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Amnoramist. Y poboTi HOCIiIKYIOThCA MAacUITa0HI BJACTUBOCTI BUIIAI-
KoBux Osiykanb i3 camoynukanuamu (SAWSs) na neBuopsakosanux d-
BUMIPHMX I'PpaTKaXxX i3 3aMOpPOKEHUMHU JIOMIIIKAMU, CKOPEIbOBAHUMHU 34
CTereHeBUM 3aKOHOM ~ 1~ % Ha BeJUKUX Bincrausax r. Bimomo, mo Takunit
Tn OesJiagy € CyTTEBUM Y MarHiTHUX (aszoBUX Mepexoaax. 3acToCo-
BAHO METOJ, TEOPETUKO-TIOJIHOBOI PEHOPMAJIi3alliiiHOL PNy i BUKOHAHO
ob4ncIIeHHA y TeXHinl moABiHOIro po3kJiaay 3a napamerpamu € = 4 —d,
0 = 4 — a. [Tokazano, mo acumnrornyHa nopeminka SAWSs Ha rparkax
i3 HAJIeKOCAKHO CKOPEIbOBAHUM 0€3/1a0M OIMHUCYETHCA HOBUM IOKAa3-
Hukom v/ =1/246/8, (£/2 < § < ), y Toil 4ac AK pesysbTar [
SAWSs na umctiit rparmi: vP¥"¢ = 1/2+¢/16 (e > 0).

Self-avoiding walks in media with long-range-correlated quen-
ched disorder

V. Blavats’ka, C. von Ferber, Yu. Holovatch

Abstract. We study the scaling properties of self-avoiding walks (SAWs)
on a d-dimensional disordered lattice with quenched defects obeying a
power law correlation ~ r~¢ for large distances r. Such type of disorder is
known to be relevant for magnetic phase transitions. We apply the field-
theoretical renormalization group approach and perform calculations in
a double expansion in ¢ = 4 — d, § = 4 — a. The asymptotic behaviour
of SAWs on a lattice with long-range-correlated disorder is found to be
governed by a new exponent v°" = 1/2 + /8, (¢/2 < § < ¢). This is
to be compared with a first order result for SAWs on a “pure” lattice:
vrure = 1/2 +¢/16, (e > 0).
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1. Introduction

Essential progress in understanding scaling properties of polymers in
good solvents is due to the application of a renormalization group (RG)
[1], [2]. In such description polymer chains are considered as self-avoiding
walks (SAWSs) on regular lattice. Their topological properties in a limit
of long chains govern the same scaling laws as those arising at the critical
point of an pure (undiluted) m-vector model in de Gennes limit m — 0
[2]. In particular, an average square end-to-end distance of a SAW on
a regular lattice scales with the number of steps IV in asymptotic limit
N — o0 as:
(R?%) ~ N,
where v is an universal exponent which depends on the space dimen-
sionality d only. Calculated by means of the RG approach in terms of
¢ = 4 — d-expansion this exponent reads (see, e.g., [1], [2]):
1 €

u—2+16+---, e > 0. (1)

The problem of SAWs on randomly diluted lattices, simulating linear
polymers in porous medium, has been the subject of intensive discussion
[4], [5]; [6], [7], [8]- The resent review on SAWs statistics on random lat-
tices is given in [9]. Whereas the non-universal properties of SAWs on
diluted lattices are intensively studied by means of Monte-Carlo simu-
lations, exact enumeration and analytic calculations much less is known
about their universal scaling properties.

