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A. Hysipsk, B. Hlnurko

Amnoramisi. B paMkax ABHO KOBapisAHTHOIO raMiJibTOHIBCHKOro gropma-
JIi3My 3 B’#A3AMHU PO3IVIAHAETHCHA PEIATUBICTUYHA JIBOYACTUHKOBA CHUC-
TeMa 3 4aCO-aCUMETPUIHIUMU B3aE€MO/IIAME IOJILOBOIO THUily. B mpyromy
HaOJIMKEeHH] 38 KOHCTAHTOIO B3a€MOMIl B'A3b MacoBOl ODOJIOHKH IIOIa-
€ThCs fAK ChiBBimHOUmIEHHS MiXK omumM 3 reneparopis SO(2,1) i kBam-
parom moBHOI Macu cuctemu. [IpomoHyeThCs aaredbpuyHne KBAHTYBAHHSA
KJIACUYHOI 3aa4i, Ta OTPUMAHO PEJIATUBICTUYHI CIIEKTPU MAC /I IIU-
POKOI0 KJ1acy B3a€MO/Iill IOJIbOBOIO THILY.

Field-Type Time-Asymmetric Two-Particle Models in the
Second-Order Approximation in a Coupling Constant

A. Duviryak, V. Shpytko

Abstract. The relativistic two-particle system with field-type time-
asymmetric interactions is considered within the framework of manifestly
covariant Hamiltonian formalism with constraints. In the second-order
approximation in a coupling constant the mass-shell constraint is pre-
sented as a relation between one of the generators of SO(2,1) and the
total mass squared of the system. An algebraic quantization of the clas-
sical problem is proposed and the relativistic mass spectra for a wide
range of the field-type interactions are obtained.
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1. Introduction

The relativistic bound state problem stimulates the construction of me-
chanical models which are related as closely as possible to the field theory.
On the classical level this connection is provided by the Fokker action
integrals [1,2] which, however, endow few-body systems with an infinite
number of degrees of freedom. One of attempts to restrict (within the
Fokker formalism) degrees of freedom to a finite number leads to time-
asymmetric models. They describe two structureless particles interacting
via the retarded field of the first particle and the advanced field of the
second one. The two-particle time-asymmetric model with vector-type
(electromagnetic) interaction was proposed by Fokker [1]. It has been
studied [3] and generalized [4-8] for interactions mediating by massless
fields of an arbitrary tensor rank and their superposition.

The present paper is devoted to the quantization problem of these
models. We proceed from the appropriate manifestly covariant canonical
description with constraints developed in Ref. [4]. Within this framework
the models are determined by the pair of Poincaré-invariant first class
constraints. One of them, the light cone constraint, is purely kinematic.
Another, the mass shell constraint, determines the classical dynamics
of the system. Here we show that in the second-order approximation in
a coupling constant (see Ref. [6]) this constraint can be presented as
a relation between the total mass of the system and one of canonical
generators of SO(2,1) group.

The structure of the mass shell constraint suggests one to use the
Lie algebra so(2,1) as a basis for quantization instead of the Heisenberg
algebra. Then the quantum analog of this constraint determines the mass
spectrum problem which can be easily solved by taking into account
properties of the unitary representations of SO(2,1). This approach is
inspired by Barut’s dynamical group method [9-11]. It allows one to omit
many of details involved usually in a quantization problem of relativistic
models ( ordering rule, definition of inner product etc.).

The similar quantization has been applied to the exact vector and
scalar time-asymmetric models in the case of two-dimensional space-
time [12]. Here, using the manifestly covariant description and taking
into consideration the Poincaré group (besides SO(2,1)), we generalize
this procedure to a wide range of the field-type interactions in the four-
dimensional Minkowski space. As a result we obtain a family of rel-
ativistic mass spectra. We also consider physically tractable examples
and discuss some ambiguities arising from the quantization procedure.
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2. The Hamiltonian description of time—asymmetric
models with field—type interactions and the canon-
ical realization of so(2,1) algebra

The manifestly covariant description of time-asymmetric models within
the framework of canonical formalism with constraints [4] is based on
the phase space T*M3 (where My is the Minkowski space) with space-
time coordinates and momenta, z¥, p,, (a = 1,2; p = 0,3), satisfying
standard Poisson-bracket (PB) relations: {z#, py, } = dqp0% .

