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Anoranisi. B poboTi mpomonyeThCA aHATITHYHA, CAMOY3TOMKEHA CXEMa,
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raJIbHEHOMY HAOJIMKEHHI Xa0TUIHUX (a3 P BPaxXyBaHHI ITOMPABOK TH-
Iy CEePeOHBOrO MOJIs, M0 BUHUKAKThH BHACTIIOK epeKTUBHOI B3aEMOIil
TICEeBIOCTIIHIB Uepe3 eJIeKTPOHN MPOBITHOCTI, a TaKOXK MpW BpaxyBaHHI
raycoBux (iykTyamiii cepennboro noJis.

Pseudospin-electron model in the self-consistent gaussian fluc-
tuation approximation

I.V.Stasyuk, K.V.Tabunshchyk

Abstract. An analytical method of the consistent calculation of the
thermodynamical and correlation functions of pseudospin-electron model
is proposed. Approach is based on the generalized random phase ap-
proximation scheme with the self-consistent inclusion of mean field type
contributions coming from the effective pseudospin interaction via con-
ducting electrons as well as gaussian fluctuations of the mean field. With
the help of the approximation proposed the formulas for the pseudospin
correlation function, pseudospin mean value, as well as for the grand
canonical potential are obtained.
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1. Introduction

Pseudospin-electron model (PEM) was proposed to describe, on the one
hand, the strong single-site electron correlation in the spirit of Hubbard
model and, on the other hand, the interaction of the conducting electrons
with some two level subsystem represented by pseudospins (e.g. anhar-
monic vibrations of the apex oxygen ions in YBaCuO-type crystals [1],
proton-electron interaction in the molecular and crystalline systems with
hydrogen bonds [2]). The Hamiltonian of PEM has the following form

H = Hy+ Ztijc;;cjg, (].)

ijo

Z {Unnnu _ﬂznia +gzniasf - th} )

Hy

i

and includes, besides the terms describing electron transfer (~ t;;), the
strong single-site electron correlation U and energy of the subsystem of
pseudospins placed in longitudinal field h and interacting with conduct-
ing electrons (g-term).

On the basis of PEM a possible connection between the supercon-
ductivity and lattice instability of the ferroelectric type in HTSC was
discussed [3,4]. The description of the electron spectrum and the elec-
tron statistics of the PEM was given in [5] in the framework of the
temperature two-time Green’s function method in the Hubbard-I ap-
proximation. An investigation of dielectric susceptibility of the model
was performed in [6,7] within the generalized random phase approxima-
tion (GRPA) [14] in the limit U — oo. The case of absence of the term
describing electron transfer (¢;; = 0) with the inclusion of the direct
interaction between pseudospins was considered within the mean field
approximation [8,9]. The analysis of ferroelectric type instabilities in the
two-sublattice model of the apex oxygen subsystem in high temperature
superconducting systems was made [10]. The influence of oxygen non-
stoichiometry on localization of apex oxygen in YBaCuO type crystals
was studied in the work [11].

From the other point of view, the Hamiltonian of PEM in the U = 0
limit (simplified PEM) can be transformed, after some simplification,
into the Hamiltonian of the electron subsystem of binary alloy type
model as well as the Falicov-Kimball model. The main difference be-
tween these models is in the way how an averaging procedure is per-
formed (thermal statistical averaging in the case of PEM and Falicov-
Kimball model, configurational averaging for binary alloy) [12,13]. The
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Hamiltonian of PEM is, also, invariant with respect to the transforma-
tion uy ->U —p, h > 29g—h,n—2—n, S — —57 It allows us to use
(2) for description of hole-pseudospin system as well.

In the previous papers [15,16] a self-consistent scheme for calcula-
tion of mean values of pseudospin and electron number operators, grand
canonical potential as well as correlation functions of simplified PEM
was proposed. The main idea of the approach was based on the GRPA
scheme with the inclusion of the mean field type contributions coming
from effective pseudospin interactions via conducting electrons [16]. On
the basis of this self-consistent mean field type approximation the en-
ergy spectrum, thermodynamics of phase transitions, possibility of phase
separations as well as appearance of the chess-board phase were investi-
gated. It was shown that: in the g = const regime (then it is supposed
that the electron states of other structure elements, which are not in-
cluded explicitly into the PEM, play a role of a thermostat, that ensures
a constant value of the chemical potential u) the interaction between
the electron and pseudospin subsystems leads to the possibility of either
first or second order phase transitions between different uniform phases
(bistability) as well as between the uniform and the chess-board ones;
in the regime n = const (this situation is more customary at the con-
sideration of electron systems and it means that the chemical potential
is now the function of T', h etc. and depends on the electron concentra-
tion) an instability with respect to phase separation in the electron and
pseudospin subsystems can take place.