In the magnetic systems, the presence of point-like uncorrelated (or
short-range correlated) quenched disorder has nontrivial effect on their
critical behaviour only if the specific heat critical exponent « is posi-
tive [10]. This statement is often called Harris criterion. Long-range cor-
related disorder changes critical behaviour in a more complicated way
[11],[12],[13],[14]. Although critical exponent o of a SAW on d = 3 pure
lattice is positive (a(d = 3) = 0.236), the arguments of Harris [15] lead
to conclusion that short-range correlated disorder is irrelevant taken the
system is far from percolation threshold. This statement was confirmed
by the RG results [16]. On the other hand, SAWs on diluted lattice
at the percolation threshold obey a new scaling law [17]. For example,
€ = 6 — d-expansion for the critical exponent v reads:

1
u:§+é+..., e> 0. 2)

Influence of the long-range-correlated disorder on scaling properties

of SAWs remains unclear and up to our knowledge has not been con-
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sidered yet. Here, we address the question of the relevance of the long-
range-correlated disorder with correlations falling by a power law at large
distances [11] on the asymptotic behaviour of SAWs.

The paper is organized as follows: in the next section we present the
model, discuss the renormalization procedure and obtain RG functions.
In section 3 we analyze fixed points corresponding to various types of crit-
ical behaviour and find, that the long-range-correlated disorder causes
new scaling properties of SAWs. Section 4 concludes our study.

2. The model

Let us consider a model of an m-vector magnet with quenched long-
range-correlated “random-temperature” disorder, introduced by Weinrib
and Halperin [11]. Here, the inhomogeneities in the system cause fluc-
tuations in the local transition temperature T.(Z), characterised by a
correlation function g(|Z — ¢|) = (Te(®)Te(§)) — (T.)?, that falls off with
distance according to the power law:

g(x) ~ ™" (3)

for large z, where a is a constant. Performing the Fourier-transformation,

one gets for small k:
g(k) ~ vo +wok®~?. (4)

Note, that in the case of random uncorrelated point-like defects the
site-occupation correlation function reads: g(|Z — ¢|) ~ §(Z — ), so its
Fourier transform obeys:

g(k) ~ vo. ()

Comparing (4) and (5), one can conclude, that the case g(z) ~ z~¢

corresponds to random uncorrelated point-like disorder. Moreover, dif-
ferent integer values of a correspond to uncorrelated extended impuri-
ties of random orientations. So, correlation function of a form (3) with
a = d — 1 describes straight lines of impurities of random orientation
whereas random planes of impurities correspond to a = d — 2 [20].

By making use of the replica method and by taking average over dif-
ferent configurations of quenched disorder, one gets an effective Hamil-
tonian of an m-vector model with long-range-correlated disorder [11]:

Hesr =Y [ dta[5083 + (93" + 2(377] -

a=1
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Here, ¢, is an m-component field: ¢, = {pL -9}, p and ug are bare
mass and coupling, the interaction vertex g(z) is the correlation function
with Fourier image (4), Greek indices denote replicas and replica limit
n — 0 is implied.

Passing in (6) to the Fourier image and taking into account (4), one
ends up with an effective Hamiltonian containing three bare couplings
Ug, Vo, Wo- For a > d the wy-term is irrelevant in a RG sense and one ob-
tains an effective Hamiltonian of a quenched diluted (short-range corre-
lated) m-vector model [19] with two couplings ug, vo. For a < d we have,
in addition to the momentum-independent couplings ug the momentum
dependent one wok®~?. Note that g(k) must be positively definite as a
Fourier image of the correlation function. From here one gets that at
small k£ wy > 0. Coupling u must be positive, otherwise a pure system
undergoes a 1st order transition.

The critical behaviour of the model with m > 1 has been investigated
by means of RG approach [11], [13], [14]. We will be interested in mapping
model (6) to a polymer limit m — 0 in order to interpret this as a model
for SAWs in disordered media. Note, that such a limit is not trivial. So,
for the case ug # 0,v9 # 0,wy = 0 the “naive” RG analysis leads to
controversial results about absence of a stable fixed point and thus to
absence of the second order phase transition [3]. As it was shown by Kim
[16], once the limit m,n — 0 has been taken, both ug and vy terms are
of the same symmetry, and one gets an effective Hamiltonian with one
coupling of O(mn = 0) symmetry. This leads to the conclusion that a
weak quenched uncorrelated disorder is irrelevant for SAWs.

