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1 ðÒÅ�ÒÉÎÔ1. IntrodutionThe Lorentz-Dira equation is an equation of motion for a harged parti-le under the inuene of an external fore as well as its own eletromag-neti �eld. The partile's world line is desribed by the funtions z�(�)whih give the partile's oordinates as funtions of proper time � . Wedenote u�(�) = dz�(�)=d� the four-veloity, and a�(�) = du�(�)=d� isthe four-aeleration. The Lorentz-Dira equation is written asma� = F�ext + 23e2 ( _a� � u�(a�a�)) ; (1)where m is the partile's rest mass, e its harge, F�ext the external fore,and _a�(�) = da�(�)=d� . The third term takes into aount the energyloss due to radiation, the seond one follows from a proper relativistitreatment given �rst by Shott (1915), and is alled the "Shott term". Ifthe �rst term is the Lorentz fore, the Shott term is neessary in orderto preserve equality u�u� = �1.The problems of runaway solutions (where aeleration grows expo-tentially with time) and pre-aeleration (when aeleration begins toinrease prior to time at whih the external fore swithes on) our inthis theory [1℄. They ast a serious doubt on the validity of the Lorentz-Dira equation.The law of onservation of the total four-momentum of omposite(partile + �eld) system provides the foundation for Dira's derivation [2℄of radiation-reation fore. The veri�ation of energy onservation is nota trivial matter, sine the Lorentz-Dira equation is derived with the helpof a mass renormalization proedure, whih involves the manipulation ofthe divergent self-energy of a point harge.There are many derivations whih are patterned after Dira's lassi-al paper [2℄ (see, for instane, [1,3,4℄). Although they di�er from it intheir tehnial aspets, all the derivations involve the Taylor expansionof a �nite sized harged sphere in whih the �rst two terms lead to theeletromagneti self-energy and the Abraham radiation reation four-vetor, respetively. Following ref.[2℄, the authors enlose a world linewithin a thin world tube and alulate an eletromagneti ow arossthis surfae per unit proper time. In fat, they alulate the time deriva-tive of energy-momentum four-vetor. My main objetive is to alu-late how muh eletromagneti-�eld momentum ows aross hyperplane�t = fy 2 MI : y0 = tg at �xed instant time t. Thanks to suh a ompu-tation we make sense of the so-alled "mass renormalization" proedureand the separation of "struture-independent" Shott term. These meth-ods are very important to obtain the Lorentz-Dira equation (1).
ICMP{01{22E 2The physial meaning of a deomposition of eletromagneti �eld'sstress-energy tensor into radiative and bound omponent will be fullyeluidated too. The Shott term in the Lorentz-Dira equation is orig-inated from the bound omponent of the Maxwell energy-momentumtensor density. Teitelboim shows [3℄ that due to volume integration ofthis omponent we obtain an eletromagneti four-momentum arriedby the partile around it. In fat, by this he means the partile four-momentum p� = mu� � 23e2a� (2)whih ontains, apart from the usual veloity term, also a ontributionfrom the aeleration when the partile is harged. We substantiate Teit-elboim's onept so far as partile's eletromagneti "fur" is onerned.The main goal of present paper is to hek up the onsistenyof Lorentz-Dira equation with fundamental priniples like energy-momentum onservation and the onservation of total angular momen-tum. By "fundamental priniples" are meant the ten onserved quantitiesorresponding to Poinar�e-invariane of omposite partile+�eld system.Of ourse, the divergent self-energy term arises unavoidably wheneverone introdues point harges in a lassial eletrodynamis. Followingref. [1℄, we assume that an intrinsi struture of a harged partile isbeyond the limits of lassial theory (exept that its "radius" does notvanish, though is too small to be observed). For this reason the massrenormalization is not neessary.Our