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orrelated quen-
hed disorderV. Blavats'ka, C. von Ferber, Yu. Holovat
hAbstra
t.We study the s
aling properties of self-avoiding walks (SAWs)on a d-dimensional disordered latti
e with quen
hed defe
ts obeying apower law 
orrelation� r�a for large distan
es r. Su
h type of disorder isknown to be relevant for magneti
 phase transitions. We apply the �eld-theoreti
al renormalization group approa
h and perform 
al
ulations ina double expansion in " = 4 � d, Æ = 4 � a. The asymptoti
 behaviourof SAWs on a latti
e with long-range-
orrelated disorder is found to begoverned by a new exponent �long = 1=2 + Æ=8; ("=2 < Æ < "). This isto be 
ompared with a �rst order result for SAWs on a \pure" latti
e:�pure = 1=2 + "=16; (" > 0).ðÏÄÁ¤ÔØÓÑ × æ�ÚÉËÁ ËÏÎÄÅÎÓÏ×ÁÎÉÈ ÓÉÓÔÅÍSubmitted to Condensed Matter Physi
s
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1 ðÒÅ�ÒÉÎÔ1. Introdu
tionEssential progress in understanding s
aling properties of polymers ingood solvents is due to the appli
ation of a renormalization group (RG)[1℄, [2℄. In su
h des
ription polymer 
hains are 
onsidered as self-avoidingwalks (SAWs) on regular latti
e. Their topologi
al properties in a limitof long 
hains govern the same s
aling laws as those arising at the 
riti
alpoint of an pure (undiluted) m-ve
tor model in de Gennes limit m! 0[2℄. In parti
ular, an average square end-to-end distan
e of a SAW ona regular latti
e s
ales with the number of steps N in asymptoti
 limitN !1 as: h~R2i � N2� ;where � is an universal exponent whi
h depends on the spa
e dimen-sionality d only. Cal
ulated by means of the RG approa
h in terms of" = 4� d{expansion this exponent reads (see, e.g., [1℄, [2℄):� = 12 + "16 + � � � ; " > 0: (1)The problem of SAWs on randomly diluted latti
es, simulating linearpolymers in porous medium, has been the subje
t of intensive dis
ussion[4℄, [5℄, [6℄, [7℄, [8℄. The resent review on SAWs statisti
s on random lat-ti
es is given in [9℄. Whereas the non-universal properties of SAWs ondiluted latti
es are intensively studied by means of Monte-Carlo simu-lations, exa
t enumeration and analyti
 
al
ulations mu
h less is knownabout their universal s
aling properties.In the magneti
 systems, the presen
e of point-like un
orrelated (orshort-range 
orrelated) quen
hed disorder has nontrivial e�e
t on their
riti
al behaviour only if the spe
i�
 heat 
riti
al exponent � is posi-tive [10℄. This statement is often 
alled Harris 
riterion. Long-range 
or-related disorder 
hanges 
riti
al behaviour in a more 
ompli
ated way[11℄,[12℄,[13℄,[14℄. Although 
riti
al exponent � of a SAW on d = 3 purelatti
e is positive (�(d = 3) = 0:236), the arguments of Harris [15℄ leadto 
on
lusion that short-range 
orrelated disorder is irrelevant taken thesystem is far from per
olation threshold. This statement was 
on�rmedby the RG results [16℄. On the other hand, SAWs on diluted latti
eat the per
olation threshold obey a new s
aling law [17℄. For example,� = 6� d-expansion for the 
riti
al exponent � reads:� = 12 + �42 + : : : ; � > 0: (2)In
uen
e of the long-range-
orrelated disorder on s
aling propertiesof SAWs remains un
lear and up to our knowledge has not been 
on-
ICMP{00{08E 2sidered yet. Here, we address the question of the relevan
e of the long-range-
orrelated disorder with 
orrelations falling by a power law at largedistan
es [11℄ on the asymptoti
 behaviour of SAWs.The paper is organized as follows: in the next se
tion we present themodel, dis
uss the renormalization pro
edure and obtain RG fun
tions.In se
tion 3 we analyze �xed points 
orresponding to various types of 
rit-i
al behaviour and �nd, that the long-range-
orrelated disorder 
ausesnew s
aling properties of SAWs. Se
tion 4 
on
ludes our study.2. The modelLet us 
onsider a model of an m-ve
tor magnet with quen
hed long-range-
orrelated \random-temperature" disorder, introdu
ed by Weinriband Halperin [11℄. Here, the inhomogeneities in the system 
ause 
u
-tuations in the lo
al transition temperature T
(~x), 
hara
terised by a
orrelation fun
tion g(j~x� ~yj) = hT
(~x)T
(~y)i � hT
i2, that falls o� withdistan
e a

