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Introduction

The study of dynamical properties of quantum fluids is actual among
experimental and analytical investigations of condensed systems. In par-
ticular, the study of collective excitations in a hydrodynamic limit for
semiquantum helium [1,2] is of great interest. An important problem of
the consistent account for the one-particle (kinetic) and collective (hy-
drodynamic) effects in excitation spectrum at intermediate values of a
wave vector and frequency is still unresolvad. In this study the time cor-
relation functions and collective excitation spectrum of quantum Bose
system are investigated using transport equations of consistent descrip-
tion of kinetics and hydrodynamics [3]. The transport processes of par-
ticles kinetic and potential energies are taken into account separately.
The expresions for the dynamic structure factor, time correlation func-
tions of the impulse density operators, kinetic and potential parts of
the particles enthalpy are obtained. The spectrum of collective excita-
tions with separate contributions from the kinetic and potential energies
streams into the heat mode is obtained, using Markov approximation for
the memory deneralized functions. At a fixed values or a wave vector
in a spectrum of collective excitations there are kinetic viscisity-elastic
modes with partitioning of the contributions of kinetic and potential en-
ergies. In a limit of small densities of a quantum Bose gas the collective
excitations spectrum of the corresponding equation is obtained.

1. Kinetics and hydrodynamics of nonequilibrium
state near equilibrium

For kinetics and hydrodynamics of nonequilibrium processes which are
close to an equilibrium state, the generalized transport equations [3]
in the linear approximation transform into a transport equation for

fu(pst) = (inc(p))t, hif(t) = (hint)?
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where iQ,,,(k, p), i, (k, p) are normalized static correlation functions:

iQun(k,p) = ((P)h"L)o®;r (), (1.3)

s int

A

iQ(k,p) = (hye —k(P"))o®x " (P, P) (1.4)

where

pint = & — /dp dp’ (Eini—i(p))o @y (P, P)fuc(p) =

E — (E7i)o Sy (k) e, (1.5)
N .
mt _ Z ¢ |rl] 71k rl ﬁk _ Ze—lk-rl (16)
l;é] 1 =1

are the Fourier-components of densities for the interaction energy and
the number of particles, respectively. Further, it is more convenient,
instead of the dynamical variable of energy &k, to use the variable fzﬁ‘t
(1.5) which is orthogonal to fix(p) by means of the equality:

(R 1) = 0. (1.7)

From the structure of the dynamical variable ﬁi?t (1.3) it can be seen
that it corresponds to a potential part of the Fourier-component of the
generalized enthalpy hy, which is introduced in molecular hydrodynam-
ics [5,1,2]:

hk = gk — (Ekn k>0nk = hkm + hmt (18)
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where . - -
W™ = &8 = (6 k)0 S5 (k)T (1.9)
is a kinetic part of the generalized enthalpy,
N .
Skin _ i o ke
k 2m
=1

is the Fourier-component of the kinetic energy density. So = (fixfi—x)o
is a static structure factor of the system.

@l:l(p//’p/) _ %(_p’gl) — co(k), (1.10)

where c3 (k) denotes a direct correlation function which is connected with
the correlation function ha(k) as: ha(k) = ca(k)[1 — ne2 (k)] L.
Cun(k, . P'51,1) = > (Ln(k, P)To(t, ) Lu(=k, p"))o By (p", '), (1.11)
pll
SDhn(ka p;t, tl) = Z <I;Lnt(k)T0(t7 tl)In(_ka pl)>0¢1:1(pla p)a (112)
pl
enn(k, p5t,t') = (L(k, p)To(t, 1) I} (—K))o Dy, (k), (1.13)
nn(kit t') = (I (K)To (¢, 1)1 (—k))o @y, (). (1.14)
are generalized transport kernels (memory functions) which describe ki-
netic and hydrodynamic processes.