Our present analysis is based on the crucial observation of Kim, allow-
ing one to pass in (6) in the limit m,n — 0 to the effective Hamiltonian
containing two coupling Uy = ug — vp and wy (in what follows below we
will keep the notation ug for this new coupling Up).

In order to describe the peculiarities of the critical behaviour of the
model, we shall use a field-theoretical RG method. We choose the massive
field theory scheme performing renormalization at non-zero mass and
zero external momenta [21] leading to the Callan-Symanzik equation for

the renormalized one-particle irreducible vertex functions F%). However,
in our case the normalization conditions are written both in fixed d and
a [13].

The renormalized mass m and couplings u,w are defined by:

m? = Fg)(kt, —k,mg,u,w)|k:0,
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m*~ %y = Fg’)u({k}, m?, u, w)|p=0,

mtw = I‘g,)w({k},mz,u,wﬂk:o-

Here, Fg}u and Fg}w are the contributions to four-point vertex function

Fg), corresponding to u- and w-term symmetry, respectively. Change

of couplings w,w under renormalization defines a flow in parametric
space, governed by corresponding [S-functions 3, (u,w), By (u,w). The
fixed points u*, w* of this flow are given by solutions of the system of
equations: [, (u*,w*) = 0, B, (u*,w*) = 0. The stable fixed point is
defined as the fixed point where the stability matrix:

Bij o 8uj ’

ui = {u, w} (7)

possess eigenvalues A,, with positive real parts. The stable fixed point
corresponds to the critical point of the system. At this point the criti-
cal exponents are defined by: n = y4(u*,w*), v=! = 2 — y4(u*,w*) —
Y2 (u*, w*) where 74,742 are the coefficients of Callan-Symanzik equa-
tion, expressed by the renormalizing factors for a field and a two-point
function with ¢? insertion. Performing the above described procedure,
the RG functions are obtained in a form of series in renormalized cou-
plings. Some details of calculations are given in Appendix. In the one-
loop approximation we get:

B, = —¢ {u - §u211] — 02uw [12 + %L;] + (26 — s)% w?lz,  (8)

2 . 2 .
Bw =6 [w +3 wzlz} —e3 [wuly —w?L], (9)
u w w
Y2 83 1 1) 3 2, Yo 0 3 4 ( 0)

Here, I; are one-loop integrals which depend on space dimension d and
parameter a. Their explicit expressions are given in the Appendix by
formulas (14)-(17).

3. ¢,0-expansion

In order to obtain the qualitative characteristics of the critical behaviour
of the model one can proceed in two ways. The first scheme consists in
initial fixing the values d and a and treating power series in renormal-
ized couplings u,w. For the magnet with long-range-correlated impuri-
ties such approach was exploited in [13]. Note, that (possible) asymptotic
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nature of the series for RG functions does not allow their immediate anal-
ysis. It postulates knowledge at least of the next order of perturbation
theory with application of resummation procedure [13] involving some
symmetry arguments [12]. Here, for quantitative analysis of the first or-
der results we apply the double &, d-expansion, proposed by Weinrib and
Halperin [11]. Substituting the loop integrals in (8)-(10) by their expan-

sion: ) ) 5
€
n=;(1-3) 12——5<1‘5>’

1 20 — ¢ 1/6—c¢
I3_25—s<1_ 2 ) I“‘E( 2 )

we find system of equations for the fixed points [22]:

u(e — u+ 3w) — 2w? = 0, (11)
w(d —u/2+w) =0. (12)
u* w* Au Aw
0 0 —€ -6
€ 0 € e/2—-19
262 d(e—26)

{e — 40 £ V2 — 426 + 852}

(=) ~ (=9

Table 1. Fixed points and stability matrix eigenvalues in the first order
of €,4 - expansion.