An approach, that takes into account only mean field type contribu-
tions, is reasonable only when deviations from the average self-consistent
field are small or in other words — in the area where fluctuation’s effects
are unimportant. Therefore, the method which was proposed previously
[15,16] gives the possibilities to obtained an accurate results outside the
vicinity of the critical point.

In the vicinity of the critical points the effects of the mean field
fluctuations become significant (i.e. fluctuations of mean field increase
infinitely near the second order phase transition point). Hence, for the
better description of critical properties of our system we must correct
the approach by taking into account the contribution of the fluctuations
of the self-consistent field of pseudospins.

For this purpose we build the consistent scheme (using the dia-
gram method), for calculation of pseudospin operator mean value, grand
canonical potential as well as pseudospin correlation function of sim-
plified PEM, which allows one to takes into account the gaussian fluc-
tuations of the self-consistent mean field. Root—-mean-squares (r.m.s.)
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gaussian fluctuations of the field are calculated in a self-consistent way.
Within the high density expansion method the r.m.s. of gaussian fluctua-
tions of molecular field were applied previously to spin models [17,18]. In
the present paper we generalize this scheme on the case of pseudospin-
electron model (when, with respect to spin models with direct inter-
action, we have an effective many—body one between pseudospins via
conducting electrons). Proposed here approach can be used, also, to in-
vestigate the above mentioned electron models when it is convenient (or
possible) to introduce pseudospin operators (i.e. Falicov-Kimball model).

2. Mean field approximation

We perform the calculations in the strong coupling case (g > t) us-
ing single-site states as the basic ones. We rewrite the initial Hamilto-
nian of the the simplified PEM in the second quantized form using pro-
jecting electron annihilation (creation) operators [15,16] a;; = cig P;t,
Gie = Cic P} (Pii = % + S7) acting at a site with the certain pseudospin
orientation:

Ho=Y {e(nit+ni,) + &(fiir+7i,) — hS;}, (2)
i
Hii= Z tij (a;’;ajo-_f—a;;djo-_f—a?;aja-_f—az;_aja-)-

ijo

Heree = —pu+g/2, &= —p—g/2 areenergies of the singlesite states.
The introduced operators satisfy the following commutation rules:

{&Zﬂaja’}:(sij(sao”Pi77 {CNL;;,U/J'GI}:O,
{aiy, ajo }=0ij000 P, {ad;, a0 }=0.

Expansion of the calculated quantities in terms of the electron trans-
fer leads to an infinite series of terms containing the averages of the
T-products of the a;,, d;, operators. The evaluation of such averages is
made using the corresponding Wick’s theorem. The results are expressed
in terms of the products of the nonperturbed Green’s functions and av-
erages of the projection operators PZ-i which are calculated by means of
the semi-invariant expansion [15].

From such an infinite series we are summing up a certain partial sum
of diagrams (in the spirit of the traditional mean field approach [15])
characterized by the inclusion of the mean field type contributions (loop
fragments) coming from the effective many—body interaction between
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pseudospins via conducting electrons in all basic semi-invariants. The
corresponding diagram series for pseudospin mean value has the form:

Here we use the following diagram notations: O — S%, —=9— — g;(wn),
wavy line is the Fourier transform of hopping . Basic semi-invariants
are represented by ovals and contain the §-symbols on site indexes:

e o Sp(STe P rqee _ Ob(R)
O = (5o =0b(h) = Sp(o—F) = (5*5% = 5 @
Nonperturbated electron Green’s function is equal to
Pt P~
—|=e—= g(wn) = <gl(wn)>7 gl(wn) =— + ——. (5)

iwp, —e  iwp, — €
Single-electron Green’s function is

Grlwy) = ===—"1>¢— +—|>o§ = (g wa) —te) ", (6)
S

and determines the spectrum of single-electron excitations. This spec-
trum was investigated in details in [15].

1 1 /-
ulth) = 5 2B + th) & 5[0 + 4ta(S9)g + 1. (7)

Expression for the loop fragment of diagram has the following form

2 ti Pz’+ Pi_
Nggfl(wn)_tk (iwn—6+iwn_g Blan P +ax P7)

This quantity creates an internal effective self—consistent field acting on
the pseudospin. Now, we can introduce the following mean field Hamil-
tonian:

Hyp=Y {e(niy+ni) + (i +ing) —yS7}, (8
i
where y = h + as — ay is an effective field.
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Summation of the diagram series (3) is equivalent to the averaging with
the Hamiltonian (8). The result can be expressed in the form

1 1 —Be
(57) =) = yrann { Sy + o)

Diagram equation for the pseudospin correlation functions (S*S%)q
(within the framework of GRPA with the insertion of the mean field type
contributions in all zero-order correlators) is following [15]:

(10)

