
îÁ��ÏÎÁÌØÎÁ ÁËÁÄÅÍ�Ñ ÎÁÕË õËÒÁ§ÎÉ

���������	
� ¶îó�é�õ�æ¶úéëéëïîäåîóï÷áîéèóéó�åí

'
&

$
%

A. Duviryak, V. ShpytkoFIELD-TYPE TIME-ASYMMETRIC TWO-PARTICLE MODELSIN THE SECOND-ORDER APPROXIMATION IN A COUPLINGCONSTANT
ICMP{00{14E

ìø÷¶÷

õäë: 531/533; 530.12: 531.18PACS: 03.20, 03.30+p, 11.30.CpþÁÓÏ-ÁÓÉÍÅÔÒÉÞÎ� Ä×ÏÞÁÓÔÉÎËÏ×� ÍÏÄÅÌ� �ÏÌØÏ×ÏÇÏ ÔÉ�Õ ×ÄÒÕÇÏÍÕ ÎÁÂÌÉÖÅÎÎ� ÚÁ ËÏÎÓÔÁÎÔÏÀ ×ÚÁ¤ÍÏÄ�§á. äÕ×�ÒÑË, ÷. û�ÉÔËÏáÎÏÔÁ��Ñ. ÷ ÒÁÍËÁÈ Ñ×ÎÏ ËÏ×ÁÒ�ÑÎÔÎÏÇÏ ÇÁÍ�ÌØÔÏÎ�×ÓØËÏÇÏ ÆÏÒÍÁ-Ì�ÚÍÕ Ú ×'ÑÚÑÍÉ ÒÏÚÇÌÑÄÁ¤ÔØÓÑ ÒÅÌÑÔÉ×�ÓÔÉÞÎÁ Ä×ÏÞÁÓÔÉÎËÏ×Á ÓÉÓ-ÔÅÍÁ Ú ÞÁÓÏ-ÁÓÉÍÅÔÒÉÞÎÉÍÉ ×ÚÁ¤ÍÏÄ�ÑÍÉ �ÏÌØÏ×ÏÇÏ ÔÉ�Õ. ÷ ÄÒÕÇÏÍÕÎÁÂÌÉÖÅÎÎ� ÚÁ ËÏÎÓÔÁÎÔÏÀ ×ÚÁ¤ÍÏÄ�§ ×'ÑÚØ ÍÁÓÏ×Ï§ ÏÂÏÌÏÎËÉ �ÏÄÁ-¤ÔØÓÑ ÑË Ó��××�ÄÎÏÛÅÎÎÑ Í�Ö ÏÄÎÉÍ Ú ­ÅÎÅÒÁÔÏÒ�× SO(2,1) � Ë×ÁÄ-ÒÁÔÏÍ �Ï×ÎÏ§ ÍÁÓÉ ÓÉÓÔÅÍÉ. ðÒÏ�ÏÎÕ¤ÔØÓÑ ÁÌÇÅÂÒÉÞÎÅ Ë×ÁÎÔÕ×ÁÎÎÑËÌÁÓÉÞÎÏ§ ÚÁÄÁÞ�, ÔÁ ÏÔÒÉÍÁÎÏ ÒÅÌÑÔÉ×�ÓÔÉÞÎ� Ó�ÅËÔÒÉ ÍÁÓ ÄÌÑ ÛÉ-ÒÏËÏÇÏ ËÌÁÓÕ ×ÚÁ¤ÍÏÄ�Ê �ÏÌØÏ×ÏÇÏ ÔÉ�Õ.Field-Type Time-Asymmetri
 Two-Parti
le Models in theSe
ond-Order Approximation in a Coupling ConstantA. Duviryak, V. ShpytkoAbstra
t. The relativisti
 two-parti
le system with �eld-type time-asymmetri
 intera
tions is 
onsidered within the framework of manifestly
ovariant Hamiltonian formalism with 
onstraints. In the se
ond-orderapproximation in a 
oupling 
onstant the mass-shell 
onstraint is pre-sented as a relation between one of the generators of SO(2,1) and thetotal mass squared of the system. An algebrai
 quantization of the 
las-si
al problem is proposed and the relativisti
 mass spe
tra for a widerange of the �eld-type intera
tions are obtained.
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1 ðÒÅ�ÒÉÎÔ1. Introdu
tionThe relativisti
 bound state problem stimulates the 
onstru
tion of me-
hani
al models whi
h are related as 
losely as possible to the �eld theory.On the 
lassi
al level this 
onne
tion is provided by the Fokker a
tionintegrals [1,2℄ whi
h, however, endow few-body systems with an in�nitenumber of degrees of freedom. One of attempts to restri
t (within theFokker formalism) degrees of freedom to a �nite number leads to time-asymmetri
 models. They des
ribe two stru
tureless parti
les intera
tingvia the retarded �eld of the �rst parti
le and the advan
ed �eld of these
ond one. The two-parti
le time-asymmetri
 model with ve
tor-type(ele
tromagneti
) intera
tion was proposed by Fokker [1℄. It has beenstudied [3℄ and generalized [4{8℄ for intera
tions mediating by massless�elds of an arbitrary tensor rank and their superposition.The present paper is devoted to the quantization problem of thesemodels. We pro
eed from the appropriate manifestly 
ovariant 
anoni
aldes
ription with 
onstraints developed in Ref. [4℄. Within this frameworkthe models are determined by the pair of Poin
ar�e-invariant �rst 
lass
onstraints. One of them, the light 
one 
onstraint, is purely kinemati
.Another, the mass shell 
onstraint, determines the 
lassi
al dynami
sof the system. Here we show that in the se
ond-order approximation ina 
oupling 
onstant (see Ref. [6℄) this 
onstraint 
an be presented asa relation between the total mass of the system and one of 
anoni
algenerators of SO(2,1) group.The stru
ture of the mass shell 
onstraint suggests one to use theLie algebra so(2; 1) as a basis for quantization instead of the Heisenbergalgebra. Then the quantum analog of this 
onstraint determines the massspe
trum problem whi
h 
an be easily solved by taking into a