Canonical generators of Poincaré group P,

2 2
P;L = Zpau: J;w = Z(xaupau - xaupau): (1)
a=1 a=1

satisfy PB relations of corresponding Lie algebra p.

By virtue of parametric invariance of the description a Hamiltonian
vanishes, and the evolution of the system is determined by the pair of
Poincaré-invariant first class constraints. One of them is the light cone
constraint z? := z,z* = 0, nz° > 0, where z# = 2/’ — 24, and the sign
factor n can be chosen as +1 or —1. This constraint is holonomic. It fixes
the relative time variable (say, 2°) and reduces the original configura-
tion space M3 to the 7-dimensional Poincaré-invariant submanifold C.
The reduced phase space T*C can be parameterized with 14 canonical
variables z which satisfy the relation {z,z?} = 0. For convenience we
choose them implicitly among the following manifestly covariant vari-
ables: ##, P, and v, = % (p1, — p2) (0, — P’z /P - z), by taking into
account the light-cone constraint and the equality P - v = 0. Another,
the mass shell constraint:

¢(P27 U27 P'ZE, U':I") :07 (2)

determines the dynamics of the system. It is supposed that equation (2)
can be solved with respect to the total momentum squared P? = P, P"
such that P? > 0.

It is possible to present the mass-shell constraint in the equivalent
form:

®(P?, Ko, K1, K») =0, (3)

via the following Poincaré-invariant functions Ky, K; and Ko:

Ko=(Ky+K.)/2, Ki=(Ky-K.)/2, Ky=uz-v,
K, = —’K_/P’>+ B(P’)JK_, K_=nP-u. (4)
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Here B(P?) is an arbitrary function. The functions Ko, K1, K satisfy
PB relations of Lie algebra so(2,1):

{Ko, K1} = K>, {K,K»}=-K, {KKo}=K. (5)

Together with the generators (1) of P they form the basis of Lie algebra
p®so(2,1).

Now we restrict the original set of observables to the canonical gener-
ators of P and SO(2,1), i.e., we consider observables defined on the dual
R = (p®so(2,1))* to the Lie algebra pd@so(2, 1). Then the mass shell con-
straint (3) becomes one of constraints determining the dynamics of the
system in R. The generators of the symmetry group P are the integrals
of motion. They characterize a state of the system as a whole. The gener-
ators of SO(2,1) describe an internal dynamics. They are not, in general,
conserved. Another constraint arises from relations (4). It couples the
Casimir functions of p and so(2,1) algebras P?, L? = —W?/P? > 0
(WH is Pauli-Lubanski vector) and

Q*:= K} — K} — K3 = L* + B(P?). (6)

The mass shell constraint for the time-asymmetric models with field-
type interaction was obtained in Ref [6]. It follows from the Fokker-type
action which, in turn, is related to the classical field theory [2,13,8]. In
the second-order approximation in coupling constant a this mass shell
constraint takes in terms of generators (4) the form:

(mf—i-mg);}:fmfmgﬁ K _ %Kg + %K+ _ %gf(u)
B(P? 2p 2/ p2
— B+ T e + 0(a?) = 0. (7)

Here m, is the rest mass of ath particle, f(u), h(u) are arbitrary func-

tions of

2 2 2
P2 —m7 —m;

(8)

defined in a physically reasonable domain p > —1,i.e., P? > (m;—msy)>.

