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ðÏÄÁ¤ÔØÓÑ × Reports on Mathematial PhysisSubmitted to Reports on Mathematial Physis

 ¶ÎÓÔÉÔÕÔ Æ�ÚÉËÉ ËÏÎÄÅÎÓÏ×ÁÎÉÈ ÓÉÓÔÅÍ 2000Institute for Condensed Matter Physis 2000



1 ðÒÅ�ÒÉÎÔ1. IntrodutionThe relativisti bound state problem stimulates the onstrution of me-hanial models whih are related as losely as possible to the �eld theory.On the lassial level this onnetion is provided by the Fokker ationintegrals [1,2℄ whih, however, endow few-body systems with an in�nitenumber of degrees of freedom. One of attempts to restrit (within theFokker formalism) degrees of freedom to a �nite number leads to time-asymmetri models. They desribe two strutureless partiles interatingvia the retarded �eld of the �rst partile and the advaned �eld of theseond one. The two-partile time-asymmetri model with vetor-type(eletromagneti) interation was proposed by Fokker [1℄. It has beenstudied [3℄ and generalized [4{8℄ for interations mediating by massless�elds of an arbitrary tensor rank and their superposition.The present paper is devoted to the quantization problem of thesemodels. We proeed from the appropriate manifestly ovariant anonialdesription with onstraints developed in Ref. [4℄. Within this frameworkthe models are determined by the pair of Poinar�e-invariant �rst lassonstraints. One of them, the light one onstraint, is purely kinemati.Another, the mass shell onstraint, determines the lassial dynamisof the system. Here we show that in the seond-order approximation ina oupling onstant (see Ref. [6℄) this onstraint an be presented asa relation between the total mass of the system and one of anonialgenerators of SO(2,1) group.The struture of the mass shell onstraint suggests one to use theLie algebra so(2; 1) as a basis for quantization instead of the Heisenbergalgebra. Then the quantum analog of this onstraint determines the massspetrum problem whih an be easily solved by taking into aountproperties of the unitary representations of SO(2,1). This approah isinspired by Barut's dynamial group method [9{11℄. It allows one to omitmany of details involved usually in a quantization problem of relativistimodels ( ordering rule, de�nition of inner produt et.).The similar quantization has been applied to the exat vetor andsalar time-asymmetri models in the ase of two-dimensional spae-time [12℄. Here, using the manifestly ovariant desription and takinginto onsideration the Poinar�e group (besides SO(2,1)), we generalizethis proedure to a wide range of the �eld-type interations in the four-dimensional Minkowski spae. As a result we obtain a family of rel-ativisti mass spetra. We also onsider physially tratable examplesand disuss some ambiguities arising from the quantization proedure.
ICMP{00{14E 22. The Hamiltonian desription of time{asymmetrimodels with �eld{type interations and the anon-ial realization of so(2; 1) algebraThe manifestly ovariant desription of time-asymmetri models withinthe framework of anonial formalism with onstraints [4℄ is based onthe phase spae T�M 24 (where M 4 is the Minkowski spae) with spae-time oordinates and momenta, x�a , pa� (a = 1; 2; � = 0; 3), satisfyingstandard Poisson-braket (PB) relations: fx�a ; pb�g = ÆabÆ�� .Canonial generators of Poinar�e group P ,P� = 2Xa=1 pa�; J�� = 2Xa=1(xa�pa� � xa�pa�); (1)satisfy PB relations of orresponding Lie algebra p.By virtue of parametri invariane of the desription a Hamiltonianvanishes, and the evolution of the system is determined