ountproperties of the unitary representations of SO(2,1). This approa
h isinspired by Barut's dynami
al group method [9{11℄. It allows one to omitmany of details involved usually in a quantization problem of relativisti
models ( ordering rule, de�nition of inner produ
t et
.).The similar quantization has been applied to the exa
t ve
tor ands
alar time-asymmetri
 models in the 
ase of two-dimensional spa
e-time [12℄. Here, using the manifestly 
ovariant des
ription and takinginto 
onsideration the Poin
ar�e group (besides SO(2,1)), we generalizethis pro
edure to a wide range of the �eld-type intera
tions in the four-dimensional Minkowski spa
e. As a result we obtain a family of rel-ativisti
 mass spe
tra. We also 
onsider physi
ally tra
table examplesand dis
uss some ambiguities arising from the quantization pro
edure.
ICMP{00{14E 22. The Hamiltonian des
ription of time{asymmetri
models with �eld{type intera
tions and the 
anon-i
al realization of so(2; 1) algebraThe manifestly 
ovariant des
ription of time-asymmetri
 models withinthe framework of 
anoni
al formalism with 
onstraints [4℄ is based onthe phase spa
e T�M 24 (where M 4 is the Minkowski spa
e) with spa
e-time 
oordinates and momenta, x�a , pa� (a = 1; 2; � = 0; 3), satisfyingstandard Poisson-bra
ket (PB) relations: fx�a ; pb�g = ÆabÆ�� .Canoni
al generators of Poin
ar�e group P ,P� = 2Xa=1 pa�; J�� = 2Xa=1(xa�pa� � xa�pa�); (1)satisfy PB relations of 
orresponding Lie algebra p.By virtue of parametri
 invarian
e of the des
ription a Hamiltonianvanishes, and the evolution of the system is determined by the pair ofPoin
ar�e-invariant �rst 
lass 
onstraints. One of them is the light 
one
onstraint x2 := x�x� = 0, �x0 > 0, where x� = x�1 � x�2 , and the signfa
tor � 
an be 
hosen as +1 or {1. This 
onstraint is holonomi
. It �xesthe relative time variable (say, x0) and redu
es the original 
on�gura-tion spa
e M 24 to the 7-dimensional Poin
ar�e-invariant submanifold C.The redu
ed phase spa
e T�C 
an be parameterized with 14 
anoni
alvariables z whi
h satisfy the relation fz; x2g = 0. For 
onvenien
e we
hoose them impli
itly among the following manifestly 
ovariant vari-ables: x�a , P�, and v� = 12 (p1� � p2�)(Æ�� � P �x�=P � x), by taking intoa