In the case where particles interact via superposition of massless lin-
ear field with various tensor rank the functions f(u) and h(u) have the
form [13,6]

Fw =3 ealalw), bW =[(F(w) = uf' W = [F' @I, (9)

where ¢,, are constants, T),(u) are the Chebyshev polynomials and
f'(w) = df(u)/du. Each (say, nth) term of the sum in (9) is the con-
tribution of nth rank tensor field into an interaction. We suppose that

m= 2m1m2
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a >0, f(p) > 0 and f(1) = ), ¢, = 1 which corresponds in the
nonrelativistic limit to the Coulomb attractive potential U = —a/r.

To simplify the constraint (7) we perform two canonical transforma-
tions:

0 Ky = Ky =exp{..,.0K_}Ky = Ky —9K_, K_=K"',
K+ — Kg, = exp{...,ﬁK,}KJr = K+ — 2'19K2 + '192K7;
(II) K. — K1 =exp{..,pK}} K, =™K/, K=K, (11)

(10)

generated by the coadjoint action of SO(2,1). They preserve PB relations
(5) even if the parameters ¢ and ¢ depend on Casimir functions. Let us
put

I(P?) = n(mi —m3)/2P?, p(P?) =Iny/|e(P?)], €#0; (12)
QO? i M — 17002 2 2
6(P2) o 1134 2( ? - 1) i 8 i£ gﬂl> (ﬁz)lJ:nSQ < (matma) . (13)

The case ¢ < 0 corresponds to a bounded motion while € > 0 is the
scattering case [6].
In the first-order approximation the equation (7) yields the equality:

myme f(u) 9 0ife<O
Vel =a PPy, + O(a”), where  6(e) Life>0 (14)

Taking this into account and choosing the arbitrary function B(P?) as
follows

B(P?) = o*h(u) Z (14 pmg/mg) ™", a=3-a, (15)
a
simplifies the mass shell constraint to the following final form:
Ky — F(P*) + 0(a®) =0, (16)

where F(P?) = af(u)|u®> — 1|72, u # 1 and, in turn, p = pu(P?) (see
(®)).

As it follows from (13) and (14) p = 1 + O(a?). Thus, with the
required accuracy we have B(P?) ~ a?h(1), and the constraint (6) be-
comes as follows:

Q* — L? —o*h(1) + O(c®) = 0. (17)
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3. Quantization

We have recast the two-body model with field-type interaction into the
dynamical system on the presymplectic submanifold H C R defined by
the pair of constraints (16) and (17). This classical description inspires
the following quantization.

Let us replace the canonical generators P, J,x, Ko, K1, K, by Her-
mitian operators 15#, Jur, Ko, K1, Ky, and Poisson brackets {.y.} by
commutators [...,...]/i. Then we can consider these operators as genera-
tors of a unitary representation of P®SO(2,1). This procedure is formal
until we specify a Hilbert space of the system. Its construction may be
suggested by the group structure of the classical description.

The dual R can be considered as a unity of orbits of coadjoint rep-
resentation of P®SO(2,1). Since orbits are homogeneous spaces, their
quantum counterparts may be chosen as unitary irreducible representa-
tions (UIRs) of this group [14]. Then a quantum analog of R will be a

reducible representation R =, 5, , 5’)5\? @D of PRSO(2,1). Here 5’)5\?

and D@ are UIRs of P and SO(2,1), respectively; quantum numbers M,
£, q label eigenvalues of Casimir operators (they are specified below), and
€ denotes the direct sum over discrete variable £ and the direct integral
over continuous variables M, ¢. Finally, the subspace $) C R determined
by quantum counterparts of the constrains is considered as the physical
Hilbert space of the system.

Due to physical reasons we construct R with the Wigner UIRs Sog\?
of the special Poincaré group for positive masses M > |my —ms| and in-
teger spins £ = 0,1, 2, ... (half-integer spins are forbidden due to discrete
symmetry properties of two-particle system):

Pw(MO) = M?[W(ML)),
LW (M) e+ 1)ee), e e st (18)

There are a few UIRs of SO(2,1) for a given value of the Casimir
operator )? [9]:

QE(@) = Q°E(@), Q@ =dlg+1), [E@)eDW. (19)