Li(k,p) = (1-"Po)i(p), (1.15)

(k) = (1-7Po)hi (1.16)

are generalized fluxes in the linear approximation, ny(p) = iLyfu(p),
;Li(nt = iLyhi™, Ty(t, ') = et ¥)A-Po)iLx j5 5 time evolution operator

with the projection operator Py acts on the dynamical variables Ay

Podi = D (Awh™ )o@, (kA + (1.17)

k
>0 (i 1 (0))o®i (P, P (P)-

k pp’

The system of transport equations (1.1), (1.2) is closed. We are used
a Laplace transform with respect to time, assuming that at ¢ > 0 the
quantities fx(p;t = 0), hi*(t = 0) are known

Alz) = i/ dt e A(t), z=w+ie, - +0. (1.18)
0
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Then, equations (1.1) and (1.2) are presented in the form:

CP )= S Pt < (119)

> fp's2) + San(k, p; 2) it (2) —
>

zfi(p;2) + i

> oun(k,p,p's2) fic(p'; 2) + fi(p;t =0),

P
zhitt(2) = Z Sk, P 2) f(p';2) — (1.20)
p’
onn(k; 2) i (2) + (¢ = 0),
Tk, p;z) = iQun(k,p) — @nn(k, p; 2), (1.21)

In the next subsection, on the basis of a system of transport equations
for Fourier components of the nonequilibrium one-particle distribution
function and the potential part of enthalpy (1.21), (1.22), we shall ob-
tain equations for time correlation functions. We shall also investigate
the spectrum of collective excitations and the structure of generalized
transport coefficients.

2. Time correlation functions, collective modes and
generalized transport coefficients

With the help of combined equations (1.1), (1.2) one obtains a system
for time correlation functions:

Onn(k,p,p'3t) = D ((P;t)ixk(p";0))0®, (p”,P), (2.1)
Tpu(k,pit) = Y (WM HA k(P;0)0® (P,p),  (2.2)
Sun(k,pit) = (uc(p; )h5(0))o 2 (K), (2.3)

Srn(kit) = (i ()R (0))0 5 (K), (2.4)

where fuc(p;t) = e n i (p; 0), Aipt(t) = e LA (0).
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One uses the Fourier transform with respect to time

a) = / dt et (g)!

Then we write the system of equations (1.1), (1.2) in the form:

—iw(i(P))e = D Sna(k,p,p'iw +ie) (fuc(p)))w +

pl

Enh(kap;w +i€)<i”il?t>w7 (25)
—iw(hf) e = D Sha(k,psw +ie) (fn(p))w —

pl

onn(k; w + ie) (A, (2.6)
where

Yok, p,piw+ie) = iQun(k,p,pP') — nn(k, p,piw +ie), (2.7)
Enh (ka p;w + 15) = 1th (ka p) — @Pnh (k7 p,w + 15)7 (28)
Sink,p;w +ie) = iQuu(k,P) — @rn(k, p;w + i€). (2.9)

It is more convenient to present the system of equations (2.5), (2.6) in
a matrix form:

—iw(ln)e = D(k;w + i) (k). (2.10)

where ax = col(nk(p), fLi(“t) is a vector-column and

>p Znn(k,p,phiwtie) Epn(k,piw + ie)

(211
Y Znn(k,pw +ic) —pnn(k;w + i) (210

Y(k;w +ie) = [

o0
¥ (k;w + ie) :/ dt e/ HS (K 1),
0

Now, one uses the solution to the Liouville equation in approximation
[1,2] without introducing the projection operator Pq(t):

!
/dt’ St =) gL (t' =) (% +iLN> 0q (251 .