emphasis will be on rigorous alulations and exat solu-tions based on standard lassial eletrodynamis supplemented withRohrlih's heuristi assumptions so far as the dynamis of a singleharged partile are onerned [1, Set.6-2,6-4℄.2. Energy-momentum onservationIn this setion we hek a balane between eletromagneti-�eld momen-tum and mehanial momentum of an arbitrary moving partile. We onlyassume that the partile is asymptotially free at the remote past andat the distant future. We suppose "that ation of the fore is reasonablylimited in spae-time" [1℄.2.1. PreliminariesWe hoose metri tensor ��� = diag(�1; 1; 1; 1) for Minkowski spae MI .We use the Heaviside-Lorentz system of units with the veloity of light



3 ðÒÅ�ÒÉÎÔ = 1. Summation over repeated indies is understood throughout thepaper; Greek indies run from 0 to 3, and Latin indies from 1 to 3. Thepartile trajetory � : RI ! MIt 7! (t; zi(t)) ; (3)is meant as a loal setion of trivial bundle (MI ; i; RI ) where the projetioni : MI ! RI(y0; yi) 7! y0 ; (4)de�nes the instant form of dynamis [5℄.We denote u0 :=  and ui := vi, vi = dzi(t)=dt, the omponentsof partile's four-veloity; its four-aeleration is a� = du�=dt wherefator  := 1=p1� v2. We shall use the partile's momentarily omovingLorentz frame (MCLF) where partile is momentarily at the rest at theinstant time t. The Lorentz matrixk���0k = 0BBB� 1p1� v2 vl0p1� v2vkp1� v2 Ækl0 + '(v2)vkvl0 1CCCA ; (5)'(v2) = v�2( � 1), determines the transformation to MCLF wherefour-veloity u�0 = (1; 0; 0; 0) and four-aeleration a�0 = (0; ai0). Theomponents ai0 = �i0�a� onstitute three-vetor a whih is (non-trival)spatial part of the partile aeleration taken in MCLF.We suppose that the omponents of total four-momentum of ourpartile+�eld system arep�(t) = mu�(t) + P Z�t d��T �� ; (6)where d�� is the vetorial surfae element on a spae-like hypersurfae�t whih intersets a trajetory at the point (t; z(t)). (By �t we takea �bre [6℄ of "instant" bundle (4) over t 2 RI .) By T �� we denote theomponents of the Maxwell energy-momentum tensor densityT�� = f��f�� � 1=4���f��f�� : (7)The tensor has an r�4 singularity on a partile trajetory. In eq.(6) api-tal letter P denotes the prinipal value of the singular integral, de�ned byremoving from �t a sphere K(0; ") around the partile and then passingto the limit "! 0.

ICMP{01{22E 42.2. Coordinate systemAn appropriate oordinate system for at spaetime is the key to theproblem. The struture of (retarded) Lienard-Wiehert potential moti-vates the introdution of a oordinate system entered on an aeleratedworld line. A wide lass of suh oordinate systems was onsidered byNewman and Unti [7℄. The set of urvilinear oordinates for at spae-time MI involves the retarded time, say u, and the retarded distane r.The former is the root of algebrai equation(y0 � u)2 =Xi (yi � qi(u))2 ; (8)whih is related to the observation time t by the ausality onditiont � u > 0. The latter is the distane between an observer event y andthe partile, as measured at the retarded time in the MCLF:r(y) = ����(y� � q�(u))u�(u) : (9)We start with the following oordinate transformation:y0 = u+ r�0�0n�0 ; yi = zi(u) + r�i�0n�0 ; (10)whih is a spei� example of Newman and Unti lass of oordinate sys-tems, presented in ref.[4℄. The null vetor n := (1;n) has the omponents(1; os� sin#; sin� sin#; os#); # and � are two polar angles.To adopt these urvilinear oordinates to the instant form of dynam-is (4), we replae the retarded distane r by the expressionr = p1� v21 + (vn) (t� u) ; (11)where t is the observation time. On rearrangement, the �nal oordinatetransformation (y�) 7! (t; u; #; �) looks as follows:y0 = t ; yi = qi(u) + p1� v21 + (vn) (t� u)�i�0n�0 : (12)Sine the bundle (4) is trivial [6℄, we onsider spae-time MI as a disjointunion of �bres i�1(t) := �t parametrized by the oordinates (u; #; �).This oordinate system is global beause di�erent �'s do not interset.



