HarmionanbHa akameMisa HayK Y KpaiHU

IHCTUTYVYT
PIBNKN
KOHIEHCOBAHUX
CUCTEM

ICMP-00-03E

T.Bryk, I.Mryglod

Heat Waves in Liquid Metals and Semimetals

~

JIbBIB

YIOK: 536; 537
PACS: 05.20.Jj, 61.20.Ja, 61.20.Lc, 61.25.Mv

TemioBl XBWJIl B PIIKKUX MeTajIaX Ta HalliBMeTaiax
T.bpuk, [.Mpurson,

Awnoranis. [Ipononyersbes MikoCKOmiYHIN miaxim MO TOCTIIKEHHA Ter-
JIOBUX KOJIEKTUBHUX 30y/2KeHb B npocTuX piguaax. CoekTpu KOJIeK TuB-
Hux 30ymKenb metatiaaux pinua Pb i Cs, ta naniBmerasigaoro Bi orpu-
MaHi B paMKax MeTOLy y3arajibHeHuX KoJsiektuBHux mon. Ilokaszano, mo
B piamHi MOXKyTh icHyBaTu Bl (BUCOKO- i HU3bKOYACTOTHI) BITKU Ter-
JIOBUX XBUJIb.

Heat Waves in Liquid Metals and Semimetals
T.Bryk, I.Mryglod

Abstract. A microscopic approach to investigation of heat collective
excitations in pure liquids is developed. Spectra of collective excitations
of metallic liquids Pb and Cs, and semimetallic Bi are obtained within
the generalized collective mode method. It is found, that there can exist
two (high- and low-frequency) branches of heat waves in liquid.
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1. Introduction

Heat waves are for long time the subject of active study in continuum
mechanics [1], which is based on phenomenological differential equations.
Heat waves are also known as the ‘second sound’ excitations in solids [2]
and two-liquid model of He [3]. However, we could not find any reference
on a study on microscopic nature of heat waves in ordinary liquids. In
the case of liquids the hydrodynamic set of equations derives only two
mechanisms of heat transmission in a liquid: via thermodiffusion and
by means of propagating sound waves. Since propagating heat waves
cannot be obtained within hydrodynamic treatment, they belong to so-
called kinetic collective excitations, which have a finite time of life and
are located in the spectrum beyond the hydrodynamic region. Hydro-
dynamic equations, which reflect local conservation laws, describe the
most long-time processes in liquid. However, the short-time kinetics for
some liquid systems cannot be neglected, because it contributes into dy-
namic structure factors. The ’fast sound’ and optic-like modes in binary
liquids with disparate masses are the examples of kinetic modes, which
cannot be obtained within the standard hydrodynamic treatment. The
theoretical approach, which enables to investigate kinetic collective ex-
citations, was proposed in [4] and developed into parameter-free method
of generalized collective modes (GCM) in [5]. This method threates in
addition to three hydrodynamic variables ( the density n(k,t), density
of longitudinal current J;(k,t) and density of energy e(k,t)) also their
time derivatives, which are supposed to describe short-time processes
in liquids. The recent results on ’fast sound’ in HegsNess [6] and optic-
like excitations in binary Lennard-Jones liquids and metallic alloys [7]
showed the reliability of the GCM method for investigation of kinetic
modes.

It is not known a priori the type of dispersion for heat waves in
ordinary liquids. The most interesting question can be formulated as
follows: where the branch of heat waves is located in the spectrum of
collective excitations relatively to the acoustic branch ? The answer is
quite impossible to obtain within the regular approach to the study
of heat waves based on the phenomenological differential equations [1].
Therefore, the microscopic approach to this problem is of great interest.

In this Letter we report an analysis of spectra of liquid metals and
a semimetal, which enables to identify heat waves in the system. To our
knowledge this is the first report, when starting from molecular dynamics
simulations and the generalized Langevin equation for time correlation
functions one obtains the dispersion and damping of kinetic heat waves
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in liquids. We investigated three liquids: metals Cs ( n = 0.0083A 3,
T = 308K) and Pb ( n = 0.03094A 3T = 623K), and a semimetal Bi
(n = 0.0289A3 T = 578K). Interatomic potentials were taken from
[8-10], respectively.

2. Spectra of collective excitations

In this study we apply for solving the generalized Langevin equation the
folowing basis set of dynamical variables:

A (k,t) = (1)
{n(kat)a Jl(kat)a e(kat)a jl(kat)aé(kat)a jl(kat)aé(kat)a jl(kat)a e(kat)} )

where the three operators n(k,t), Ji(k,t), and e(k,t) are the hydrody-
namic variables. In (1) the dots denote the order of time derivatives of
relevant operator, which are used for treatment of short-time processes.
The basis set (1) is used to generate the 9 x 9 eigenvalue problem for
the generalized hydrodynamic matrix T(k) (see [4,5]). Nine eigenvalues
2o (k) form the spectrum of collective relaxing and propagating modes
of liquids studied.

