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1 ðÒÅ�ÒÉÎÔ1. IntrodutionEssential progress in understanding saling properties of polymers ingood solvents is due to the appliation of a renormalization group (RG)[1℄, [2℄. In suh desription polymer hains are onsidered as self-avoidingwalks (SAWs) on regular lattie. Their topologial properties in a limitof long hains govern the same saling laws as those arising at the ritialpoint of an pure (undiluted) m-vetor model in de Gennes limit m! 0[2℄. In partiular, an average square end-to-end distane of a SAW ona regular lattie sales with the number of steps N in asymptoti limitN !1 as: h~R2i � N2� ;where � is an universal exponent whih depends on the spae dimen-sionality d only. Calulated by means of the RG approah in terms of" = 4� d{expansion this exponent reads (see, e.g., [1℄, [2℄):� = 12 + "16 + � � � ; " > 0: (1)The problem of SAWs on randomly diluted latties, simulating linearpolymers in porous medium, has been the subjet of intensive disussion[4℄, [5℄, [6℄, [7℄, [8℄. The resent review on SAWs statistis on random lat-ties is given in [9℄. Whereas the non-universal properties of SAWs ondiluted latties are intensively studied by means of Monte-Carlo simu-lations, exat enumeration and analyti alulations muh less is knownabout their universal saling properties.In the magneti systems, the presene of point-like unorrelated (orshort-range orrelated) quenhed disorder has nontrivial e�et on theirritial behaviour only if the spei� heat ritial exponent � is posi-tive [10℄. This statement is often alled Harris riterion. Long-range or-related disorder hanges ritial behaviour in a more ompliated way[11℄,[12℄,[13℄,[14℄. Although ritial exponent � of a SAW on d = 3 purelattie is positive (�(d = 3) = 0:236), the arguments of Harris [15℄ leadto onlusion that short-range orrelated disorder is irrelevant taken thesystem is far from perolation threshold. This statement was on�rmedby the RG results [16℄. On the other hand, SAWs on diluted lattieat the perolation threshold obey a new saling law [17℄. For example,� = 6� d-expansion for the ritial exponent � reads:� = 12 + �42 + : : : ; � > 0: (2)Inuene of the long-range-orrelated disorder on saling propertiesof SAWs remains unlear and up to our knowledge has not been on-
ICMP{00{08E 2sidered yet. Here, we address the question of the relevane of the long-range-orrelated disorder with orrelations falling by a power law at largedistanes [11℄ on the asymptoti behaviour of SAWs.The paper is organized as follows: in the next setion we present themodel, disuss the renormalization proedure and obtain RG funtions.In setion 3 we analyze �xed points orresponding to various types of rit-ial behaviour and �nd, that the long-range-orrelated disorder ausesnew saling properties of SAWs. Setion 4 onludes our study.2. The modelLet us onsider a model of an m-vetor magnet with quenhed long-range-orrelated \random-temperature" disorder, introdued by Weinriband Halperin [11℄. Here, the inhomogeneities in the system ause u-tuations in the loal transition temperature T(~x), haraterised by aorrelation funtion g(j~x� ~yj) = hT(~x)T(~y)i � hTi2, that falls o� withdistane aording to the power law:g(x) � x�a (3)for large x, where a is a onstant. Performing the Fourier-transformation,one gets for small k: g(k) � v0 + w0ka�d: (4)Note, that in the ase of random unorrelated point-like defets thesite-oupation orrelation funtion reads: g(j~x � ~yj) � Æ(~x � ~y); so itsFourier transform obeys: g(k) � v0: (5)Comparing (4) and (5), one an onlude, that the ase g(x) � x�dorresponds to random unorrelated point-like disorder. Moreover, dif-ferent integer values of a orrespond to unorrelated extended impuri-ties of random orientations. So, orrelation funtion of a form (3) witha = d � 1 desribes straight lines of impurities of random orientationwhereas random planes of impurities orrespond to a = d� 2 [20℄.By making use of the replia method and by taking average over dif-ferent on�gurations of quenhed disorder, one gets an e�etive Hamil-tonian of an m-vetor model with long-range-orrelated disorder [11℄:Heff = nX�=1 Z ddxh12(�2~�2� + (~r~��)2 + u04! (~�2�)2i�



3 ðÒÅ�ÒÉÎÔ� nX�;�=1 Z ddxddyg(j~x� ~yj)~�2�(x)~�2�(y): (6)Here, ~�� is an m-omponent �eld: ~�� = f�1� � � ��m� g, � and u0 are baremass and oupling, the interation vertex g(x) is the orrelation funtionwith Fourier image (4), Greek indies denote replias and replia limitn! 0 is implied.Passing in (6) to the Fourier image and taking into aount (4), oneends up with an e�etive Hamiltonian ontaining three bare ouplingsu0; v0; w0. For a > d the w0-term is irrelevant in a RG sense and one ob-tains an e�etive Hamiltonian of a quenhed diluted (short-range orre-lated) m-vetor model [19℄ with two ouplings u0; v0. For a < d we have,in addition to the momentum-independent ouplings u0 the momentumdependent one w0ka�d. Note that g(k) must be positively de�nite as aFourier image of the orrelation funtion. From here one gets that atsmall k w0 � 0. Coupling u must be positive, otherwise a pure systemundergoes a 1st order transition.The ritial behaviour of the model with m � 1 has been investigatedby means of RG approah [11℄, [13℄, [14℄. We will be interested in mappingmodel (6) to a polymer limit m! 0 in order to interpret this as a modelfor SAWs in disordered media. Note, that suh a limit is not trivial. So,for the ase u0 6= 0; v0 6= 0; w0 = 0 the \naive" RG analysis leads toontroversial results about absene of a stable �xed point and thus toabsene of the seond order phase transition [3℄. As it was shown by Kim[16℄, one the limit m;n ! 0 has been taken, both u0 and v0 terms areof the same symmetry, and one gets an e�etive Hamiltonian with oneoupling of O(mn = 0) symmetry. This leads to the onlusion that aweak quenhed unorrelated disorder is irrelevant for SAWs.Our present analysis is based on the ruial observation of Kim, allow-ing one to pass in (6) in the limit m;n! 0 to the e�etive Hamiltonianontaining two oupling U0 = u0 � v0 and w0 (in what follows below wewill keep the notation u0 for this new oupling U0).In order to desribe the peuliarities of the ritial behaviour of themodel, we shall use a �eld-theoretial RG method. We hoose the massive�eld theory sheme performing renormalization at non-zero mass andzero external momenta [21℄ leading to the Callan-Symanzik equation forthe renormalized one-partile irreduible vertex funtions �(i)R . However,in our ase the normalization onditions are written both in �xed d anda [13℄.The renormalized mass m and ouplings u;w are de�ned by:m2 = �(2)R (k;�k;m2; u; w)jk=0;
ICMP{00{08E 4m4�du = �(4)R;u(fkg;m2; u; w)jk=0;m4�aw = �(4)R;w(fkg;m2; u; w)jk=0:Here, �(4)R;u and �(4)R;w are the ontributions to four-point vertex funtion�(4)R , orresponding to u- and w-term symmetry, respetively. Changeof ouplings u;w under renormalization de�nes a ow in parametrispae, governed by orresponding �-funtions �u(u;w); �w(u;w). The�xed points u�; w� of this ow are given by solutions of the system ofequations: �u(u�; w�) = 0; �w(u�; w�) = 0: The stable �xed point isde�ned as the �xed point where the stability matrix:Bij = ��ui�uj ; ui = fu;wg (7)possess eigenvalues �ui with positive real parts. The stable �xed pointorresponds to the ritial point of the system. At this point the riti-al exponents are de�ned by: � = �(u�; w�), ��1 = 2 � �(u�; w�) ��2(u�; w�) where �; �2 are the oeÆients of Callan-Symanzik equa-tion, expressed by the renormalizing fators for a �eld and a two-pointfuntion with �2 insertion. Performing the above desribed proedure,the RG funtions are obtained in a form of series in renormalized ou-plings. Some details of alulations are given in Appendix. In the one-loop approximation we get:�u = �" �u� 43 u2I1�� Æ2uw �I2 + 13I4�+ (2Æ � ")23 w2I3; (8)�w = Æ �w + 23 w2I2�� "23 �wuI1 � w2I4� ; (9)�2 = "u3 I1 � Æ w3 I2; � = Æ w3 I4: (10)Here, Ii are one-loop integrals whih depend on spae dimension d andparameter a. Their expliit expressions are given in the Appendix byformulas (14)-(17).3. "; Æ-expansionIn order to obtain the qualitative harateristis of the ritial behaviourof the model one an proeed in two ways. The �rst sheme onsists ininitial �xing the values d and a and treating power series in renormal-ized ouplings u;w. For the magnet with long-range-orrelated impuri-ties suh approah was exploited in [13℄. Note, that (possible) asymptoti



5 ðÒÅ�ÒÉÎÔnature of the series for RG funtions does not allow their immediate anal-ysis. It postulates knowledge at least of the next order of perturbationtheory with appliation of resummation proedure [13℄ involving somesymmetry arguments [12℄. Here, for quantitative analysis of the �rst or-der results we apply the double "; Æ-expansion, proposed by Weinrib andHalperin [11℄. Substituting the loop integrals in (8)-(10) by their expan-sion: I1 = 1" �1� "2� ; I2 == 1Æ �1� Æ2� ;I3 = 12Æ � " �1� 2Æ � "2 � ; I4 = 1Æ �Æ � "2 � ;we �nd system of equations for the �xed points [22℄:u("� u+ 3w)� 2w2 = 0; (11)w(Æ � u=2 + w) = 0: (12)u� w� �u �w0 0 �" �Æ" 0 " "=2� Æ2Æ2("�Æ) � Æ("�2Æ)("�Æ) 12f"� 4Æ �p"2 � 4"Æ + 8Æ2gTable 1. Fixed points and stability matrix eigenvalues in the �rst orderof "; Æ - expansion.Fixed points of (11),(12) and the stability matrix (7) eigenvalues�u; �w are given in the table 1. One gets following onlusions from the�rst order results:� the Gaussian �xed point (u� = 0; w� = 0) is stable for " < 0, Æ < 0,i.e. d > 4, a > 4;� the pure SAW �xed point (u� 6= 0; w� = 0) is stable for " > 0,"=2� Æ > 0, or d < 4, a > 2 + d=2;

