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õäë: 536; 537PACS: 05.20.Jj, 61.20.Ja, 61.20.L
, 61.25.Mv�Å�ÌÏ×� È×ÉÌ� × p�ÄËÉÈ ÍÅÔÁÌÁÈ ÔÁ ÎÁ��×ÍÅÔÁÌÁÈ�.âÒÉË, I.ípÉÇÌÏÄáÎÏÔÁ��Ñ. ðpÏ�ÏÎÕ¤ÔØÓÑ Í�ËÏÓËÏ��ÞÎÉÊ ��ÄÈ�Ä ÄÏ ÄÏÓÌ�ÄÖÅÎÎÑ ÔÅ�-ÌÏ×ÉÈ ËÏÌÅËÔÉ×ÎÉÈ ÚÂÕÄÖÅÎØ × �pÏÓÔÉÈ p�ÄÉÎÁÈ. ó�ÅËÔpÉ ËÏÌÅËÔÉ×-ÎÉÈ ÚÂÕÄÖÅÎØ ÍÅÔÁÌ�ÞÎÉÈ p�ÄÉÎ Pb � Cs, ÔÁ ÎÁ��×ÍÅÔÁÌ�ÞÎÏÇÏ Bi ÏÔpÉ-ÍÁÎ� × pÁÍËÁÈ ÍÅÔÏÄÕ ÕÚÁÇÁÌØÎÅÎÉÈ ËÏÌÅËÔÉ×ÎÉÈ ÍÏÄ. ðÏËÁÚÁÎÏ, ÝÏ× p�ÄÉÎ� ÍÏÖÕÔØ �ÓÎÕ×ÁÔÉ Ä×� (×ÉÓÏËÏ- � ÎÉÚØËÏÞÁÓÔÏÔÎ�) ×�ÔËÉ ÔÅ�-ÌÏ×ÉÈ È×ÉÌØ.Heat Waves in Liquid Metals and SemimetalsT.Bryk, I.MryglodAbstra
t. A mi
ros
opi
 approa
h to investigation of heat 
olle
tiveex
itations in pure liquids is developed. Spe
tra of 
olle
tive ex
itationsof metalli
 liquids Pb and Cs, and semimetalli
 Bi are obtained withinthe generalized 
olle
tive mode method. It is found, that there 
an existtwo (high- and low-frequen
y) bran
hes of heat waves in liquid.
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1 ðÒÅ�ÒÉÎÔ1. Introdu
tionHeat waves are for long time the subje
t of a
tive study in 
ontinuumme
hani
s [1℄, whi
h is based on phenomenologi
al di�erential equations.Heat waves are also known as the `se
ond sound' ex
itations in solids [2℄and two-liquid model of He [3℄. However, we 
ould not �nd any referen
eon a study on mi
ros
opi
 nature of heat waves in ordinary liquids. Inthe 
ase of liquids the hydrodynami
 set of equations derives only twome
hanisms of heat transmission in a liquid: via thermodi�usion andby means of propagating sound waves. Sin
e propagating heat waves
annot be obtained within hydrodynami
 treatment, they belong to so-
alled kineti
 
olle
tive ex
itations, whi
h have a �nite time of life andare lo
ated in the spe
trum beyond the hydrodynami
 region. Hydro-dynami
 equations, whi
h re
e
t lo
al 
onservation laws, des
ribe themost long-time pro
esses in liquid. However, the short-time kineti
s forsome liquid systems 
annot be negle
ted, be
ause it 
ontributes into dy-nami
 stru
ture fa
tors. The 'fast sound' and opti
-like modes in binaryliquids with disparate masses are the examples of kineti
 modes, whi
h
annot be obtained within the standard hydrodynami
 treatment. Thetheoreti
al approa
h, whi
h enables to investigate kineti
 