If @* > 0 (¢ > 0), there exist only two series of UIRs Dgf) and ©'7.
In the domain —1/4 < Q% < 0 (-1/2 < g < 0) they coexist with
the complementary series ©(%¢). The principal series (Q> < —1/4, ¢ =

—1/2+iw € C) is not relevant to the present problem.
)

Here we choose the representations @Ef of discrete series existing for

qg>-1/2 (D(f) leads to the same result). Then the quantum counterpart
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of constraint (17),
ITo@Q*-L*el—-a?h)I0)¥)=0, |¥T)eR (20

(here I is the unit operator), determines in PR the subspace ' =
GBZMS @D (ae) , where

qe = —1/2+ /((+ /27 + a?h(D). (21)

The construction of physical Hilbert space $ C $’ needs for Z)(f)
a realization of operator commuting with the quantum counterpart of
the mass shell constraint (16). Thus, we put $' = $' © 9',, where
$' corresponds to |m;—my| < M < my+my and §)', corresponds to
M > mi+ms. In the subspace ' the mass shell equation reads:

W) :=([wKy—F(P>) D) =0, |[¥en . (22

The generator K of U(1) € SO(2,1) commutes with & and has a discrete
spectrum:

v=k-+1+gq,

k=012, .. la:) € DY, (23)

Kolg; k) = vlg; ),
Using (23), (22) reduces each subspace @, 365\? ® |ge;6) C H to

¢ ¢ . ¢
555\4)&8 ® |qe; &) =~ S’,)Sw)d. The physical subspace H_=@,~, D.~, Sﬁs\/f) ,
has the structure of a reducible unitary representation of P. The dis-
crete eigenvalues My, are positive solutions of the equations:

F(MZ) = vee =k +1+qe. (24)

For $', we choose the realization of non-compact operator K, with
a continuous spectrum. Then the relevant mass shell equation reduces

35+ to H4 = EB( 0 f@ dp(M S’JM, where the direct integral runs over
my +mg < M < co with some measure dp(M).

4. Mass spectra of bounded states

An explicit form of the discrete spectrum requires the equation (24)
be solved. It has a positive solution provided ¢, (21) is real which, if
h(1) < 0, leads to the restriction:

< @vIr)h (25)
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The exact solution of eq. (24) can be found ounly in few special cases
(see below). In the general case we use the power series in a which is
considered as a small parameter. Then the condition (25) holds, and
—1/2 < ¢; € R. In the second-order approximation the expansion series
of M,y is valid up to a* and yields the mass spectrum:

mya®  mpa* [ h(1) 1 1 m
My om — 28 r — (=== @
ENI T o2 + n3 [2[—{—1 + 2n (f( ) 4 4m>} (26)

Here m = my + ma, m, = mymsa/m, the second term in r.h.s. of (26) is
the Coulomb (nonrelativistic) energy, and the third term is the second-
order correction depending on two, in general, arbitrary constants h(1)
and f'(1) = df (n)/dp| y=1-

This result correlates well with the mass spectrum obtained within
the quasi-relativistic approach to two-body problem [15]. The lat-
ter, however, includes the additional second-order Darwin-type term
Cm,.a*8p¢/n® which contributes in the spectrum of S-states. The con-
stant C depends on both the type of interaction and a quantization rule.
In our case this term can be introduced via replacement of Z)fo) in the
construction of the space $' by UIR of complementary series D) for
which —1/2 < ¢o < 0 and K0|q0 €;K) = Dyolqo €; k) with Do = K+ 1+¢,
le] < |gol, & € Z. Indeed, the case —1/2 < g¢ < 0 occurs only if A(1) < 0
and £ = 0 (provided the condition (25) holds). Thus, only the spec-
trum of S-states can be modified (as it should). Changing v, in r.h.s.
of eq. (24) (for Myg) by Do with € = Ago, |A| < 1, and taking into ac-
count the equality go ~ —a?|h(1)| leads to the Darwin-type term with
C = (1-X)]|h().

Below we consider a few particular cases of physical interest. Al-
though our consideration is approximated, we present (where it is pos-
sible) exact solutions of eq. (24) which are convenient to compare to
results obtained in the literature from other approaches.