ording to the power law:g(x) � x�a (3)for large x, where a is a 
onstant. Performing the Fourier-transformation,one gets for small k: g(k) � v0 + w0ka�d: (4)Note, that in the 
ase of random un
orrelated point-like defe
ts thesite-o

upation 
orrelation fun
tion reads: g(j~x � ~yj) � Æ(~x � ~y); so itsFourier transform obeys: g(k) � v0: (5)Comparing (4) and (5), one 
an 
on
lude, that the 
ase g(x) � x�d
orresponds to random un
orrelated point-like disorder. Moreover, dif-ferent integer values of a 
orrespond to un
orrelated extended impuri-ties of random orientations. So, 
orrelation fun
tion of a form (3) witha = d � 1 des
ribes straight lines of impurities of random orientationwhereas random planes of impurities 
orrespond to a = d� 2 [20℄.By making use of the repli
a method and by taking average over dif-ferent 
on�gurations of quen
hed disorder, one gets an e�e
tive Hamil-tonian of an m-ve
tor model with long-range-
orrelated disorder [11℄:Heff = nX�=1 Z ddxh12(�2~�2� + (~r~��)2 + u04! (~�2�)2i�



3 ðÒÅ�ÒÉÎÔ� nX�;�=1 Z ddxddyg(j~x� ~yj)~�2�(x)~�2�(y): (6)Here, ~�� is an m-
omponent �eld: ~�� = f�1� � � ��m� g, � and u0 are baremass and 
oupling, the intera
tion vertex g(x) is the 
orrelation fun
tionwith Fourier image (4), Greek indi
es denote repli
as and repli
a limitn! 0 is implied.Passing in (6) to the Fourier image and taking into a

ount (4), oneends up with an e�e
tive Hamiltonian 
ontaining three bare 
ouplingsu0; v0; w0. For a > d the w0-term is irrelevant in a RG sense and one ob-tains an e�e
tive Hamiltonian of a quen
hed diluted (short-range 
orre-lated) m-ve
tor model [19℄ with two 
ouplings u0; v0. For a < d we have,in addition to the momentum-independent 
ouplings u0 the momentumdependent one w0ka�d. Note that g(k) must be positively de�nite as aFourier image of the 
orrelation fun
tion. From here one gets that atsmall k w0 � 0. Coupling u must be positive, otherwise a pure systemundergoes a 1st order transition.The 
riti
al behaviour of the model with m � 1 has been investigatedby means of RG approa
h [11℄, [13℄, [14℄. We will be interested in mappingmodel (6) to a polymer limit m! 0 in order to interpret this as a modelfor SAWs in disordered media. Note, that su
h a limit is not trivial. So,for the 
ase u0 6= 0; v0 6= 0; w0 = 0 the \naive" RG analysis leads to
ontroversial results about absen
e of a stable �xed point and thus toabsen
e of the se
ond order phase transition [3℄. As it was shown by Kim[16℄, on
e the limit m;n ! 0 has been taken, both u0 and v0 terms areof the same symmetry, and one gets an e�e
tive Hamiltonian with one
oupling of O(mn = 0) symmetry. This leads to the 
on
lusion that aweak quen
hed un
orrelated disorder is irrelevant for SAWs.Our present analysis is based on the 
ru
ial observation of Kim, allow-ing one to pass in (6) in the limit m;n! 0 to the e�e
tive Hamiltonian
ontaining two 
oupling U0 = u0 � v0 and w0 (in what follows below wewill keep the notation u0 for this new 
oupling U0).In order to des
ribe the pe
uliarities of the 
riti
al behaviour of themodel, we shall use a �eld-theoreti
al RG method. We 
hoose the massive�eld theory s
heme performing renormalization at non-zero mass andzero external momenta [21℄ leading to the Callan-Symanzik equation forthe renormalized one-parti
le irredu
ible vertex fun
tions �(i)R . However,in our 
ase the normalization 
onditions are written both in �xed d anda [13℄.The renormalized mass m and 
ouplings u;w are de�ned by:m2 = �(2)R (k;�k;m2; u; w)jk=0;
ICMP{00{08E 4m4�du = �(4)R;u(fkg;m2; u; w)jk=0;m4�aw = �(4)R;w(fkg;m2; u; w)jk=0:Here, �(4)R;u and �(4)R;w are the 
ontributions to four-point vertex fun
tion�(4)R , 
orresponding to u- and w-term symmetry, respe
tively. Changeof 
ouplings u;w under renormalization de�nes a 
ow in parametri
spa
e, governed by 
orresponding �-fun
tions �u(u;w); �w(u;w). The�xed points u�; w� of this 
ow are given by solutions of the system ofequations: �u(u�; w�) = 0; �w(u�; w�) = 0: The stable �xed point isde�ned as the �xed point where the stability matrix:Bij = ��ui�uj ; ui = fu;wg (7)possess eigenvalues �ui with positive real parts. The stable �xed point
orresponds to the 
riti
al point of the system. At this point the 
riti-
al exponents are de�ned by: � = 
�(u�; w�), ��1 = 2 � 
�(u�; w�) �
�2(u�; w�) where 
�; 
�2 are the 
oeÆ
ients of Callan-Symanzik equa-tion, expressed by the renormalizing fa
tors for a �eld and a two-pointfun
tion with �2 insertion. Performing the above des
ribed pro
edure,the RG fun
tions are obtained in a form of series in renormalized 
ou-plings. Some details of 
al
ulations are given in Appendix. In the one-loop approximation we get:�u = �" �u� 43 u2I1�� Æ2uw �I2 + 13I4�+ (2Æ � ")23 w2I3; (8)�w = Æ �w + 23 w2I2�� "23 �wuI1 � w2I4� ; (9)
�2 = "u3 I1 � Æ w3 I2; 
� = Æ w3 I4: (10)Here, Ii are one-loop integrals whi
h depend on spa
e dimension d andparameter a. Their expli
it expressions are given in the Appendix byformulas (14)-(17).3. "; Æ-expansionIn order to obtain the qualitative 
hara
teristi
s of the 
riti
al behaviourof the model one 
an pro
eed in two ways. The �rst s
heme 
onsists ininitial �xing the values d and a and treating power series in renormal-ized 
ouplings u;w. For the magnet with long-range-
orrelated impuri-ties su
h approa
h was exploited in [13℄. Note, that (possible) asymptoti