olle
tive ex-
itations, was proposed in [4℄ and developed into parameter-free methodof generalized 
olle
tive modes (GCM) in [5℄. This method threates inaddition to three hydrodynami
 variables ( the density n(k; t), densityof longitudinal 
urrent Jl(k; t) and density of energy e(k; t)) also theirtime derivatives, whi
h are supposed to des
ribe short-time pro
essesin liquids. The re
ent results on 'fast sound' in He65Ne35 [6℄ and opti
-like ex
itations in binary Lennard-Jones liquids and metalli
 alloys [7℄showed the reliability of the GCM method for investigation of kineti
modes.It is not known a priori the type of dispersion for heat waves inordinary liquids. The most interesting question 
an be formulated asfollows: where the bran
h of heat waves is lo
ated in the spe
trum of
olle
tive ex
itations relatively to the a
ousti
 bran
h ? The answer isquite impossible to obtain within the regular approa
h to the studyof heat waves based on the phenomenologi
al di�erential equations [1℄.Therefore, the mi
ros
opi
 approa
h to this problem is of great interest.In this Letter we report an analysis of spe
tra of liquid metals anda semimetal, whi
h enables to identify heat waves in the system. To ourknowledge this is the �rst report, when starting from mole
ular dynami
ssimulations and the generalized Langevin equation for time 
orrelationfun
tions one obtains the dispersion and damping of kineti
 heat waves
ICMP{00{03E 2in liquids. We investigated three liquids: metals Cs ( n = 0:0083�A�3,T = 308K) and Pb ( n = 0:03094�A�3,T = 623K), and a semimetal Bi( n = 0:0289�A�3,T = 578K). Interatomi
 potentials were taken from[8{10℄, respe
tively.2. Spe
tra of 
olle
tive ex
itationsIn this study we apply for solving the generalized Langevin equation thefolowing basis set of dynami
al variables:A(9)(k; t) = (1)nn(k; t); Jl(k; t); e(k; t); _Jl(k; t); _e(k; t); �Jl(k; t); �e(k; t); :::Jl(k; t); :::e(k; t)o ;where the three operators n(k; t), Jl(k; t), and e(k; t) are the hydrody-nami
 variables. In (1) the dots denote the order of time derivatives ofrelevant operator, whi
h are used for treatment of short-time pro
esses.The basis set (1) is used to generate the 9 � 9 eigenvalue problem forthe generalized hydrodynami
 matrix T(k) (see [4,5℄). Nine eigenvaluesz�(k) form the spe
trum of 
olle
tive relaxing and propagating modesof liquids studied.In Figures 1,2 and 3 we show dispersion (imaginary parts od 
omplexeigenvalues) of propagating modes for Pb, Cs and Bi, respe
tively. Thereare three pairs of 
omplex 
onjugated numbers (propagating modes) andthree purely real ones (relaxing modes) among the nine eigenvalues ob-tained for these three liquids in small-k region. In the 
ase of liquidmetals Pb and Cs there emerges another low-frequen
y bran
h of prop-agating ex
itations at � 0:3�A�1 and � 2:0�A�1, respe
tively. It is quiteeasy to identify the bran
h with almost linear dispersion in small-k region(shown by asterisks in Figures 1-3) as the generalized a
ousti
 ex
ita-tions.To �nd the origin of ea
h bran
h in the spe
tra of 
olle
tive ex
i-tations, we will apply the same treatment of time-dependent pro
essesby separated subsets of dynami
al variables, as we did for the 
ase oftransverse propagating modes in binary liquids [7℄. We will divide theset of nine dynami
al variables (1) into two subsets, whi
h 
orrespond tothermal and vis
oelasti
 properties of pure liquids. To expe
t the small
oupling e�e
ts between di�erent pro
esses, we will use the dynami
alvariable of heat densityh(k; t) = e(k; t)� fnefnnn(k; t) ; (2)



3 ðÒÅ�ÒÉÎÔwhi
h is orthogonal, in 
ontrast to the energy density e(k; t), to thedynami
al variable of density n(k; t) in the sen
e of thermodynami
 the-ory of 
u
tuations. In (2) fne(k) and fnn(k) are the `energy-density'and `density-density' stati
 
orrelation fun
tions, respe
tively. The four-variable subsetA(4h)(k; t) = nh(k; t); _h(k; t); �h(k; t); :::h(k; t)o ; (3)
an be used for separated treatment of thermal pro
esses. It allows togenerate the 4�4 eigenvalue problem for the generalized thermodynami
matrix T(k) and to 
ompare four eigenvalues obtained with the nine-variable spe
tra. Another �ve-variable subset of dynami
al variablesA(5)(k; t) = �n(k; t); Jl(k; t); _Jl(k; t); �Jl(k; t); :::Jl (k; t)� ; (4)is often 
alled as `vis
oelasti
 approximation', when the 
oupling withthermal pro
esses is negle
ted. Two subsets A(4h) and A(5) form to-gether the nine-variable `
oupled' set of dynami
al variables, whi
h 
anbe obatined from 1 by a simple linear transformation. In Figures 1,2and 3 we show the imaginary parts of eigenvalues obtained by treatmentof separated subsets A(4h) and A(5) by dashed and solid lines, respe
-tively. One 
an immediately estimate, that in the 
ase of liquid metalsPb and Cs two bran
hes 
orrespond to propagating heat ex
itations.The low-frequen
y bran
h has a propagation gap in small-k region. Inthe 
ase of liquid semimetalli
 Bi we did not �nd the low-frequen
y heatwaves. At least, in the region k < 3�A�1 they are absent. Inside thepropagation gap one obtains two relaxing modes instead of two 
omplex
onjugated eigenvalues. The lower relaxing mode is the generalized ther-modi�usive eigenvalue. This is in 
omplete agreement with predi
tionsof hydrodynami
 treatment: there 
annot exist in hydrodynami
 region(small wavenumbers and frequen
ies) eigenvalues other than thermo�f-fusive mode and a
ousti
 waves.The high-frequen
y bran
h of heat waves emerges due to treatmentof very short-time thermal pro
esses, mainly due to taking into a