by the pair ofPoinar�e-invariant �rst lass onstraints. One of them is the light oneonstraint x2 := x�x� = 0, �x0 > 0, where x� = x�1 � x�2 , and the signfator � an be hosen as +1 or {1. This onstraint is holonomi. It �xesthe relative time variable (say, x0) and redues the original on�gura-tion spae M 24 to the 7-dimensional Poinar�e-invariant submanifold C.The redued phase spae T�C an be parameterized with 14 anonialvariables z whih satisfy the relation fz; x2g = 0. For onveniene wehoose them impliitly among the following manifestly ovariant vari-ables: x�a , P�, and v� = 12 (p1� � p2�)(Æ�� � P �x�=P � x), by taking intoaount the light-one onstraint and the equality P � v � 0. Another,the mass shell onstraint:�(P 2; v2; P � x; v � x) = 0; (2)determines the dynamis of the system. It is supposed that equation (2)an be solved with respet to the total momentum squared P 2 = P�P�suh that P 2 > 0.It is possible to present the mass-shell onstraint in the equivalentform: �(P 2; K0; K1; K2) = 0; (3)via the following Poinar�e-invariant funtions K0, K1 and K2:K0 = (K+ +K�)=2; K1 = (K+ �K�)=2; K2 = x � v;K+ = �v2K�=P 2 +B(P 2)=K�; K� = �P � x: (4)



3 ðÒÅ�ÒÉÎÔHere B(P 2) is an arbitrary funtion. The funtions K0, K1, K2 satisfyPB relations of Lie algebra so(2; 1):fK0;K1g = K2; fK1;K2g = �K2; fK2;K0g = K1: (5)Together with the generators (1) of P they form the basis of Lie algebrap� so(2; 1).Now we restrit the original set of observables to the anonial gener-ators of P and SO(2,1), i.e., we onsider observables de�ned on the dualR = (p�so(2; 1))� to the Lie algebra p�so(2; 1). Then the mass shell on-straint (3) beomes one of onstraints determining the dynamis of thesystem in R. The generators of the symmetry group P are the integralsof motion. They haraterize a state of the system as a whole. The gener-ators of SO(2,1) desribe an internal dynamis. They are not, in general,onserved. Another onstraint arises from relations (4). It ouples theCasimir funtions of p and so(2; 1) algebras P 2, L2 = �W 2=P 2 > 0(W� is Pauli-Lubanski vetor) andQ2 := K20 �K21 �K22 = L2 +B(P 2): (6)The mass shell onstraint for the time-asymmetri models with �eld-type interation was obtained in Ref [6℄. It follows from the Fokker-typeation whih, in turn, is related to the lassial �eld theory [2,13,8℄. Inthe seond-order approximation in oupling onstant � this mass shellonstraint takes in terms of generators (4) the form:(m21+m22)2�4m21m22�28P 4 K� � �(m21�m22)2P 2 K2 + 12K+ � �m1m2f(�)P 2� B(P 2)2K� +Pa �2h(�)m2a=P 2K��2�(�)aK2 +O(�3) = 0: (7)Here ma is the rest mass of ath partile, f(�), h(�) are arbitrary fun-tions of � = P 2 �m21 �m222m1m2 (8)de�ned in a physially reasonable domain � > �1, i.e., P 2 > (m1�m2)2.In the ase where partiles interat via superposition of massless lin-ear �eld with various tensor rank the funtions f(�) and h(�) have theform [13,6℄f(�) =Xn nTn(�); h(�) = [(f(�)� �f 0(�)℄2 � [f 0(�)℄2 ; (9)where n are onstants, Tn(�) are the Chebyshev polynomials andf 0(�) = df(�)=d�. Eah (say, nth) term of the sum in (9) is the on-tribution of nth rank tensor �eld into an interation. We suppose that