In Figures 1,2 and 3 we show dispersion (imaginary parts od complex
eigenvalues) of propagating modes for Pb, Cs and Bi, respectively. There
are three pairs of complex conjugated numbers (propagating modes) and
three purely real ones (relaxing modes) among the nine eigenvalues ob-
tained for these three liquids in small-k region. In the case of liquid
metals Pb and Cs there emerges another low-frequency branch of prop-
agating excitations at ~ 0.3A~! and ~ 2.0A~!, respectively. It is quite
easy to identify the branch with almost linear dispersion in small-k region
(shown by asterisks in Figures 1-3) as the generalized acoustic excita-
tions.

To find the origin of each branch in the spectra of collective exci-
tations, we will apply the same treatment of time-dependent processes
by separated subsets of dynamical variables, as we did for the case of
transverse propagating modes in binary liquids [7]. We will divide the
set of nine dynamical variables (1) into two subsets, which correspond to
thermal and viscoelastic properties of pure liquids. To expect the small
coupling effects between different processes, we will use the dynamical
variable of heat density

fne
fan

h(kvt) = e(kat) - n(kat) ) (2)
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which is orthogonal, in contrast to the energy density e(k,t), to the
dynamical variable of density n(k,t) in the sence of thermodynamic the-
ory of fluctuations. In (2) fr.(k) and f,,(k) are the ‘energy-density’
and ‘density-density’ static correlation functions, respectively. The four-
variable subset

AN (1) = {(k,0), h(k,8), h(k. 1), Ak D)} 3)

can be used for separated treatment of thermal processes. It allows to
generate the 4 x 4 eigenvalue problem for the generalized thermodynamic
matrix T(k) and to compare four eigenvalues obtained with the nine-
variable spectra. Another five-variable subset of dynamical variables

AC) (k1) = {n(k,t), Ji(k,t), Ji(k,t), Ji (k. 1), ,;(k,t)} , (4)

is often called as ‘viscoelastic approximation’, when the coupling with
thermal processes is neglected. Two subsets A" and A®) form to-
gether the nine-variable ‘coupled’ set of dynamical variables, which can
be obatined from 1 by a simple linear transformation. In Figures 1,2
and 3 we show the imaginary parts of eigenvalues obtained by treatment
of separated subsets A(*") and A(® by dashed and solid lines, respec-
tively. One can immediately estimate, that in the case of liquid metals
Pb and Cs two branches correspond to propagating heat excitations.
The low-frequency branch has a propagation gap in small-k region. In
the case of liquid semimetallic Bi we did not find the low-frequency heat
waves. At least, in the region k& < 3A~! they are absent. Inside the
propagation gap one obtains two relaxing modes instead of two complex
conjugated eigenvalues. The lower relaxing mode is the generalized ther-
modiffusive eigenvalue. This is in complete agreement with predictions
of hydrodynamic treatment: there cannot exist in hydrodynamic region
(small wavenumbers and frequencies) eigenvalues other than thermofif-
fusive mode and acoustic waves.

The high-frequency branch of heat waves emerges due to treatment
of very short-time thermal processes, mainly due to taking into account
dynamical variables h(k,t) and h(k,t). One can estimate from the dif-
ference between results for the four- and and nine-variable treatments,
shown by dashed line and cross symbols in Figures 1-3, respectively, that
in the case of liquid Pb the coupling between thermal and viscoelastic
processes is stronger than for Cs or Bi. This is consistent with estimated
values of ratio of specific heats ~y, which are 1.22, 1.10 and 1.12 for Pb,Cs
and Bi, respectively.
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3. Analytical treatment of low-frequency heat waves

When one can neglect the coupling between heat- and viscoelastic pro-
cesses (approximation, when the ratio of specific heats is supposed to
be v ~ 1), the treatment of heat waves is in complete analogy with the
case of shear waves. To perform theoretical estimates for heat excitations
we will consider a two-variable approximation neglecting the coupling of
thermal processes with density and current fluctuations. In this case, a
single-variable treatment immediately would derive an exponential form
of time correlation function [11]

FY) (k, 6)/FD) (k,0) = e 707 ", (5)

where A is the coeffficient of thermal conductivity, n is the numerical
density and C\ is the specific heat at constant volume. In fact, the
MD-derived functions Fp,(k,t) contain oscillations, which are due to
contributions of acoustic-like excitations. However, at k& — 0 the time
correlation functions ‘heat density — heat density’ tend to an single-
exponential form modulated by weak oscillations with a normalized con-
tribution = (1 — 1/7).