5 ðÒÅ�ÒÉÎÔ2.3. Eletromagneti �eld's stress-energy tensorThe omponents of Lienard-Wiehert potential ^A = A�dy� depend onthe state of the partile's motion at the retarded time only:A� = eu�(u)r(y) : (13)Here u�(u) are the omponents of veloity one-form ^u. The eletromag-neti �eld is written as follows [4℄^f = er2 [^u+ r(ak^u+ ^a)℄ ^ ^k ; (14)where one-form ^k = k�dy� has the omponents k� = ���k�, k� =���0n�, and salar ak = k�a�. To express the omponents f�� in termsof urvilinear oordinates (12) we substitute the right side of eq.(11) forthe retarded distane r in this expression.It is straightforward to substitute these omponents into eq.(7) to al-ulate the eletromagneti �eld's stress-energy tensor. Following ref.[3℄,we present T�� as a sum of radiative and bound omponents,T�� = T��rad + T��bnd ; (15)where4�T 00rad = e2(t� u)2 [1 + (vn)℄4(1� v2)2 �a2 � (an)2� ;4�T 0irad = e2(t� u)2 [1 + (vn)℄3(1� v2)3=2 �a2 � (an)2� �vi0 + ni0��ii0 (16)are the radiative omponents, and4�T 00bnd = 12 e2(t� u)4 [1 + (vn)℄4(1� v2)3 �1� 2(vn)2 + v2�++ 2 e2(t� u)3 [1 + (vn)℄4(1� v2)5=2 [(av)� (an)(vn)℄ ; (17)4�T 0ibnd = e2(t� u)4 [1 + (vn)℄4(1� v2)5=2 hvi0 � (vn)ni0i�ii0 ++ e2(t� u)3 [1 + (vn)℄3(1� v2)2 �[(av)� (an)(vn)℄vi0++ [(av)� (an)� 2(vn)(an)℄ni0 + [1 + (vn)℄ai0��ii0 (18)
ICMP{01{22E 6are the bound omponents. The results oinide with the omponentsT 0� obtained in [4, eqs.(5.4),(5.5)℄ where k� should be replaed by���0n�0 and the right side of eq.(11) should be substituted for the re-tarded distane.2.4. Eletromagneti �eld momentumNow we alulate the eletromagneti �eld momentump�em = Z�t d�0T 0� ; (19)where an integration hypersurfae �t = fy 2 MI : y0 = tg is a surfae ofonstant t. The surfae element is given by d�0 = p�gdud#d� wherep�g = (1� v2)2[1 + (vn)℄3 (t� u)2 sin# (20)is the determinant of metri tensor of Minkowski spae viewed in urvi-linear oordinates (12). The angular integration an be handled via therelations Z �0 d# sin# Z 2�0 d�ni = 0 ;Z �0 d# sin# Z 2�0 d�ninj = 4�3 Æij ;Z �0 d# sin# Z 2�0 d�ninjnk = 0 : (21)The alulation reveals that the deomposition of stress-energy tensorinto radiative and bound omponents is meaningful. Indeed, radiativeomponent (16) sales as r�2; its ontribution is regular:p0rad = Zy0=t d�0T 00rad = 23e2 Z t�1 dua2(u) ;pirad = Zy0=t d�0T 0irad = 23e2 Z t�1 dua2(u)vi(u) : (22)The radiative momentum is aumulated: its amount in �t at �xed timet depends on all previous motion of a soure. While the bound four-momentum depends on the state of partile's motion at the observation



7 ðÒÅ�ÒÉÎÔtime only! The matter is that the total (retarded) time derivatives arisefrom angular integration:p0bnd = P Zy0=t d�0T 00bnd = 23e2 Z t�1 du � 1(t� u)2 ��14 + 11� v2�++ 1t� u 2(v _v)(1� v2)2 �= 23e2 limu!t��14 + 11� v2(u)� 1t� u ; (23)pibnd = P Zy0=t d�0T 0ibnd = 23e2 Z t�1 du � 1(t� u)2 vi1� v2++ 1t� u � _vi1� v2 + 2(v _v)vi(1� v2)2��= 23e2 limu!t vi(u)1� v2(u) 1t� u : (24)This is explained by Teitelboim in ref.