Then, from the self-consistency conditions (ax)" = (ax)!, one obtains a
system of equations which connects the average values (fix(p)). and
(hirt), with spectral functions of time correlation functions:

Q(QUN t) = Qq

iwd(k; w + i) () = [<I>(k) ~i(w +ie) Bk w + is)] (a)e,  (2.12)
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where
é(k'w i) = E ®,.,(k,p,p’;w +ig) q)g‘,t(k,p;w + ie)
’ Y Ptk pliwtie)  —Ppi(kw +ie)

Let us multiply equation (2.10) by the matrix ®(k;w + i) and compare
the result with equation (2.12). So we find

2®(k;2) = 2)®(k; 2) — ®(k), z=w+ie, (2.13)

d(k;z) = telth> k;t), £—0

or in an explicit form:

(

2@ (k,p,ps2) = Z n(k,p,p";2)@un(k,p",P';2) +  (2.14)
p"
s,

(k P;z )(}mt(k p ) )_ ‘}nn(kaf);pl);

2Ok, p;2) = Z nn(k, p,p"; 2) @y (k, p''; 2) + (2.15)
p”’
Snn(k, p; 2)Ppp (k; 2),
mt _ ", int " I,
t(k,p';z) = > Tan(k,p";2)@0(k,p",ps2) — (2.16)
@hh(k )(}mt(kpz )7
2@pr(k;2) = Y Swa(k,p";2) @ (k, P 2) — (2.17)

"

onn (k; 2) @iy (k; 2) — ®pn(k),

where the condition @4, (k,p’) = ®,4(k,p) = 0 is taken into account.
In order to solve the system of equations (2.14)—(2.17) we also apply

the projection procedure [4,6]. Let us introduce the dimensionless mo-

mentum & = -, vf = (mf)~". Then the system of equations (2.13)-

(2.17) can be rewritten in the matrix form:
2b(k;€, €5 2) - Bk €, € 2) 0k €, €5 2) = —(k;€,€),  (2.18)
where it is clear that the integration must be performed with respect to

the repeating indices £”. Further, let us introduce the scalar product of
two functions, ¢(§) and (), as

(Blv) = Z ¢*(€) fo(§)v(£). (2.19)
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Then, the matrix element for some “operator" M can be determined as

(G|M|y) = Z dg’ ¢* ()M (&,€") fo(€)(€"). (220)

Let ¢(&) = {¢,(§)} be the orthogonalized basis of functions with the
weight fo(€), so that the following condition is satisfied:

Guld) = b 10Nl = 1, (2.21)

where

(&) = dumn(€) = (min!) " 2H (&) Hu (&) Hn(E:),  (2:22)
Hy(&) = 272 H(¢/2), Hy(€) is a Hermite polynomial. Then, each func-

tion in the system of equations (2.18), which depends on momentum
variables &, ¢, can be expanded over functions ¢,(¢) in the series:

o(k;¢,¢52) = Zm (ki 2)0u (€N fo(€),  (2.23)

S(ki€,&2) = Z¢ on(k; 2)$(E)fo(€),  (2.:24)
where
®,u(ki2) = <¢V|<I>(k££ )| >= (2.25)
Z¢ k; €, 2)0,(€),
Soulkiz) = <¢V|E<k§f )| >= (2.26)
Z¢ k;€,¢'52)u(€).

Let us substitute expansions (2.23)—(2.26) into equation (2.18). As a
result, one obtains:

3,,(k; 2) Zzw Wk 2) = —@,,(k). (2.27)

In actual calculations, a finite number of functions from the set ¢, (€)
is used. Taking into account this fact, let us introduce the projection

ICMP-01-34E 8

operator P which projects arbitrary functions ¢ (£) onto a finite set of
functions ¢, (£):

P=>"16)el =1-Q,  P@|=> (Wlp)(e0l. (2.28)

v=1 v=1

Here n denotes a finite number of functions. Then, from (2.27) we obtain
a system of equations for a finite set of functions ¢, (),

3 [ZSW — i€ (K) + Dy (k; z)] b, (k;z) = —d,,(k),  (2.29)

y=1
where
Dol z) = (6,160k;2) + 5k )@ [z~ @8k @] Q50 2)l64)

(2.30)
are generalized hydrodynamic transport kernels and

i (k) = (60 [i2(K)|¢,.) (2.31)

is a frequency matrix. Note that matrices iQ(k) and @(k; z) are defined
according to (1.3), (1.4) and (1.11)—(1.14).