Fixed points of (11),(12) and the stability matrix (7) eigenvalues
Au, A are given in the table 1. One gets following conclusions from the
first order results:

e the Gaussian fixed point (u* = 0,w* = 0) is stable fore < 0, § < 0,
ie.d>4,a>4;

e the pure SAW fixed point (u* # 0,w* = 0) is stable for ¢ > 0,
g/2—6>0,ord<4,a>2+d/2;
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e the long-range SAW fixed point (u* # 0,w* # 0) is stable for
d<4,a<2+d/2.

For the SAW square end-to-end distance critical exponent one gets v =
1/2 4+ /16 in the pure fixed point and v = 1/2 + ¢/8 in the long-
range fixed point. However, taking into account that accessible values of
couplings are v > 0, w > 0 one finds that the long-range stable fixed
point is accessible only for § < € < 20, or d < a < 2 + d/2. The final
results for v at d < 4 read:

[ 1/2+¢/16 for 4§ <e/2, (13)
T 1/2+46/8 for e/2<d<e.

4. Conclusions

In this paper we studied the scaling behaviour of SAWs on a d-
dimensional lattice with quenched defects obeying power-law correlations
for large separation. To this end we applied the field-theoretical RG ap-
proach, performing renormalization for the fixed mass and zero external
momenta [21]. In the case of magnetic systems with long-range-correlated
quenched disorder similar approach was used in [13]. Out analysis ex-
ploits observation of Kim [16] about symmetry properties of quenched
m-vector model in de Gennes limit m — 0. In order to analyse critical be-
haviour of the model we performed the first order €, j-expansion and were
lead to conclusion that SAWs on a lattice with long-range-correlated dis-
order are governed by a new exponent /°" = 1/2+§/8, (¢/2 < § < ¢).
This is to be compared with a first order result for SAWs on a “pure” lat-
tice: YP¥7¢ = 1/2+¢/16, (¢ > 0). However these first order results are to
be considered as qualitative ones as far as they are based on an analysis
of divergent series. In particular, the region of stability of a “long-range”
behaviour does not match the region of relevance of the coupling w (simi-
lar feature is observed for m > 0 as well). A more refined analysis relying
on higher-order calculations with convenient resummation technique will
be a subject of forthcoming study.

Appendix

Here, we give some details of the perturbation theory calculations in the
one-loop approximation. Working in the so-called faithful representation
[18] for the Feynman graphs of the vertex functions I'¥), we represent
two vertices u and wk®~? as it is shown in figure (1).
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Figure 1. Diagrammatic representation of the interaction vertices. Latin
indices correspond to the dimension of field, and Greek indices denote
replicas.

Then for the functions T'® and T™®one gets diagrams shown in fig-
ures 2-4. Note, that as far as we are working in double limit n,m — 0,
the only contributing diagrams are those without closed loops.

Figure 2. One-loop contributions to the two-point vertex function I'®).
Here and in figures 5,6 the indices are omitted.

For the one-loop integrals one gets the following expressions:

[ dg
L= / TS (14)

this integral corresponds to the 1-st and 2-nd diagrams in figure 3 and
to the 2-nd diagram in figure 4,

d(jqa—d
L= ——— 15
.= [ (15)
corresponds to 4-th, 5-th and 6-th diagrams in figure 3 and to the 1-st
diagram in figure 4,
d(jq2(a—d)
Ii= | —- 16
’ / (4> +1)? (16)

corresponds to 3-rd diagram in figure 3. Note that contrary to familiar
O(m) ¢* theory, here because of the k-dependence of one of the vertices
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(4)

Figure 3. One-loop contributions to the four-point vertex function 'y,

Figure 4. One-loop contributions to the four-point vertex function I'y,

one gets non-zero contribution to oT'(2) /Ok?|12_g already on the one-loop
level, i.e. derivative of the 2-nd diagram in figure 2 is non-zero and reads:

=g | i "
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