[3, pg.1581℄:"It is of interestto emphasize that the tensor T��bnd and, in partiular, its omponentsT 0�bnd, whih are to be interpreted as the negatives of the energy andmomentum densities in the rest frame, are retarded funtions. Thus ahange in the energy-momentum density on �(�) an be aused only bya hange of the kinematis of the harge prior to �1. Nevertheless, ifone adds all the ontributions from the various volume elements, the netresult depends only on a neighborhood of the present event z(�). Thusit looks as if the harge arried a rigid eletromagneti loud, but a trulyrigid eletromagneti on�guration would ontradit the �nite speed ofpropagation of the interations."From the formal point of view the bound omponents (23) and (24),involved in partile four-momentum, are divergent. We arrive at thegap between strutureless point partiles and �nite �eld energies. InRohrlih's opinion [1℄, it is impossible to �ll in the gap using the methodsof lassial eletrodynamis. A higher-level theory is neessary. For thisreason we do not make any assumptions about the partile struture,its harge distribution, and its size. We assume only that the partilefour-momentum is �nite. To substantiate our point of view we are goingto analize ommonly used manipulations with divergent terms (23) and(24).1The author deals with ovariant proper time � ; �(�) is the spaelike surfae (26)whih intersets a world line at point z(�) = (t; z(t)).

ICMP{01{22E 82.5. Shott termWe fae the problem how the Shott term arises due to integration of thebound omponent of energy-stress tensor. One usually works in frameof ovariant approah where the proper time � is used as an evolutionparameter. Sine d� =p1� v2(t)dt, we substitute small parameter " forp1� v2(t)(t�u) in eqs.(23) and (24). In terms of ovariant oordinatesthe omponents of singular four-momentum involve the term23e2 lim"!0 u�(� � ")" : (25)(Only zeroth omponent has the additional term.) We are interested inthe limit "! 0 and, therefore, we expand this singularity in the immedi-ate viinity of world line. In Taylor expansion of eq.(25) the struturelessterm is proportional to partile four-aeleration.2 It is the well-knownShott term involved in the Lorentz-Dira equation (1).2.6. Renormalization of massIt is often assumed that the partile is a "matter" ore "dressed" inthe eletromagneti "loud". The divergent term | the �rst term of theTaylor expansion of (25) | should be added to a rest mass of "matter"ore, so that this already renormalized mass is meaningful.We have a problem how suh a renormalization proedure for boundfour-momentum with omponents (23) and (24) should be de�ned. In-deed, zeroth omponent ontains the term whih is not proportional tozeroth omponent of four-veloity while the spatial omponents are pro-portional to ui. The reason is that we use surfae �t = fy 2 MI : y0 = tgas an integration hypersurfae in eq.(19). Rohrlih [1℄ and Teitelboim [3℄suggest that the momentarily omoving Lorentz frame of the harge playsa privileged role in the de�nition of the energy momentum orrespondingto the bound part of the energy-momentum tensor. The authors use thespaelike surfae �t de�ned byu�(�) (y� � z�(�)) = 0 (26)as the integration hypersurfae. Our aim is to make strit sense of this"privileged role".So, we have to alulate the volume integral (19) over tilted hyper-planes. To apply our previous results we make suh Lorentz transforma-tion 
 that a tilted hyperplane beomes �t0 = fy 2 MI : y00 = t0g. After2One usually assumes some radius of the partile and prolaims the struture-independent terms as ones of true physial meaning.