Let us find solutions to the system of equations (2.19) in the hydro-
dynamic region when a set of functions ¢, (£) present five moments of a
one-particle distribution function:

1() =1, g2(8) = &, 83(6) = —=(&* - 3), (2.32)

¢4(£) = fz; ¢5(£) = fy

Then, the following relations are fulfilled:

(Ume(§) = Z fik(§) = N,

SE

13
(Gln€) = > me(©) & = pp, (2.33)
£
6712 =3)(§) = D m(&) 67 —3) =
£
g"ll:in _ 3,ﬁlk671 _ hllim7

for the Fourier components of densities for the number of particles, mo-
mentum and the kinetic part of generalized enthalpy. Besides that, the
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microscopic conservation laws for densities of the number of particles
and momentum can be written in the form:

(1|(§) = —ikyppm™1,

. ~ (2.34)
<€a|ﬁk(§) = _ik'yTl;yaa
where ’T‘ﬁ @ is a Fourier component of the stress-tensor.

If we choose the direction of wavevector k along oz-axis, then ¢, (),
v = 1,2,3 will correspond to longitudinal modes, whereas ¢,(§) at
v = 4,5 will be related to transverse modes.

From the system of equations (2.29), at v = 4,5, ¢4(§) = &,
¢5(§) = &, one obtains an equation for the Fourier component of the
time correlation function connected with the transverse component of
the momentum density ®44(k; z). From this equation one finds:

1
Buy(k;z) =01 (k;z) = —————, 2.35
1a(ksz) = @, (ks 2) z+ Dy, (k; 2) (2.35)

where
B (ki 2) = (| Brn(k, &, €5 2)[EL), (2.36)
Dép(k; z) = Dép(ki“) (k; z) + DIJ;p(i“t) (k; z), (2.37)
Dy (s 2) = (&alonn(k, €, €5 2)|E)), (2.38)

DJ_(int) (k, Z) _
- -1
<az|[ (.6 €:2)Q [ - QS 66190 QSke€ia)| e,

(2.39)
D;‘p(k;z) ik*n(k; 2)(mn) !, (2.40)

where 7(k; z) denotes a generalized coefficient of shear viscosity. Such
a coefficient consists of two main contributions. The first one is
Dm,(km (k; z), whereas the second contribution Dpp(mt) (k; z) describes
a relation of kinetic and hydrodynamic processes. If we put v = 1,2,3,

61(€) = 1, $2(&) = &, ¢3(€) — 671/2(¢2 — 3) in the system of equation
(2.29), then we obtain:

2®no (ks 2) — iy (K)Ppo (k; 2) = —Ppa(k), (2.41)

2®pa(K; 2) — iQpn (K) Pra (K; 2) + Dpp(k; 2)®pq (ks 2)—

2.42
Ephkin (k;Z)‘I’hkina(k Z) Eph"“ (k )@hmt (k,Z) = —Qpa(k), ( )

ICMP-01-34E 10

2P piing (K; 2) — Bping (K; 2) Ppq (ks 2) + Dprinpin (K; 2) P piin, (ks 2)+
thinhint (k, Z)‘I)hmt (k Z) = —q)hkma(k)

(2.43)
Z‘tht (k Z) Ehmt ( ) pa(k; Z) + Dhinthkin (k, Z)Qhkina(k; Z)+
Dhlnthlnt (k )‘I’hmc (k Z) = —‘I’hima(k),