5 ðÒÅ�ÒÉÎÔnature of the series for RG fun
tions does not allow their immediate anal-ysis. It postulates knowledge at least of the next order of perturbationtheory with appli
ation of resummation pro
edure [13℄ involving somesymmetry arguments [12℄. Here, for quantitative analysis of the �rst or-der results we apply the double "; Æ-expansion, proposed by Weinrib andHalperin [11℄. Substituting the loop integrals in (8)-(10) by their expan-sion: I1 = 1" �1� "2� ; I2 == 1Æ �1� Æ2� ;I3 = 12Æ � " �1� 2Æ � "2 � ; I4 = 1Æ �Æ � "2 � ;we �nd system of equations for the �xed points [22℄:u("� u+ 3w)� 2w2 = 0; (11)w(Æ � u=2 + w) = 0: (12)u� w� �u �w0 0 �" �Æ" 0 " "=2� Æ2Æ2("�Æ) � Æ("�2Æ)("�Æ) 12f"� 4Æ �p"2 � 4"Æ + 8Æ2gTable 1. Fixed points and stability matrix eigenvalues in the �rst orderof "; Æ - expansion.Fixed points of (11),(12) and the stability matrix (7) eigenvalues�u; �w are given in the table 1. One gets following 
on
lusions from the�rst order results:� the Gaussian �xed point (u� = 0; w� = 0) is stable for " < 0, Æ < 0,i.e. d > 4, a > 4;� the pure SAW �xed point (u� 6= 0; w� = 0) is stable for " > 0,"=2� Æ > 0, or d < 4, a > 2 + d=2;