ount the light-
one 
onstraint and the equality P � v � 0. Another,the mass shell 
onstraint:�(P 2; v2; P � x; v � x) = 0; (2)determines the dynami
s of the system. It is supposed that equation (2)
an be solved with respe
t to the total momentum squared P 2 = P�P�su
h that P 2 > 0.It is possible to present the mass-shell 
onstraint in the equivalentform: �(P 2; K0; K1; K2) = 0; (3)via the following Poin
ar�e-invariant fun
tions K0, K1 and K2:K0 = (K+ +K�)=2; K1 = (K+ �K�)=2; K2 = x � v;K+ = �v2K�=P 2 +B(P 2)=K�; K� = �P � x: (4)



3 ðÒÅ�ÒÉÎÔHere B(P 2) is an arbitrary fun
tion. The fun
tions K0, K1, K2 satisfyPB relations of Lie algebra so(2; 1):fK0;K1g = K2; fK1;K2g = �K2; fK2;K0g = K1: (5)Together with the generators (1) of P they form the basis of Lie algebrap� so(2; 1).Now we restri
t the original set of observables to the 
anoni
al gener-ators of P and SO(2,1), i.e., we 
onsider observables de�ned on the dualR = (p�so(2; 1))� to the Lie algebra p�so(2; 1). Then the mass shell 
on-straint (3) be
omes one of 
onstraints determining the dynami
s of thesystem in R. The generators of the symmetry group P are the integralsof motion. They 
hara
terize a state of the system as a whole. The gener-ators of SO(2,1) des
ribe an internal dynami
s. They are not, in general,
onserved. Another 
onstraint arises from relations (4). It 
ouples theCasimir fun
tions of p and so(2; 1) algebras P 2, L2 = �W 2=P 2 > 0(W� is Pauli-Lubanski ve
tor) andQ2 := K20 �K21 �K22 = L2 +B(P 2): (6)The mass shell 
onstraint for the time-asymmetri
 models with �eld-type intera
tion was obtained in Ref [6℄. It follows from the Fokker-typea
tion whi
h, in turn, is related to the 
lassi
al �eld theory [2,13,8℄. Inthe se
ond-order approximation in 
oupling 
onstant � this mass shell
onstraint takes in terms of generators (4) the form:(m21+m22)2�4m21m22�28P 4 K� � �(m21�m22)2P 2 K2 + 12K+ � �m1m2f(�)P 2� B(P 2)2K� +Pa �2h(�)m2a=P 2K��2�(�)aK2 +O(�3) = 0: (7)Here ma is the rest mass of ath parti
le, f(�), h(�) are arbitrary fun
-tions of � = P 2 �m21 �m222m1m2 (8)de�ned in a physi
ally reasonable domain � > �1, i.e., P 2 > (m1�m2)2.In the 
ase where parti
les intera
t via superposition of massless lin-ear �eld with various tensor rank the fun
tions f(�) and h(�) have theform [13,6℄f(�) =Xn 
nTn(�); h(�) = [(f(�)� �f 0(�)℄2 � [f 0(�)℄2 ; (9)where 
n are 
onstants, Tn(�) are the Chebyshev polynomials andf 0(�) = df(�)=d�. Ea
h (say, nth) term of the sum in (9) is the 
on-tribution of nth rank tensor �eld into an intera
tion. We suppose that
ICMP{00{14E 4� > 0, f(�) > 0 and f(1) = Pn 
n = 1 whi
h 
orresponds in thenonrelativisti
 limit to the Coulomb attra
tive potential U = ��=r.To simplify the 
onstraint (7) we perform two 
anoni
al transforma-tions:(I) K2 ! K 02 = expf:::; #K�gK2 = K2 � #K�; K� = K 0�;K+ ! K 0+ = expf:::; #K�gK+ = K+ � 2#K2 + #2K�; (10)(II) K 0� ! ~K� = expf:::; 'K 02gK 0� = e�'K 0�; K 02 = ~K2; (11)generated by the 
oadjoint a
tion of SO(2,1). They preserve PB relations(5) even if the parameters # and ' depend on Casimir fun
tions. Let usput#(P 2) = �(m21 �m22)=2P 2; '(P 2) = lnpj�(P 2)j; � 6= 0; (12)�(P 2) = m21m22P 4 (�2 � 1) < 0> 0 if (m1�m2)2 < P 2if P 2 > (m1+m2)2 < (m1+m2)2 : (13)The 
ase � < 0 
orresponds to a bounded motion while � > 0 is thes
attering 
ase [6℄.In the �rst-order approximation the equation (7) yields the equality:pj�j = �m1m2f(�)P 2 ~K�(�) +O(�2); where �(�) = 0 if � < 01 if � > 0 : (14)Taking this into a