(2.44)
where a = {f, Pk, hi™, hi*} and
thkm (k Z) = lQphkm( ) — phk‘“ (k,Z),
ph‘“t( ) = 1Qph‘“t( ) - ph‘“t (k,Z), 2.45
Speng(i2) = n,(K) — Dy (ki 2), (2.45)
Ehimp(k;z) = Ithm ( ) — Dhlnt (k,Z)

i (k) and Dgp(k; 2) are determined according to (2.31), (2.30). From
the system of equations (2.41)—(2.44) one can define the Fourier compo-
nents of the particle number density correlation functions

as well as of the longitudinal component of the momentum density

)}, (k; 2) = Par(k; 2) = (€[ P (k, €, €5 2)IEL), (2.47)
for the kinetic part of generalized enthalpy

1
Bpnpiin (k; 2) = Bag(k; 2) = (673 (€2 = 3)|@n(k, €, €5 2)[67 3 ()2 — 3)
(2.48)

as well as for the potential part of generalized enthalpy ®pintpin:(k;2)
and cross correlation functions, especially ®intpuin(k;2), P, pein(k;2),
@ pine (ks 2), @ppuin (K; 2), @ppime(k; 2). It is important to point out that
the system of equations (2.41)—(2.44) corresponds to the system of equa-
tions for Fourier components of the average values of densities for the
number of particles (fix) ., longitudinal momentum (py)., kinetic (h¥i"),
and potential (hi™), parts of generalized enthalpy:

2(fuc): — iy (K) (Prc): = —(Anc(t =0)),  (2.49)

2(Pr)= — iQpn (k) ()= + DI (k; 2)(Pi)- —  (2.50)
S pran (K3 2) (A" = S ppiee (k5 2) (M) = —(Prc(t = 0)),

2(hE™) . — Spiny (K; 2)(Prc): + Dpinpin (k3 2) (BE™), + (2.51)
Dpsnpins (; 2) (B) 2 = — (g™ (¢ = 0)),

2(hP) s = Spns (K3 2) (1) + Dpnspn (k3 2) (BE™) .+ (2.52)
Do o (K; 2) (hie®). = — (2 (t = 0)).
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This system of equations is similar in construction to the equations of
molecular hydrodynamics [1]. The difference consists in the fact that in-
stead of the equations for the Fourier component of the mean enthalpy
density (ﬁk)t which is introduced in molecular hydrodynamics, there are
two connected equations for the Fourier components of mean values of
the kinetic and potential parts of enthalpy density. Moreover, instead
of the generalized thermal conductivity which appears in molecular hy-
drodynamics, the dissipation of energy flows is described in equations
(2.49)-(2.52) by a set of generalized transport kernels Dpxinpiin(k; 2),
Dpxinpint (K5 2), Dpint pin (K5 2), Dpinepins (K; 2). Obviously, transport ker-
nels give more detailed information on the dissipation of energy flows
in the system because they describe the time evolution of dynamical
correlations between the kinetic and potential flows of enthalpy density.
Solving the system of equation (2.41)—(2.44) at @ = n, one obtains
an expression for the correlation function “density-density" @, (k; z)

-1
D, (k; 2) = —Sa(k) lz - M] , (2.53)
2+ Dpp(k; 2)
where

D) (k;z) = D)) (k; z) — (2.54)

S iin (K; 2) [2 + Dpin pin (K; 2)] ™ Spin (s 2) —

S o (1 2) [# + Dygnspine (065 )]~ Sy (1 2),
Y puin (ks 2) = X ppuin (ks 2) — (2.55)

Eppint (K; 2) [z 4 Dpine pine (K; 2)]71 Dpinsprin (k3 2),
S pkinp (K: 2) = Spain (K; 2) — (2.56)

Dipnpne (K; 2) [z + Dpinepine (K; 2)] 7 Syiney (k; 2),
D prinpicin (k3 2) = Dpiinprin (k5 2) — (2.57)

Djxin pint (k; Z) [Z ~+ Dpyint pyint (k; Z)]il Djjins pxin (k; Z)

In expressions (2.54)-(2.57) we can observe an interesting renormaliza-
tion of the functions X,, and D, via the generalized transport kernels
for fluctuations of flows of the potential part of enthalpy density. How-
ever, Dlljlp(k;z) is connected only with the generalized shear viscosity
17||(k; z), since the densities of the number of particles 7y and momen-
tum Py are included in the set of variables of an abbreviated description.