ICMP{00{08E 6� the long-range SAW �xed point (u� 6= 0; w� 6= 0) is stable ford < 4, a < 2 + d=2.For the SAW square end-to-end distane ritial exponent one gets � =1=2 + "=16 in the pure �xed point and � = 1=2 + Æ=8 in the long-range �xed point. However, taking into aount that aessible values ofouplings are u > 0, w > 0 one �nds that the long-range stable �xedpoint is aessible only for Æ < " < 2Æ, or d < a < 2 + d=2. The �nalresults for � at d < 4 read:� = � 1=2 + "=16 for Æ < "=2;1=2 + Æ=8 for "=2 < Æ < ": (13)4. ConlusionsIn this paper we studied the saling behaviour of SAWs on a d-dimensional lattie with quenhed defets obeying power-law orrelationsfor large separation. To this end we applied the �eld-theoretial RG ap-proah, performing renormalization for the �xed mass and zero externalmomenta [21℄. In the ase of magneti systems with long-range-orrelatedquenhed disorder similar approah was used in [13℄. Out analysis ex-ploits observation of Kim [16℄ about symmetry properties of quenhedm-vetor model in de Gennes limitm! 0. In order to analyse ritial be-haviour of the model we performed the �rst order "; Æ-expansion and werelead to onlusion that SAWs on a lattie with long-range-orrelated dis-order are governed by a new exponent �long = 1=2+Æ=8; ("=2 < Æ < ").This is to be ompared with a �rst order result for SAWs on a \pure" lat-tie: �pure = 1=2+"=16; (" > 0). However these �rst order results are tobe onsidered as qualitative ones as far as they are based on an analysisof divergent series. In partiular, the region of stability of a \long-range"behaviour does not math the region of relevane of the oupling w (simi-lar feature is observed form > 0 as well). A more re�ned analysis relyingon higher-order alulations with onvenient resummation tehnique willbe a subjet of forthoming study.AppendixHere, we give some details of the perturbation theory alulations in theone-loop approximation. Working in the so-alled faithful representation[18℄ for the Feynman graphs of the vertex funtions �(i), we representtwo verties u and wka�d as it is shown in �gure (1).



7 ðÒÅ�ÒÉÎÔi�i� j�j�qi�i� j�j� -u
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Figure 1. Diagrammati representation of the interation verties. Latinindies orrespond to the dimension of �eld, and Greek indies denotereplias.Then for the funtions �(2) and �(4)one gets diagrams shown in �g-ures 2-4. Note, that as far as we are working in double limit n;m ! 0,the only ontributing diagrams are those without losed loops.q q q q q q q q q q q q q q qFigure 2. One-loop ontributions to the two-point vertex funtion �(2).Here and in �gures 5,6 the indies are omitted.For the one-loop integrals one gets the following expressions:I1 = Z d~q(q2 + 1)2 ; (14)this integral orresponds to the 1-st and 2-nd diagrams in �gure 3 andto the 2-nd diagram in �gure 4,I2 = Z d~q qa�d(q2 + 1)2 (15)orresponds to 4-th, 5-th and 6-th diagrams in �gure 3 and to the 1-stdiagram in �gure 4, I3 = Z d~q q2(a�d)(q2 + 1)2 (16)orresponds to 3-rd diagram in �gure 3. Note that ontrary to familiarO(m)�4 theory, here beause of the k-dependene of one of the verties
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Figure 3. One-loop ontributions to the four-point vertex funtion �(4)uq q q q q q q q qqqqqq q q q q q q q q

Figure 4. One-loop ontributions to the four-point vertex funtion �(4)wone gets non-zero ontribution to ��(2)=�k2jk2=0 already on the one-looplevel, i.e. derivative of the 2-nd diagram in �gure 2 is non-zero and reads:I4 = ��k2 �Z d~q qa�d[q + k℄2 + 1)�k2=0 : (17)Referenes1. des Cloizeaux J. and Jannink G. Polymers in Solution. ClarendonPress, Oxford, 1990; Sh�afer L. Universal Properties of Polymer Solu-tions as Explained by the Renormalization Group. Berlin, Springer,1999.2. de Gennes G.-P. Saling Conepts in Polymer Physis. Ithaa andLondon, Cornell University Press, 1979.3. Chakrabarti B.K., Kert�esz J. // Z. Phys. B - Condensed Matter,1981, vol. 44, p. 221-223.
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