ount and 
hoosing the arbitrary fun
tion B(P 2) asfollows B(P 2) = �2h(�)Xa(1 + �m�a=ma)�1; �a = 3� a; (15)simpli�es the mass shell 
onstraint to the following �nal form:~K�(�) � F (P 2) +O(�3) = 0; (16)where F (P 2) = �f(�)j�2 � 1j�1=2, � 6= 1 and, in turn, � = �(P 2) (see(8)).As it follows from (13) and (14) � = 1 + O(�2). Thus, with therequired a

ura
y we have B(P 2) � �2h(1), and the 
onstraint (6) be-
omes as follows: Q2 � L2 � �2h(1) +O(�3) = 0: (17)



5 ðÒÅ�ÒÉÎÔ3. QuantizationWe have re
ast the two-body model with �eld-type intera
tion into thedynami
al system on the presymple
ti
 submanifold H � R de�ned bythe pair of 
onstraints (16) and (17). This 
lassi
al des
ription inspiresthe following quantization.Let us repla
e the 
anoni
al generators P�; J��; ~K0; ~K1; ~K2 by Her-mitian operators ^P�, ^J��; ^K0; ^K1; ^K0, and Poisson bra
kets f:::; :::g by
ommutators [:::; :::℄=i. Then we 
an 
onsider these operators as genera-tors of a unitary representation of P
SO(2,1). This pro
edure is formaluntil we spe
ify a Hilbert spa
e of the system. Its 
onstru
tion may besuggested by the group stru
ture of the 
lassi
al des
ription.The dual R 
an be 
onsidered as a unity of orbits of 
oadjoint rep-resentation of P
SO(2,1). Sin
e orbits are homogeneous spa
es, theirquantum 
ounterparts may be 
hosen as unitary irredu
ible representa-tions (UIRs) of this group [14℄. Then a quantum analog of R will be aredu
ible representationR =L`;M;q H(`)M 
D(q) of P
SO(2,1). Here H(`)Mand D(q) are UIRs of P and SO(2,1), respe
tively; quantum numbersM ,`, q label eigenvalues of Casimir operators (they are spe
i�ed below), andL denotes the dire
t sum over dis
rete variable ` and the dire
t integralover 
ontinuous variablesM , q. Finally, the subspa
e H � R determinedby quantum 
ounterparts of the 
onstrains is 
onsidered as the physi
alHilbert spa
e of the system.Due to physi
al reasons we 
onstru
t R with the Wigner UIRs H(`)Mof the spe
ial Poin
ar�e group for positive masses M > jm1�m2j and in-teger spins ` = 0; 1; 2; ::: (half-integer spins are forbidden due to dis
retesymmetry properties of two-parti
le system):^P 2j	(M`)i = M2j	(M`)i;^L2j	(M`)i = `(`+ 1)j	(M`)i; j	(M`)i 2 H(`)M : (18)There are a few UIRs of SO(2,1) for a given value of the Casimiroperator ^Q2 [9℄:^Q2j�(q)i = Q2j�(q)i; Q2 = q(q + 1); j�(q)i 2 D(q): (19)If Q2 � 0 (q � 0), there exist only two series of UIRs D(q)+ and D(q)� .In the domain �1=4 < Q2 < 0 (�1=2 < q < 0) they 
oexist withthe 
omplementary series D(q;"). The prin
ipal series (Q2 � �1=4, q =�1=2 + i! 2 C ) is not relevant to the present problem.Here we 
hoose the representations D(q)+ of dis
rete series existing forq > �1=2 (D(q)� leads to the same result). Then the quantum 
ounterpart
ICMP{00{14E 6of 
onstraint (17),(^I 
 ^Q2 � ^L2 
 ^I � �2h(1)^I 
 ^I)j	i = 0; j	i 2 R (20)(here ^I is the unit operator), determines in R the subspa
e H0 =L`;M H(`)M 
D(q`)+ , whereq` = �1=2+p(`+ 1=2)2 + �2h(1): (21)The 
onstru
tion of physi
al Hilbert spa
e H � H0 needs for D(q)+a realization of operator 
ommuting with the quantum 
ounterpart ofthe mass shell 
onstraint (16). Thus, we put H0 = H0� � H0+, whereH0� 
orresponds to jm1�m2j < M < m1+m2 and H0+ 
orresponds toM > m1+m2. In the subspa
e H0� the mass shell equation reads:^�j	i := (^I 
 ^K0 � F ( ^P 2)
 ^I)j	i = 0; j	i 2 H0�: (22)The generator ^K0 of U(1) � SO(2,1) 
ommutes with ^� and has a dis
retespe
trum:^K0jq;�i = �jq;�i; � = �+ 1 + q;� = 0; 1; 2; :::; jq;�i 2 D(q)+ : (23)Using (23), (22) redu
es ea
h subspa
e LM H(`)M 
 jq`;�i � H0� toH(`)M�` 
 jq`;�i ' H(`)M�` . The physi
al subspa
e H�=L1`=0L1�=1H(`)M�`has the stru
ture of a redu
ible unitary representation of P . The dis-
rete eigenvalues M�` are positive solutions of the equations:F (M2�`) = ��` := �+ 1 + q`: (24)For H0+ we 
hoose the realization of non-
ompa
t operator ^K1 witha 
ontinuous spe
trum. Then the relevant mass shell equation redu
esH0+ to H+ = L1`=0 R� d�(M) H(`)M , where the dire
t integral runs overm1 +m2 < M <1 with some measure d�(M).4. Mass spe
tra of bounded statesAn expli
it form of the dis
rete spe
trum requires the equation (24)be solved. It has a positive solution provided q` (21) is real whi
h, ifh(1) < 0, leads to the restri
tion:� < (2pjh(1)j)�1: (25)