9 ðÒÅ�ÒÉÎÔtrivial alulations we arrive atp�bnd = Z�t d��T ��bnd= Zy00=t0 d�00T 00�0bnd 
�0�= 
��0p�0bnd : (27)Using 
��0 = ���0 , where matrix elements ���0 are given by eq.(5), wearrive at the frame in whih the partile is momentarily at rest at timet. In MCLF partile veloity u0 = (1; 0; 0; 0) and the spatial omponents(24) of bound four-momentum vanish:p00bnd = limu0!t0 12e2 1t0 � u0 ; pi0bnd = 0 : (28)As usual, the divergent quantity e2=2" is linked together with the me-hanial "matter" mass of a partile, so that renormalized mass is on-sidered to be �nite.We see that the omputation of the rate of eletromagneti-�eld mo-mentum whih ows aross all the hyperplane y0 = onst does not on-tradit the usual approah in whih one alulates an eletromagnetiow aross a thin tube around world line per unit proper time. But it al-lows to explain the meaning of manipulations with divergent terms suhas "renormalization" of mass and separation of "struture-independent"Shott term.3. Total angular momentum tensor of the eletromag-neti �eldThe harged partile annot be separated from its bound eletromagneti"loud". We would like to onstrut partile four-momentum in terms ofits state funtions (veloity, aeleration et.). Usual approah based onthe "renormalization" of mass and separation of "struture-independent"Shott term leads to the Teitelboim's formula (2). This approah is math-ematially inorret. To obtain an additional information we alulatethe onserved quantities orresponding to the invariane of the theoryunder proper homogeneous Lorentz transformations.We are now onerned with total angular momentum tensor of theeletromagneti �eld [1℄:M��em = Z�t d�0 �y�T 0� � y�T 0�� : (29)
ICMP{01{22E 10Conservation of the spae part M ijem of the tensor M��em is due to in-variane under spae rotations. Conservation of the mixed spae-timeomponents, M0iem, expresses the enter-of-mass theorem. It takes plaedue to invariane under Lorentz transformations.We substitute eq.(15) and eq.(12) into eq.(29) to alulate the ele-tromagneti �eld's angular momentum tensor. Routine srupuleous al-ulation reveals the (divergent) omponents of bound four-momentum(23) and (24) in the proper plaes! The omponents of the angular mo-mentum tensor are as follows:Jkem : = "kijM ijem = "kijzi(t)pjbnd + (30)+ 23e2 tZ�1 dua2(u)"kijzi(u)vj(u) + 23e2 tZ�1 du"kijvi(u)aj(u) ;Kiem : = �M0iem = �tpibnd + zi(t)p0bnd + (31)+ 23e2 tZ�1 dua2(u)[zi(u)� vi(u)u℄ + 43e2 tZ�1 duvi(u)(a � v)p1� v2 :This result reinfores our onvition that the bound momentum and its"matter" mehanial ounterpart onstitute the four-momentum ppart ofharged strutureless partile.Taking into aount the mehanial part of angular four-momentum,we obtain the following ten onserved quantities whih are due to the in-variane of our omposite partile+�eld system under in�nitesimal trans-formations of Poinar�e group:p0 = p0part + 23e2 Z t�1 dua2(u) ; (32)pi = pipart + 23e2 Z t�1 dua2(u)vi(u) ; (33)Jk = "kijzi(t)pjpart + (34)+ 23e2 Z t�1 dua2(u)"kijzi(u)vj(u) + 23e2 Z t�1 du"kijvi(u)aj(u) ;Ki = �tpipart + zi(t)p0part + (35)+ 23e2 Z t�1 dua2(u)[zi(u)� vi(u)u℄ + 43e2 Z t�1 duvi(u)(a � v)p1� v2 :Thus we �nally arrive at the natural deomposition of the onservedquantities into partile omponent and radiative omponent. The former



