
β = 0.

Let us pass to the case of finite temperatures 0 < β < ∞ (and
0 ≤ Ω <

√
J2 + D2). Unfortunately in this case we can calculate the dy-

namic structure factors Sxx(κ, ω), Sxy(κ, ω) of the isotropic XY chain
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Figure 1. Sxx(κ, ω) for Ω = 0.001, J = −1, D = 0, β = 20.

Figure 2. Sxx(κ, ω) for Ω = 0.001, J = −1, D = 1, β = 20.

which enter (3.10), (3.11) only numerically. The xx dynamic structure
factor (grey-scale plots) of the finite-size (N = 400) isotropic XY chain
(J = −1) with the Dzyaloshinskii-Moriya interaction at low tempera-
ture (β = 20) for different strengths of the transverse field Ω = 0.001
and Ω = 0.5 can be seen in Figs. 1, 2 and Figs. 3, 4, respectively.
From the earlier studies for isotropic XY chains [14] we know that

the xx dynamic structure factor at low temperatures is concentrated
in the plane wavevector κ – frequency ω roughly along the boundaries
of the two-fermion continuum (3.5), (3.6), (3.7) (Figs. 1 and 3). If the
Dzyaloshinskii-Moriya interaction is present it is not true any more (Figs.
2 and 4). The xx dynamic structure factor is concentrated mostly along
the curves which correspond to the boundaries of two two-fermion con-
tinuum (3.5), (3.6), (3.7) which are shifted by ±ϕ along the wavevector

ICMP–03–30E 10

Figure 3. Sxx(κ, ω) for Ω = 0.5, J = −1, D = 0, β = 20.

Figure 4. Sxx(κ, ω) for Ω = 0.5, J = −1, D = 1, β = 20.

axis κ and are renormalized |J | →
√

J2 + D2 along the frequency axis
ω. Thus, the correspondence between the xx and zz dynamic quanti-
ties becomes violated. From Figs. 1, 2, 3, 4 we can also see arising of
the asymmetry in Sxx(κ, ω) with respect to the change κ → −κ owing
to the Dzyaloshinskii-Moriya interaction as the transverse field deviates
from zero. As Ω increases (at fixed D) a redistribution of a weight of
Sxx(κ, ω) between “left” and “right” two-fermion continua takes place
until the “left” one completely disappears as Ω exceeds

√
J2 + D2. (Ob-

viously, we should change “left” to “right” and vice versa when Ω increases
its value being negative.) It is important to note, that the soft modes of
“left” and “right” continua originating from the soft mode of the original
continuum at κ = 0 occur at κ = ±ϕ and they are field independent;
they can be used for determining of the value of the Dzyaloshinskii-
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Moriya interaction in the corresponding compounds. For electron-spin
resonance experiments the frequency profiles of Sxx(κ, ω) at κ = 0 and
κ = π are relevant [18]. We see that both profiles change drastical-
ly if the Dzyaloshinskii-Moriya interaction is present. For example, the
zero-frequency peak at κ = 0 which is relevant for the ferromagnet-
ic case moves towards higher frequency and its position is determined
by the value of the Dzyaloshinskii-Moriya interaction. Similarly, the
Dzyaloshinskii-Moriya interaction spectacularly changes the frequency
profile at κ = π which is relevant for the antiferromagnetic case. Obvious-
ly, these effects can be used for experimental determining of the value of
the Dzyaloshinskii-Moriya interaction in the corresponding compounds.

4. Concluding remarks

To summarize, we have studied the xx (yy) and xy (yx) dynamic struc-
ture factors of the spin- 1

2 isotropic XY chain with the Dzyaloshinskii-
Moriya interaction and have demonstrated how the relation between
these quantities and the zz dynamic structure factor is modified due
to the Dzyaloshinskii-Moriya interaction. We have discussed how the
Dzyaloshinskii-Moriya interaction may manifest itself in the dynamic
experiments.
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