ICMP{00{14E 4� > 0, f(�) > 0 and f(1) = Pn n = 1 whih orresponds in thenonrelativisti limit to the Coulomb attrative potential U = ��=r.To simplify the onstraint (7) we perform two anonial transforma-tions:(I) K2 ! K 02 = expf:::; #K�gK2 = K2 � #K�; K� = K 0�;K+ ! K 0+ = expf:::; #K�gK+ = K+ � 2#K2 + #2K�; (10)(II) K 0� ! ~K� = expf:::; 'K 02gK 0� = e�'K 0�; K 02 = ~K2; (11)generated by the oadjoint ation of SO(2,1). They preserve PB relations(5) even if the parameters # and ' depend on Casimir funtions. Let usput#(P 2) = �(m21 �m22)=2P 2; '(P 2) = lnpj�(P 2)j; � 6= 0; (12)�(P 2) = m21m22P 4 (�2 � 1) < 0> 0 if (m1�m2)2 < P 2if P 2 > (m1+m2)2 < (m1+m2)2 : (13)The ase � < 0 orresponds to a bounded motion while � > 0 is thesattering ase [6℄.In the �rst-order approximation the equation (7) yields the equality:pj�j = �m1m2f(�)P 2 ~K�(�) +O(�2); where �(�) = 0 if � < 01 if � > 0 : (14)Taking this into aount and hoosing the arbitrary funtion B(P 2) asfollows B(P 2) = �2h(�)Xa(1 + �m�a=ma)�1; �a = 3� a; (15)simpli�es the mass shell onstraint to the following �nal form:~K�(�) � F (P 2) +O(�3) = 0; (16)where F (P 2) = �f(�)j�2 � 1j�1=2, � 6= 1 and, in turn, � = �(P 2) (see(8)).As it follows from (13) and (14) � = 1 + O(�2). Thus, with therequired auray we have B(P 2) � �2h(1), and the onstraint (6) be-omes as follows: Q2 � L2 � �2h(1) +O(�3) = 0: (17)



5 ðÒÅ�ÒÉÎÔ3. QuantizationWe have reast the two-body model with �eld-type interation into thedynamial system on the presympleti submanifold H � R de�ned bythe pair of onstraints (16) and (17). This lassial desription inspiresthe following quantization.Let us replae the anonial generators P�; J��; ~K0; ~K1; ~K2 by Her-mitian operators ^P�, ^J��; ^K0; ^K1; ^K0, and Poisson brakets f:::; :::g byommutators [:::; :::℄=i. Then we an onsider these operators as genera-tors of a unitary representation of P
SO(2,1). This proedure is formaluntil we speify a Hilbert spae of the system. Its onstrution may besuggested by the group struture of the lassial desription.The dual R an be onsidered as a unity of orbits of oadjoint rep-resentation of P
SO(2,1). Sine orbits are homogeneous spaes, theirquantum ounterparts may be hosen as unitary irreduible representa-tions (UIRs) of this group [14℄. Then a quantum analog of R will be areduible representationR =L`;M;q H(`)M 
D(q) of P
SO(2,1). Here H(`)Mand D(q) are UIRs of P and SO(2,1), respetively; quantum numbersM ,`, q label eigenvalues of Casimir operators (they are spei�ed below), andL denotes the diret sum over disrete variable ` and the diret integralover ontinuous variablesM , q. Finally, the subspae H � R determinedby quantum ounterparts of the onstrains is onsidered as the physialHilbert spae of the system.Due to physial reasons we onstrut R with the Wigner UIRs H(`)Mof the speial Poinar�e group for positive masses M > jm1�m2j and in-teger spins ` = 0; 1; 2; ::: (half-integer spins are forbidden due to disretesymmetry properties of two-partile system):^P 2j	(M`)i = M2j	(M`)i;^L2j	(M`)i = `(`+ 1)j	(M`)i; j	(M`)i 2 H(`)M : (18)There are a few UIRs of SO(2,1) for a given value of the Casimiroperator ^Q2 [9℄:^Q2j�(q)i = Q2j�(q)i; Q2 = q(q + 1); j�(q)i 2 D(q): (19)If Q2 � 0 (q � 0), there exist only two series of UIRs D(q)+ and D(q)� .In the domain �1=4 < Q2 < 0 (�1=2 < q < 0) they oexist withthe omplementary series D(q;"). The prinipal series (Q2 � �1=4, q =�1=2 + i! 2 C ) is not relevant to the present problem.Here we hoose the representations D(q)+ of disrete series existing forq > �1=2 (D(q)� leads to the same result). Then the quantum ounterpart
ICMP{00{14E 6of onstraint (17),(^I 
 ^Q2 � ^L2 
 ^I � �2h(1)^I 
 ^I)j	i = 0; j	i 2 R (20)(here ^I is the unit operator), determines in R the subspae H0 =L`;M H(`)M 