7 ðÒÅ�ÒÉÎÔThe exa
t solution of eq. (24) 
an be found only in few spe
ial 
ases(see below). In the general 
ase we use the power series in � whi
h is
onsidered as a small parameter. Then the 
ondition (25) holds, and�1=2 < q` 2 R. In the se
ond-order approximation the expansion seriesof M�` is valid up to �4 and yields the mass spe
trum:M�` � m� mr�22n2 + mr�4n3 � h(1)2`+ 1 + 12n �f 0(1)� 14 � mr4m�� : (26)Here m = m1 +m2, mr = m1m2=m, the se
ond term in r.h.s. of (26) isthe Coulomb (nonrelativisti
) energy, and the third term is the se
ond-order 
orre
tion depending on two, in general, arbitrary 
onstants h(1)and f 0(1) = df(�)=d�j�=1.This result 
orrelates well with the mass spe
trum obtained withinthe quasi-relativisti
 approa
h to two-body problem [15℄. The lat-ter, however, in
ludes the additional se
ond-order Darwin-type termCmr�4Æ0`=n3 whi
h 
ontributes in the spe
trum of S-states. The 
on-stant C depends on both the type of intera
tion and a quantization rule.In our 
ase this term 
an be introdu
ed via repla
ement of D(q0)+ in the
onstru
tion of the spa
e H0 by UIR of 
omplementary series D(q0;") forwhi
h �1=2 < q0 < 0 and ^K0jq0 ";�i = ~��0jq0 ";�i with ~��0 = �+1+ ",j"j < jq0j, � 2 Z. Indeed, the 
ase �1=2 < q` < 0 o