ICMP-01-34E 12

In our case Dl‘,‘p(k; z) takes into account both thermal and viscous dy-
namical correlation processes. Excluding from (2.53) the imaginary part

@un(k;w) of the correlation function ®,,,(k;z), one obtains an expres-
sion for the dynamical structure factor S(k;w) in which contributions of
transport kernels corresponding to the kinetic and potential parts of the
enthalpy density hy are separated. It is evident that the main contribu-
tion of the transport kernel Dyinepint (k; 2) to the S(k;w) for liquids was
in the hydrodynamical region (the region of small values of wavevector
k and frequency w), whereas Dpxinpiin (k; 2) will contribute to the kinet-
ic region (orders of interatomic distances, small correlation times). In
the region of intermediate values of wavevector k and frequency w, it
is necessary to take into account all the transport kernels ¥ jxin (k; 2),
X pint (k; 2), Dpxinpin (K; 2), Dpintprin (K; 2), Dpinegine (k; 2). Since it is im-
possible to perform exact calculations of the described above functions,
it is necessary in each separate region to accept models corresponding
to the physical processes. Obviously, it is necessary to provide mod-
elling on the level of generalized transport kernels ¢, (k,p,p’;t,t'),
onn(k, P t, 1), Onn(k, P'5t,t), nn(k;t,t') (1.11)—(1.14). The modelling
problems of transport kernels for intermediate values of k and w are
reflected in the details of the description of spectra for collective excita-
tions, as well as in the dynamical structure factor. In the limit £ — 0,
w — 0, the cross correlations between the kinetic and potential flows of
energy and shear flows become not so important and the system of equa-
tions (2.53)—(2.57) gives a spectrum of the collective modes of molecular
hydrodynamics [1,2]. For intermediate values of k and w, the spectrum
of collective modes can be found from the condition

z i, (k) 0
i, (k) z+ Dlly(k; 2) 3, pin (K; z) S (k32) | _ g
0 Ehkm ( ) z+ thlnhkln (k, Z) thlnhlnt (k, Z) ’
0 Ehint ( ; Z) Dhlnthkln (k, Z) z + Dhlnthlnt (k, Z)

(2.58)

in which contributions of the kinetic and potential parts of general-
ized enthalpy are separated. This will be reflected in the structure of
a heat mode at concrete model calculations of the wavevector- and
frequency-dependent transport kernels Djpuinpin(k;2), Dprinpint (k; 2),
Dpyintpiin (k; 2), Dpinepint (k; 2) depending on k and w.

The system of equations (2.41)—(2.44) for time correlation functions
allows an extended description of collective modes in liquids, which in-
cludes both hydrodynamic and kinetic processes. Including on the basis
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of functions ¢, (£) (2.32) some additional functions,

o=t -na  wo=Leg -0 @9

which corresponds to a 13-moments approximation of Grad, one obtains
a system of equations for time correlation functions of an extended set
of hydrodynamic variables {fik, Pk, hi", Ik, Qx, hit*}:

2@ (k; 2) — i (k)@ (k; 2) + oM (Kk; 2) DT (k; 2) = —@H(k), (2.60)

where
D q)np ®,,jxin P, (I)nQ D, pint
q)pn (I)pp q)phkin (I)pH (I)pQ (I)phim
dH (k;z) = D xing, @hkinp Dpinprin Ppuingy @hkinQ D xcin pint