ICMP{00{08E 6� the long-range SAW �xed point (u� 6= 0; w� 6= 0) is stable ford < 4, a < 2 + d=2.For the SAW square end-to-end distan
e 
riti
al exponent one gets � =1=2 + "=16 in the pure �xed point and � = 1=2 + Æ=8 in the long-range �xed point. However, taking into a

ount that a

essible values of
ouplings are u > 0, w > 0 one �nds that the long-range stable �xedpoint is a

essible only for Æ < " < 2Æ, or d < a < 2 + d=2. The �nalresults for � at d < 4 read:� = � 1=2 + "=16 for Æ < "=2;1=2 + Æ=8 for "=2 < Æ < ": (13)4. Con
lusionsIn this paper we studied the s
aling behaviour of SAWs on a d-dimensional latti
e with quen
hed defe
ts obeying power-law 
orrelationsfor large separation. To this end we applied the �eld-theoreti
al RG ap-proa
h, performing renormalization for the �xed mass and zero externalmomenta [21℄. In the 
ase of magneti
 systems with long-range-
orrelatedquen
hed disorder similar approa
h was used in [13℄. Out analysis ex-ploits observation of Kim [16℄ about symmetry properties of quen
hedm-ve
tor model in de Gennes limitm! 0. In order to analyse 
riti
al be-haviour of the model we performed the �rst order "; Æ-expansion and werelead to 
on
lusion that SAWs on a latti
e with long-range-
orrelated dis-order are governed by a new exponent �long = 1=2+Æ=8; ("=2 < Æ < ").This is to be 
ompared with a �rst order result for SAWs on a \pure" lat-ti
e: �pure = 1=2+"=16; (" > 0). However these �rst order results are tobe 
onsidered as qualitative ones as far as they are based on an analysisof divergent series. In parti
ular, the region of stability of a \long-range"behaviour does not mat
h the region of relevan
e of the 
oupling w (simi-lar feature is observed form > 0 as well). A more re�ned analysis relyingon higher-order 
al
ulations with 
onvenient resummation te
hnique willbe a subje
t of forth
oming study.AppendixHere, we give some details of the perturbation theory 
al
ulations in theone-loop approximation. Working in the so-
alled faithful representation[18℄ for the Feynman graphs of the vertex fun
tions �(i), we representtwo verti
es u and wka�d as it is shown in �gure (1).



7 ðÒÅ�ÒÉÎÔi�i� j�j�qi�i� j�j� -u
i�i�qi�i� -j�j� j�j�q q q q q q q q q q qwka�d

Figure 1. Diagrammati
 representation of the intera
tion verti
es. Latinindi
es 
orrespond to the dimension of �eld, and Greek indi
es denoterepli
as.Then for the fun
tions �(2) and �(4)one gets diagrams shown in �g-ures 2-4. Note, that as far as we are working in double limit n;m ! 0,the only 
ontributing diagrams are those without 
losed loops.q q q q q q q q q q q q q q qFigure 2. One-loop 
ontributions to the two-point vertex fun
tion �(2).Here and in �gures 5,6 the indi
es are omitted.For the one-loop integrals one gets the following expressions:I1 = Z d~q(q2 + 1)2 ; (14)this integral 
orresponds to the 1-st and 2-nd diagrams in �gure 3 andto the 2-nd diagram in �gure 4,I2 = Z d~q qa�d(q2 + 1)2 (15)
orresponds to 4-th, 5-th and 6-th diagrams in �gure 3 and to the 1-stdiagram in �gure 4, I3 = Z d~q q2(a�d)(q2 + 1)2 (16)
orresponds to 3-rd diagram in �gure 3. Note that 
ontrary to familiarO(m)�4 theory, here be
ause of the k-dependen
e of one of the verti
es
ICMP{00{08E 8q q q q q q q qq q q q q q q q

q q q q q q q q qqqqqq q q q q q q q q

Figure 3. One-loop 
ontributions to the four-point vertex fun
tion �(4)uq q q q q q q q qqqqqq q q q q q q q q

Figure 4. One-loop 
ontributions to the four-point vertex fun
tion �(4)wone gets non-zero 
ontribution to ��(2)=�k2jk2=0 already on the one-looplevel, i.e. derivative of the 2-nd diagram in �gure 2 is non-zero and reads:I4 = ��k2 �Z d~q qa�d[q + k℄2 + 1)�k2=0 : (17)Referen
es1. des Cloizeaux J. and Jannink G. Polymers in Solution. ClarendonPress, Oxford, 1990; S
h�afer L. Universal Properties of Polymer Solu-tions as Explained by the Renormalization Group. Berlin, Springer,1999.2. de Gennes G.-P. S
aling Con
epts in Polymer Physi
s. Itha
a andLondon, Cornell University Press, 1979.3. Chakrabarti B.K., Kert�esz J. // Z. Phys. B - Condensed Matter,1981, vol. 44, p. 221-223.
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