D(q`)+ , whereq` = �1=2+p(`+ 1=2)2 + �2h(1): (21)The onstrution of physial Hilbert spae H � H0 needs for D(q)+a realization of operator ommuting with the quantum ounterpart ofthe mass shell onstraint (16). Thus, we put H0 = H0� � H0+, whereH0� orresponds to jm1�m2j < M < m1+m2 and H0+ orresponds toM > m1+m2. In the subspae H0� the mass shell equation reads:^�j	i := (^I 
 ^K0 � F ( ^P 2)
 ^I)j	i = 0; j	i 2 H0�: (22)The generator ^K0 of U(1) � SO(2,1) ommutes with ^� and has a disretespetrum:^K0jq;�i = �jq;�i; � = �+ 1 + q;� = 0; 1; 2; :::; jq;�i 2 D(q)+ : (23)Using (23), (22) redues eah subspae LM H(`)M 
 jq`;�i � H0� toH(`)M�` 
 jq`;�i ' H(`)M�` . The physial subspae H�=L1`=0L1�=1H(`)M�`has the struture of a reduible unitary representation of P . The dis-rete eigenvalues M�` are positive solutions of the equations:F (M2�`) = ��` := �+ 1 + q`: (24)For H0+ we hoose the realization of non-ompat operator ^K1 witha ontinuous spetrum. Then the relevant mass shell equation reduesH0+ to H+ = L1`=0 R� d�(M) H(`)M , where the diret integral runs overm1 +m2 < M <1 with some measure d�(M).4. Mass spetra of bounded statesAn expliit form of the disrete spetrum requires the equation (24)be solved. It has a positive solution provided q` (21) is real whih, ifh(1) < 0, leads to the restrition:� < (2pjh(1)j)�1: (25)



7 ðÒÅ�ÒÉÎÔThe exat solution of eq. (24) an be found only in few speial ases(see below). In the general ase we use the power series in � whih isonsidered as a small parameter. Then the ondition (25) holds, and�1=2 < q` 2 R. In the seond-order approximation the expansion seriesof M�` is valid up to �4 and yields the mass spetrum:M�` � m� mr�22n2 + mr�4n3 � h(1)2`+ 1 + 12n �f 0(1)� 14 � mr4m�� : (26)Here m = m1 +m2, mr = m1m2=m, the seond term in r.h.s. of (26) isthe Coulomb (nonrelativisti) energy, and the third term is the seond-order orretion depending on two, in general, arbitrary onstants h(1)and f 0(1) = df(�)=d�j�=1.This result orrelates well with the mass spetrum obtained withinthe quasi-relativisti approah to two-body problem [15℄. The lat-ter, however, inludes the additional seond-order Darwin-type termCmr�4Æ0`=n3 whih ontributes in the spetrum of S-states. The on-stant C depends on both the type of interation and a quantization rule.In our ase this term an be introdued via replaement of D(q0)+ in theonstrution of the spae H0 by UIR of omplementary series D(q0;") forwhih �1=2 < q0 < 0 and ^K0jq0 ";�i = ~��0jq0 ";�i with ~��0 = �+1+ ",j"j < jq0j, � 2 Z. Indeed, the ase �1=2 < q` < 0 ours only if h(1) < 0and ` = 0 (provided the ondition (25) holds). Thus, only the spe-trum of S-states an be modi�ed (as it should). Changing ��0 in r.h.s.of eq. (24) (for M�0) by ~��0 with " = �q0, j�j < 1, and taking into a-ount the equality q0 � ��2jh(1)j leads to the Darwin-type term withC = (1� �)jh(1)j.Below we onsider a few partiular ases of physial interest. Al-though our onsideration is approximated, we present (where it is pos-sible) exat solutions of eq. (24) whih are onvenient to ompare toresults obtained in the literature from other approahes.Vetor (eletromagneti) interation: f(�) = T1(�) = �, h(�) = �1,M2�` = m21 +m22 + 2m1m2p1 + �2=�2�` : (27)This mass spetrum has been obtained on the base of quasipotentialapproah [16,17℄, from an in�nite-omponent wave equation [10℄, withinthe semilassial quantization of relativisti two-body problem [18℄ et. Itrepresents the relativisti spetrum of hydrogen-like atom. The Darwinterm with C = mr=m obtained within the quasipotential approah [17℄orresponds, in our ase, to the hoie � = 1�mr=m, so that 34 < � < 1.