This equation differs from the one for the Ising model in MFA by the
replacement of the exchange interaction by the electron loop

which describes an effective many—body interaction between pseudospins
via conducting electrons. The corresponding analytical expression is fol-
lowing:

[,

2 e 1 1
N "4 (1 B
NnZ; k< +91(Wn)—tk> [iwn—s iwn—é]

¢
X thiq <1 + g_l( kta >

1 1
iwp —€  dwp — &

Wn) — lietq E
= = Z A2t (K)t(k + q), (11)
g : tr
where A, = ta(k) =

(]- - gntk) '

The first term in (10) is the second-order semi-invariants renormalized
due to the inclusion of ‘single-tail’ parts, and is thus calculated with the
help of Hyp:

=—+1

(iwn + p)*—g?/4’
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Finally, the solution of the equation (10) in the analytical form is equal:

B 1/4_ (Sz>2
T+ 2% A2 (k)i (k + @) (1/4 - (55)7)

n,k

(575%q (13)

and is different from zero only in a static case (w, = 0) (this is due to
the fact that pseudospin operator commutes with the Hamiltonian).
In the same approximation the grand canonical potential is [15]:

BADyEs = %g ﬁQ g
fod %@@
(14

The corresponding analytical expression has the following form:

wn
Qmra = — Nﬂzln — teg(wn)) Nﬂz = _tk

- Eln Sp(e~PHur), (15)

All quantities can be derived from the grand canonical potential by

i _ gy US°)
d(=h) " d(Bh)

= (SZSZ>q:07 (16)

that shows the thermodynamical consistence of the proposed approxi-
mations [15].

3. Self—consistent gaussian fluctuation approximation

In constructing a higher order approximation, we use MFA as the zero—
order one. This means that all ‘single-tail’ parts of diagrams are already
summed over and all semi invariant is carried out over distribution with
the Hamiltonian Hyp (8). We represent this graphically by thick ovals:

- o - e et -
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As a simplest approximation that goes beyond of the MFA we use
the approach that takes into account the so-called ‘double-tail’ diagrams
(which was applied in [18] where the magnetization of the ordinary Ising
model was considered). The diagram series for the pseudospin mean value
calculated within the approach which include ‘double-tail’ diagrams is:

z\ _ 11

(5) = @=0+11

The diagram equation for pseudospin correlator (S?S%), within the de-

veloped here approximation is given by (10), but now zero-order corre-

lators are renormalized, also, due to the ‘double-tail’ parts, and thus the
corresponding diagram series is:

The contribution, which correspond to the ‘double-tail’ fragment of di-
agram, can be written in the following analytical form (using the intro-
duced notation (11)):

X = m (20)

EZZAZ (k=) (S57) g A2 (k') (K'+q),

n,n' k,k' q

here (S*S5%)q =

U m

(21)

ZIM

> Aztn(k)in(kt+q)E
n,k

Since the pseudospin correlator (21) is the frequency independent, in the
expression (20) we have two independent sums over internal Matsubara
frequencies that allows one (using decomposition into simple fractions)
to sum over all internal frequencies:

2 2f t 2/3 trtr (e — €)*
N”%,:klAntn( tn kZ,; [e1(te) — en(te)][e(te) — en(tr)] (22)

nle(te)] — n[é‘l(tk')] nleu(te)] — nleu(te)]
% { El(tk) - El(tk’) * Ell(tk) - EII(tk’)
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nles(te)] = nlen(te)] _ nlen(te)] — nlete)] }

El(tk) _EII(tk’) B EII(tk) _El(tk’)

#ﬁs is a Fermi distribution.
1+e
Let us now return to the problem of summation of the diagram series

(18) and (19). By means of procedure described in [18], and using the
introduced here notations (9), (20) we can write:

2 3
)+ 15 + o (5 )+ 5w () +o

Here n(e) =

(57)

W / esp ) (y + £)de, (23)

1 X 1 X\’ 1 X\’
= b(y)m+ﬁb(y)[3]7+ab(y)[5]<3> +§b(y)m<5> o

(1]
|

X\/T/ exp (—22 ) ebly + ©)de. (24)

Therefore, the contribution of diagram series with ‘double-tail’ parts
corresponds to the average with the Gaussian distribution where X can
be interpreted as the root—-mean—squares (r.m.s.) fluctuation of the mean
field around the mean value of y. And, thus we obtain a self-consistent set
of equations (23), (20) for pseudospin mean value and r.m.s. of gaussian
fluctuations of the mean field.