urs only if h(1) < 0and ` = 0 (provided the 
ondition (25) holds). Thus, only the spe
-trum of S-states 
an be modi�ed (as it should). Changing ��0 in r.h.s.of eq. (24) (for M�0) by ~��0 with " = �q0, j�j < 1, and taking into a
-
ount the equality q0 � ��2jh(1)j leads to the Darwin-type term withC = (1� �)jh(1)j.Below we 
onsider a few parti
ular 
ases of physi
al interest. Al-though our 
onsideration is approximated, we present (where it is pos-sible) exa
t solutions of eq. (24) whi
h are 
onvenient to 
ompare toresults obtained in the literature from other approa
hes.Ve
tor (ele
tromagneti
) intera
tion: f(�) = T1(�) = �, h(�) = �1,M2�` = m21 +m22 + 2m1m2p1 + �2=�2�` : (27)This mass spe
trum has been obtained on the base of quasipotentialapproa
h [16,17℄, from an in�nite-
omponent wave equation [10℄, withinthe semi
lassi
al quantization of relativisti
 two-body problem [18℄ et
. Itrepresents the relativisti
 spe
trum of hydrogen-like atom. The Darwinterm with C = mr=m obtained within the quasipotential approa
h [17℄
orresponds, in our 
ase, to the 
hoi
e � = 1�mr=m, so that 34 < � < 1.
ICMP{00{14E 8S
alar intera
tion: f(�) = T0(�) = 1, h(�) = 1,M2�` = m21 +m22 + 2m1m2q1� �2=�2�`: (28)This mass spe
trum has the same form as that obtained withinthe quasipotential [16,17,19℄ and variational [20℄ approa
hes from theYukawa model. The only di�eren
e is that the Yukawa intera
tion leadsto an integer quantum number n = 1; 2; ::: instead of ��`. Besides, itimposes the restri
tion for the 
oupling 
onstant � < 1. Our 
ase 
orre-sponds to the \minimal" s
alar intera
tion (see [18℄) and gives no restri
-tion for �. Other known versions of s
alar intera
tion [21℄ 
orrespond toformal repla
ement of the 
onstant h(1) = 1 in r.h.s. of eqs (24), (21) bysome fun
tions of M�`.S
alar-ve
tor equal-weighted mixture: f(�) = (1 + �)=2, h(�) = 0,M2�` = m21 +m22 + 2m1m2 4n2 � �24n2 + �2 : (29)This model possesses the O(4)-symmetry [5℄. Moreover, in this 
ase themass shell 
onstraint (7) and thus the spe
trum (29) is exa
t [12℄. It
oin
ides with the phenomenologi
al result presented in Refs. [22,18℄.Se
ond rank tensor intera
tion. Gravitation: f(�) = T2(�) = 2�2�1,M2�` = m21 +m22 + m1m2p2 r4� �2�`�2 + ��`� q8 + �2�`=�2: (30)This 
ase may 
orrespond to the gravitational intera
tion with�=�m1m2=
~, where � is the gravitational 
onstant. Due to the non-linearity of gravitational �eld the 
onstant h(1) = �7 evaluated bymeans of eq. (9) should be repla
ed by hgr(1)= � 6 [6℄. Then the 
on-dition (25) restri
ts the maximal mass of elementary parti
le mmax �q 
~2p6� = 0:98�10�5g whi
h is 
losed to estimates from more profoundtheories.Tensor intera
tion of arbitrary rank (s = 0; 1; 2; :::): f(�) = Ts(�),h(1) = 1 � 2s2. In the hypotheti
 
ase s > 2 the equation (24) is too
umbersome to be solved exa
tly, and we only write down the restri
tionof 
oupling 
onstant: � < �2p2s2 � 1��1. It be
omes more and morestrong as the rank s of �eld grows.5. Con
luding remarksThe 
onsidered time-asymmetri
 models are based on the spe
ial su-perposition of retarded and advan
ed relativisti
 potentials [6,8℄. This



9 ðÒÅ�ÒÉÎÔsuperposition satis�es formally the 
lassi
al �eld equations with point-like sour
es and provides the 
lassi
al 
anoni
al des
ription with a �nitenumber of degrees of freedom. The reformulation of this des
ription intoan algebrai
 language allows one to quantize the 
lassi
al problem usinga simple group-theoreti
 s
heme. Ambiguity of the quantization pro
e-dure manifests itself in the spe
trum of S-states via the Darwin-typeterm.The obtained mass spe
tra for ve
tor and s
alar intera
tions general-ize the exa
t spe
tra of these models in a two-dimensional spa
e-time [12℄to the 
ase of M 4 . They agree well (at least in the se
ond-order approxi-mation) with results derived via various methods from the quantum �eldtheory. This fa
t extends the 
orrelation between the time-asymmetri
models and the �eld theory onto the quantum level.The phenomenologi
al generalization of mass spe
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