Vector (electromagnetic) interaction: f(u) = Th(pn) = p, h(p) = —1,

2m1m2
1+ ag/yzl'

This mass spectrum has been obtained on the base of quasipotential
approach [16,17], from an infinite-component wave equation [10], within
the semiclassical quantization of relativistic two-body problem [18] etc. It
represents the relativistic spectrum of hydrogen-like atom. The Darwin
term with C' = m, /m obtained within the quasipotential approach [17]
corresponds, in our case, to the choice A = 1 —m,/m, so that % <A<

M2, =mi +m3 + (27)
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Scalar interaction: f(p) = To(p) =1, h(p) =1,

M2, =mi +mj3 +2mimoy/1 — a2 /v2,. (28)

This mass spectrum has the same form as that obtained within
the quasipotential [16,17,19] and variational [20] approaches from the
Yukawa model. The only difference is that the Yukawa interaction leads
to an integer quantum number n = 1,2, ... instead of v,,. Besides, it
imposes the restriction for the coupling constant a < 1. Our case corre-
sponds to the “minimal” scalar interaction (see [18]) and gives no restric-
tion for a. Other known versions of scalar interaction [21] correspond to
formal replacement of the constant k(1) = 1 in r.h.s. of eqs (24), (21) by
some functions of M.
Scalar-vector equal-weighted mizture: f(u) = (1 + u)/2, h(n) =0,

4n? — o?

_— 2
4n? + a2 (29)

M?, = m? 4+ m3 + 2mimo

This model possesses the O(4)-symmetry [5]. Moreover, in this case the

mass shell constraint (7) and thus the spectrum (29) is exact [12]. It
coincides with the phenomenological result presented in Refs. [22,18].

Second rank tensor interaction. Gravitation: f(p) = Te(p) = 2u%—1,

mimsa

Ve Vst | 2 /02
\/5 4—?4‘? 8+I/N£/Oé. (30)

This case may correspond to the gravitational interaction with
a=Ymims[ch, where T is the gravitational constant. Due to the non-
linearity of gravitational field the constant h(1) = —7 evaluated by
means of eq. (9) should be replaced by hg(1)= — 6 [6]. Then the con-
dition (25) restricts the maximal mass of elementary particle mmax <

ch
2V6Y
theories.

Tensor interaction of arbitrary rank (s = 0,1,2,...): f(u) = Ts(p),
h(1) = 1 — 2s2. In the hypothetic case s > 2 the equation (24) is too
cumbersome to be solved exactly, and we only write down the restriction
of coupling constant: a < (2\/232 — 1)_1. It becomes more and more
strong as the rank s of field grows.

= 0.98x10°g which is closed to estimates from more profound

5. Concluding remarks

The considered time-asymmetric models are based on the special su-
perposition of retarded and advanced relativistic potentials [6,8]. This
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superposition satisfies formally the classical field equations with point-
like sources and provides the classical canonical description with a finite
number of degrees of freedom. The reformulation of this description into
an algebraic language allows one to quantize the classical problem using
a simple group-theoretic scheme. Ambiguity of the quantization proce-
dure manifests itself in the spectrum of S-states via the Darwin-type
term.

The obtained mass spectra for vector and scalar interactions general-
ize the exact spectra of these models in a two-dimensional space-time [12]
to the case of My. They agree well (at least in the second-order approxi-
mation) with results derived via various methods from the quantum field
theory. This fact extends the correlation between the time-asymmetric
models and the field theory onto the quantum level.

The phenomenological generalization of mass spectra beyond the vec-
tor and scalar cases was proposed in Ref. [22]. In our terms this family
of spectra is described by eq. (24) with an unspecified function f(u)
(determining the function F(M?)) and an integer quantum number n
(instead of v,). Here it is shown how the expressions for f(u) and v
are related to the tensor structure of an interaction.

The authors are grateful to Professor V. Tretyak for ideas related to
this work.
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