The diagram series for the grand canonical potential within the ap-
proximation accepted here is:

BAQ = BAQyEs + ;@ . { 1

1
1

I\)ll—‘

(25)

The grand canonical potential written in this form satisfies the stationary
conditions:

dQ 0 dQ

d(s=y 7 dX

=0, (26)




9 IIpenpunt

which are equivalent to the equations (23), (20) (see the Appendix). The
consistency of the approximation made for the pseudospin mean value,
pseudospin correlation function and grand canonical potential can be
checked explicitly using the relations:

a0 d(sY)
d(—h) _< >7 d(—hﬂ) X =const

= (S75%)g=0. (27)

In the limit of vanishing fluctuations our results go over into the ones
obtained within the mean field approximation.

In the analytical form the first term in the diagram series for the
grand canonical potential (25) is equal to

+oo
1., 1 1 ¢
lax = %dr/eﬂ%—igﬁmy+9%- (28)

The bracketed diagram series can be presented as following:
Lo (25 pei o) — Lo (23 n2um?) -
27 \N e 37\ e
n,k n,k
”32A2£ (k)? —1In 1+TEZA2£ (k) (29)
N nn N nn '
n,k n,k

The remainder of the diagram in the series (25) can be written as

—{M)mx+26<w(2) +%MWW<§>-P~}
X 2

= —/dt% {b(y)[” + %b(y)m% - %b(y)m <%> +o }
0

“+o00

X
—wawﬁ_ ———@@+8€

= —% / {1 —erf(\)%) }sign(f)b(y+§)d§, (30)

where we use the relation (24) and definition of the erf function. Finally
the diagram series for grand canonical potential 2 can be written in the
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following analytical form:

Q= Qi+ (—52 )bty + €yae

e [
SEe S AR+ 5] <1+_ ZAZ )

+o0
_% / {1—erf<\)%> }sign(g)b(y+5)d5. (31)

To sum over the Matsubara frequency, the relation (22) must be used in
the limit of k' — k.

4. Conclusion

The consistent method, which takes into account the corrections due to
the gaussian fluctuation of self—consistent field, for calculation of ther-
modynamic and correlation functions is presented. The diagram series
and corresponding formulas for the pseudospin mean value (S?), pseu-
dospin correlation function (S*S%)q as well as for the grand canonical
potential € are obtained. The possibility exists to investigate their be-
haviour under changes of thermodynamical and model parameters. The
parameter X (20) (r.m.s. fluctuation of the mean field) is calculated by
means of the self-consistent renormalization of the correlation function
(10), (19). From the expression for the grand canonical potential, cal-
culated within the presented here scheme, the equations for (S*) and X
parameters satisfying the stationary conditions (26) are obtained.

This approach can be applied for the investigation of phase separation
phenomena as well as the transition into a modulated phase in PEM.
This question will be the subject of our following work.

It should be noted that the analytical scheme presented in our paper
can be easily reduced to the other similar approach (which was success-
fully used in the case of spin models [19,20]) where the renormalization
(18) is performed with the use of the simplest possible pseudospin cor-
relation function which involves gaussian fluctuations of the mean field:
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Within the framework of this approximation grand canonical potential
satisfies the stationary conditions (26) and can be written as:

+oo
0=+ jzx -3 | {1—erf(\/'%)}sign(e)b(ymds, (33)

2
where == ( Z A2 (K ) . (34)

This method is more suitable for the numerical calculation then one
presented above, but takes into account the narrow class of diagrams.

Appendix

Here we would like to prove that the grand canonical potential satisfies
the stationary conditions (26) as well as consistency conditions (27).

Let us consider the derivative of the grand canonical potential with
respect to the pseudospin mean value (18):

dAQ  9AQ | 9AQ dE | 9AQ dX
= + + , (35)

a(S7) — a(S®y " o= d(S7) | aX d(S7)

0AQ

—

0AQ
ox

=+ ;D

Here we use the definition (10), (19) respectively.
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Thick ovals (17) take into account all ‘single-tail’ parts of diagrams:

@00 =00, 2200

Thus, from the diagram series on grand canonical potential we have:

(39)

where the following shortened notation are introduced:

=H>+24>—§ +3%+'..
(40)

Using the diagram expression for the Green’s function and expression
for the mean value of pseudospin (18) we can write:

BAQ

In the same way we can prove that dAQ/dX =0
Therefore, we have the following conditions:

dAQ  0AQ dAQ 0AQ

X " ax UV asn ey 42)

Using them we can check the consistency of the approximation used in
the calculation of the pseudospin mean value (18) and grand canonical
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potential:

dAD _ 9AQ | 0AQ d(S7) | 9AQ dX _ 0AQ 3)
d(—h) — d(=h) " 8(S7Yd(—h) = 8X d(-h) _ 9(=h)

D e e
9AL r«—"—-:@. _
d(—h)

o3 BT T (5
Here we use the definition of semi-invariants (4).
z
In the same way we can prove that dc(1<—Sh,g) ‘X:COHSt = (5%5%)q=o0-
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