One can write down the expression for the generalized hydrodynamic
matrix T(k) [5] evaluated by means of two-variable basis set A% =

{h(k,t), h(k,t)}, which is the simplest nontrivial case for the treatment

of heat fluctuations:
0 -1
Tk) = _" _ , 6
( ) <w2,hw27h7h> ( )

where the k-dependent Maxwell-like time of relaxation 75 (k) is evalu-
ated from (5) using the definition of correlation times within the GCM
approach [5]:

Th(k}) 1 ) /Ooo th(k},t)dt . (7)

- Frp(k,t =0

In (6) w2 (k) is the second-order frequency moment of the ‘heat density—
heat density’ spectral function:

@27h(k) =

In Figure 4 one can see, that the functions ws 5 (k)/k* tend to finite
nonzero values in small-k region for the three liquids under study. We
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will use this fact to rewrite the second-order frequency moment @ p (k)
as follows:
k*G" (k) (8)
p
In an analogy with the case of transverse dynamics we introduced in
Eq. (8) a quantity G"(k), which has the same dimension as rigidity
modulus G (k). Thus, we can call the quantity G"(k) as a k-dependent
heat-rigidity modulus. Obviously, that G"(k) tends to a constant in hy-
drodynamic limit. The formal analogy in treatment between heat- and
shear-processes is known in continuum mechanics [1].
One can immediately obtain the two-mode spectrum of heat excita-
tions as eigenvalues of the generalized hydrodynamic matrix (6):

wa,n(k) =

%,h(Z)Th(k) _@27h(k)] ,

Z,f(k‘) _ ‘*_)27h(k2)7_h(k) n

or using (8) and expression for 75, (k) obtained from (5):

ey = 0B [62(k) ~ k2Gh(k)r ‘

2 4 p
The function

_Cy Gh (k)

T omA

d(k)

tends in longwave limit §(k) to a constant. One can see, that the Eq. (9)
has two different kinds of solutions. In the case, when

6 (k) (k)
4

one obtains two complex conjugated eigenvalues

<1 (10)

Z,% = :I:z'wh(k) + O'h(k) R

which correspond to propagating in opposite directions heat waves with
frequency wp (k) and damping oy, (k). The condition for existence of heat
waves in the system (10) defines a limiting k-value, which is, in fact, the
width of propagating gap for low-frequency heat-waves:

Gy o
SARED)Y m

k (11)

Since the left side of condition (10) contains 75, (k) ~ k=2, it will always
not be valid for small k-values. Inside the propagation gap, for k < ky,
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Eq. (10) derives two purely real eigenvalues, which in longwave limit
behave as:
C,Gh A

_ 2
mA nC, i

A
k2, 27 (k) = 2% (k) =
7 = =) = =
One can see, that the lowest real eigenvalue z; (k) is just the thermod-
iffusive hydrodynamic eigenvalue for the case, when the coupling with
viscoelastic processes is neglected (see [11]).

Within our two-variable treatment of heat fluctuations, one can im-
prove the analytical hydrodynamic expression for time correlation func-
tions (5). The basis set A2" allows to derive the time correlation function
Fpp(k, t) within the precision of the second order frequency moment:

(2) - +

Fyy (k,t) zp, (F) —zF(k)t zp, (k) o—zn ()

F2(0) 5 k) =z (k) ) — 2 ()

It is possible to perform a self-consistent loop, taking for evaluation of
correlation time 75, (k) expression (12), what would allow to get some
corrections to expressions obtained above. However, the general picture
will remain the same: there always exists a propagation gap for low-
frequency heat waves in a liquid. Its width depends on the values of
thermal conductivity, specific heat at constant volume and heat-rigidity
modulus.

2y (k) = 23" (k) =

(12)

4. Conclusions

The main results of this study are the following:

(i) We were able to identify in the spectra of propagating collec-
tive excitations of liquid metals and semimetals branches, which corre-
sponded heat waves. For metallic Cs and Pb there exist two (high- and
low-frequency) branches of heat waves, that is in perfect agreement with
results obtained within the continuum mechanics. This explains ”fast
waves carrying small amounts of heat and slower speeds carrying larger
amounts of heat” [1];

(ii) There exists a propagation gap for low-frequency heat waves in
liquids in the region of small wavenumbers, that is in agreement with hy-
drodynamic treatment. Inside the propagation gap instead of two com-
plex conjugated eigenvalues one obtains two relaxing modes, the lower
of which is the generalized thermodiffusive eigenvalue;

(iii) A simple analytical two-variable treatment within the GCM ap-
proach allows to explain propagation gap for low-frequency heat waves
and to obtain the condition for their existence.
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Figure 1. Dispersion of propagating collective excitations in liquid Pb.
Imaginary parts of eigenvalues, obtained by nine-variable basis set
A®)(k,t) are shown by different symbols. Results for separated sub-
sets A®) (k,t) and A" (k,t) are shown by spline interpolated solid and
dashed lines, respectively.
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Figure 2. Dispersion of propagating collective excitations in liquid Cs.
All settings are the same as in Figure 1.
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Figure 3. Dispersion of propagating collective excitations in liquid Bi.
All settings are the same as in Figure 1.
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Figure 4. Second frequency moment of the ‘heat-heat’ spectral function,
divided by k2. This quantity is connected with generalized heat-rigidity
modulus G"(k) via Eq. (8).
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