Q1) P, Dy kin D P10 Bppint
@Qn (pr @Qhkin @QH @QQ @thnt
@hintn (bhintp @hinthkin (bhintn @hintQ (bhinthint
(2.61)
is a matrix of Laplace images of the time correlation functions,

e = Y on(©)e(§), Que =Y, 0 (©in(8),

0 i 0 0 0 0

iQ,, 0 Qe iQn 0 i, ine
L& 0 iQpein, 0O 0 iQpkin 0

H(1) _ Rkinp RkinQ

=10 im0 0 Qg 0

0 0 iQopn Qom0 1 pine

0 i, O 0 Qg 0

(2.62)
is an extended hydrodynamic frequency matrix,
0 0 0 0 0 0
H H H H H

0 Dy, D in Dyn Dyg D int
@H (k; Z) _ 0 thinp Dyxinpxin  Dpxingy thinQ Djxin pint

0 DHp DHhkin DHH DHQ DHhint

0 DQP DQhkin DQH DQQ Dthnt

0 Dhintp Dhint hkin Dhintn DhintQ Dhint hint

(2.63)
is a matrix of generalized memory functions, elements of which are trans-
port kernels (2.30) projected on the basis of functions ¢, (§) (2.32), (2.59).
For such a description, the spectrum of generalized collective modes
of the system is determinedfor intermediate k and w by the relation
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det |2I —iQH (k) + @H(k)‘ = 0 which takes into account kinetic and hy-

drodynamic processes. In the hydrodynamic limit £ — 0, w — 0, when
the contribution of cross dissipative correlations between the kinetic and
hydrodynamic processes practically vanishes, the system of equations for
the time correlation function (2.60), after some transformations, can be
reduced to a system of equations for time corelation functions of densi-
ties for the number of particles nix, momentum py, total enthalpy hy,
the generalized stress tensor Tk = (1 — Py )iLnypk and the generalized
enthalpy flow qx = (1 — Pg)iL Nﬁk, where Py is the Mori operator con-
structed on the dynamical variables {7, Pk, iLk} For such a system
of equations, the spectrum of collective excitations is determined from
[1,2]:

i, 0 0 0

i, z i i, 0

0 ith z 0 0 =0. (2.64)
0 iQﬂ'p 0 z+ Prw IQTI'Q + PrQ

0 0 0 iQor + Yonr RQ (k;2)

In the hydrodynamic limit this gives: the heat mode

zu(k) = Drk? + O(k%), (2.65)
two complex conjugated sound modes

z4 (k) = tiws (k) + 2s(k), (2.66)

where ws (k) = ck + o(k®) is a frequency of sound propagation, zs(k) =
Lk2+0O(k*) is a frequency of sound damping with the damping coefficient
I'; two nonvanishing in the limit £ — 0 kinetic modes

zr(k) = ora(0) + O(k2)>
. 2.67
k) = pao(0)+O(K?). (267)
Here Dt denotes a thermal diffusion coefficient
2 2
Ut A . m®oo — h
9 = Vg = —o——, Y =cpfey

T =
Y0Q@0)  mnc,’ ney

cp and cy are, correspondingly, thermodynamic values of specific heats
at the constant pressure and volume, A is a thermal conductivity coeffi-
cient, h denotes a thermodynamic value of enthalpy, ¢ = v/mnS(k = 0)
denotes an adiabatic sound velocity. In (2.66)

1 1
I'=g(y-1Dr+ 517” (2.68)
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is a sound damping coefficient with

2
= Y — é 2 _ mS(0)Prr(0) — v
n <317 + /<a> [nm, Vpr S (0) )

where 1 and k are shear and bulk viscosities. However, at fixed values
of k and w, the transport kernels ¢ ., ¥rQ, Yor, Poq are expressed
via the generalized transport kernels D, (k;z) of matrix (2.63), i.e.
via pun(k, P, P, 1), wun(k, Pst, '), onn(k, p'st, '), onn(k;t, ') (1.11)-
(1.14), according to the definition D, (k; z) (2.30). Here, it is important
to point out that passing from the system of transport equations of a self-
consistent description of kinetics and hydrodynamics to the equations
of generalized hydrodynamics, we can connect the generalized transport
kernels (1.11)—(1.14) with the hydrodynamic transport kernels D, (k; z)
in (2.58) or (2.63).
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