11 ðÒÅ�ÒÉÎÔdepends on the instant harateristis of harged partile while the latteris aumulated with time.To onstrut the partile motion equation we only need to onsiderthe viinity of world line. We alulate how muh eletromagneti-�eldmomentum and angular momentum ow aross hypersurfae �t. Wean do it at a time t +4t. We demand that hange in these quantitiesbe balaned by a orresponding hange in the partile's ones, so thatthe total energy-momentum (p0;p) and angular momentum (J;K) areproperly onserved. Via the di�erentiation of eqs.(32)-(35) we arrive atthe following system of di�erential equations:_p0part = �23e2a2(t) ; (36)_pipart = �23e2a2(t)vi(t) ; (37)"kijvi(t)pjpart = �23e2"kijvi(t)aj(t) ; (38)pipart � vi(t)p0part = 43e2 vi(t)(a � v)p1� v2 : (39)Its solution is a motion with onstant veloity where p�part do not hange.The problem of partile motion in presene of external fore requiresareful onsideration. We do not know what is the rate of external deviein the balane ondition of total angular momentum (J;K). (Consideringthe energy-momentum we use the Lorentz fore, or apaity for non-eletromagneti fore.)Of ourse, one would prefer an expression whih explains how four-momentum of harged partile depends on its veloity and aelerationet. It is obvious that this expression should satisfy the di�erential on-sequenes of the total angular momentum. To hek up the Teitelboim'sexpression we substitute the right side of eq.(2) for ppart in eqs.(38) and(39). We see that eq.(38) is satis�ed identially while eq.(39) is not ful-�lled. Therefore, Teitelboim's expression (2) ontradits the di�erentialonsequene of "enter-of-mass" onserved quantity.4. ConlusionsWe an briey summarize our onlusions as follows:� a harged partile an not be separated from its bound eletro-magneti "fur", so that the four-momentum of the partile is thesum of the mehanial momentum and the eletromagneti boundfour-momentum;

ICMP{01{22E 12� Teitelboim's expression for partile four-momentum as a linearfuntion of partile's veloity and aeleration ontradits thestruture of enter-of-mass onserved quantity originated from aninvariane of our omposite system under Lorentz transformations.Moreover, the system of six linear equations (38) and (39) in variablesp�part does not possess solution whenever partile's motion is aelerated.Does it mean that there is no expression of type (2) within an interationarea? The problem requires areful onsideration. Worthy of note thatin the absene of an external fore the motion of lassial point hargesatis�es the law of inertia (Newton's �rst law).AknowledgmentsThe author would like to thank Prof.V.Tretyak and Dr.A.Duviryak forhelpful disussions and ritial omments.Referenes1. F.Rohrlih, Classial Charged Partiles (Addison-Wesley, RedwoodCity, 1990).2. P.A.M.Dira, Classial theory of radiating eletron, Pro.Roy.So.London A167, 148{68 (1938).3. C.Teitelboim, Splitting of the Maxwell tensor: radiation reationwithout advaned �elds, Phys.Rev.D 1 N6 (1970), pp.1572{82.4. E.Poisson, An introdution to the Lorentz-Dira equation, Prepr.gr-q/9912045, 1999.5. R.P.Gaida, Yu.B.Kluhkovsky, and V.I.Tretyak, Forms of relativis-ti dynamis in lassial Lagrangian desription of partile system,Theor.Math.Phys. 55, 372 (1983).6. D.J.Saunders, The Geometry of Jet Bundles, (Leture Notes Series142, Cambridge Univ. Press, 1989).7. E.T.Newman and T.W.J.Unti, A lass of null at-spae oordinatesystems, J.Math.Phys. 4 1467{69 (1963).
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