ICMP{00{14E 8Salar interation: f(�) = T0(�) = 1, h(�) = 1,M2�` = m21 +m22 + 2m1m2q1� �2=�2�`: (28)This mass spetrum has the same form as that obtained withinthe quasipotential [16,17,19℄ and variational [20℄ approahes from theYukawa model. The only di�erene is that the Yukawa interation leadsto an integer quantum number n = 1; 2; ::: instead of ��`. Besides, itimposes the restrition for the oupling onstant � < 1. Our ase orre-sponds to the \minimal" salar interation (see [18℄) and gives no restri-tion for �. Other known versions of salar interation [21℄ orrespond toformal replaement of the onstant h(1) = 1 in r.h.s. of eqs (24), (21) bysome funtions of M�`.Salar-vetor equal-weighted mixture: f(�) = (1 + �)=2, h(�) = 0,M2�` = m21 +m22 + 2m1m2 4n2 � �24n2 + �2 : (29)This model possesses the O(4)-symmetry [5℄. Moreover, in this ase themass shell onstraint (7) and thus the spetrum (29) is exat [12℄. Itoinides with the phenomenologial result presented in Refs. [22,18℄.Seond rank tensor interation. Gravitation: f(�) = T2(�) = 2�2�1,M2�` = m21 +m22 + m1m2p2 r4� �2�`�2 + ��`� q8 + �2�`=�2: (30)This ase may orrespond to the gravitational interation with�=�m1m2=~, where � is the gravitational onstant. Due to the non-linearity of gravitational �eld the onstant h(1) = �7 evaluated bymeans of eq. (9) should be replaed by hgr(1)= � 6 [6℄. Then the on-dition (25) restrits the maximal mass of elementary partile mmax �q ~2p6� = 0:98�10�5g whih is losed to estimates from more profoundtheories.Tensor interation of arbitrary rank (s = 0; 1; 2; :::): f(�) = Ts(�),h(1) = 1 � 2s2. In the hypotheti ase s > 2 the equation (24) is tooumbersome to be solved exatly, and we only write down the restritionof oupling onstant: � < �2p2s2 � 1��1. It beomes more and morestrong as the rank s of �eld grows.5. Conluding remarksThe onsidered time-asymmetri models are based on the speial su-perposition of retarded and advaned relativisti potentials [6,8℄. This



9 ðÒÅ�ÒÉÎÔsuperposition satis�es formally the lassial �eld equations with point-like soures and provides the lassial anonial desription with a �nitenumber of degrees of freedom. The reformulation of this desription intoan algebrai language allows one to quantize the lassial problem usinga simple group-theoreti sheme. Ambiguity of the quantization proe-dure manifests itself in the spetrum of S-states via the Darwin-typeterm.The obtained mass spetra for vetor and salar interations general-ize the exat spetra of these models in a two-dimensional spae-time [12℄to the ase of M 4 . They agree well (at least in the seond-order approxi-mation) with results derived via various methods from the quantum �eldtheory. This fat extends the orrelation between the time-asymmetrimodels and the �eld theory onto the quantum level.The phenomenologial generalization of mass spetra beyond the ve-tor and salar ases was proposed in Ref. [22℄. In our terms this familyof spetra is desribed by eq. (24) with an unspei�ed funtion f(�)(determining the funtion F (M2)) and an integer quantum number n(instead of ��`). Here it is shown how the expressions for f(�) and ��`are related to the tensor struture of an interation.The authors are grateful to Professor V. Tretyak for ideas related tothis work.Referenes1. A. D. Fokker: Z. Phys. 28, 386{393 (1929).2. P. Havas: Galilei{ and Lorentz{invariant partile systems and theironservation laws , in Problems in the Foundations of Physis,Springer, Berlin 1971, p. 31{48; P. Ramond: Phys. Rev. D7, 449{458(1973).3. A. Staruszkiewiz: Ann. der Physik 25, 362{367 (1970); Ann. Inst.H. Poinar�e 14, 69{77 (1971); R. A. Rudd and R. N. Hill: J. Math.Phys. 11, 2704{2710 (1970); H. P. K�unzle: Int. J. Theor. Phys. 11,395{417 (1974).4. A. Duviryak: Ata Phys. Polon. B28, 1087{1109 (1997).5. A. Duviryak: J. Nonlin. Math. Phys. 3, 372{378 (1996).6. A. Duviryak: Gen. Rel. Grav. 30, 1147{1169 (1998).7. A. Duviryak, V. Shpytko and V. Tretyak: Cond. Matter Phys. 1,463{512 (1998).8. A. Duviryak: Internat. J. Modern Phys. A14, 4519{4547 (1999).9. A. O. Barut and C. Fronsdal: Pro. R. So. London A287, 532{548(1965); H. Bary: J. Math. Phys. 31, 2061{2077 (1990).
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