ountdynami
al variables �h(k; t) and :::h(k; t). One 
an estimate from the dif-feren
e between results for the four- and and nine-variable treatments,shown by dashed line and 
ross symbols in Figures 1-3, respe
tively, thatin the 
ase of liquid Pb the 
oupling between thermal and vis
oelasti
pro
esses is stronger than for Cs or Bi. This is 
onsistent with estimatedvalues of ratio of spe
i�
 heats 
, whi
h are 1:22, 1:10 and 1:12 for Pb,Csand Bi, respe
tively.

ICMP{00{03E 43. Analyti
al treatment of low-frequen
y heat wavesWhen one 
an negle
t the 
oupling between heat- and vis
oelasti
 pro-
esses (approximation, when the ratio of spe
i�
 heats is supposed tobe 
 � 1), the treatment of heat waves is in 
omplete analogy with the
ase of shear waves. To perform theoreti
al estimates for heat ex
itationswe will 
onsider a two-variable approximation negle
ting the 
oupling ofthermal pro
esses with density and 
urrent 
u
tuations. In this 
ase, asingle-variable treatment immediately would derive an exponential formof time 
orrelation fun
tion [11℄F (1)hh (k; t)=F (1)hh (k; 0) = e� �nCV k2t; (5)where � is the 
oe��
ient of thermal 
ondu
tivity, n is the numeri
aldensity and CV is the spe
i�
 heat at 
onstant volume. In fa
t, theMD-derived fun
tions Fhh(k; t) 
ontain os
illations, whi
h are due to
ontributions of a
ousti
-like ex
itations. However, at k ! 0 the time
orrelation fun
tions `heat density { heat density' tend to an single-exponential form modulated by weak os
illations with a normalized 
on-tribution � (1� 1=
).One 
an write down the expression for the generalized hydrodynami
matrix T(k) [5℄ evaluated by means of two-variable basis set A(2h) =fh(k; t); _h(k; t)g, whi
h is the simplest nontrivial 
ase for the treatmentof heat 
u
tuations: T(k) = � 0 �1�!2;h�!2;h�h� ; (6)where the k-dependent Maxwell-like time of relaxation �h(k) is evalu-ated from (5) using the de�nition of 
orrelation times within the GCMapproa
h [5℄: �h(k) = 1Fhh(k; t = 0) Z 10 Fhh(k; t)dt : (7)In (6) �!2;h(k) is the se
ond-order frequen
y moment of the `heat density{heat density' spe
tral fun
tion:�!2;h(k) = h _h(k) _h(�k)ihh(k)h(�k)i :In Figure 4 one 
an see, that the fun
tions �!2;h(k)=k2 tend to �nitenonzero values in small-k region for the three liquids under study. We



5 ðÒÅ�ÒÉÎÔwill use this fa
t to rewrite the se
ond-order frequen
y moment �!2;h(k)as follows: �!2;h(k) = k2Gh(k)� : (8)In an analogy with the 
ase of transverse dynami
s we introdu
ed inEq. (8) a quantity Gh(k), whi
h has the same dimension as rigiditymodulus G(k). Thus, we 
an 
all the quantity Gh(k) as a k-dependentheat-rigidity modulus. Obviously, that Gh(k) tends to a 
onstant in hy-drodynami
 limit. The formal analogy in treatment between heat- andshear-pro
esses is known in 
ontinuum me
hani
s [1℄.One 
an immediately obtain the two-mode spe
trum of heat ex
ita-tions as eigenvalues of the generalized hydrodynami
 matrix (6):z�h (k) = �!2;h(k)�h(k)2 � " �!22;h(k)�2h(k)4 � �!2;h(k)# 12 ;or using (8) and expression for �h(k) obtained from (5):z�h (k) = Æ(k)2 � �Æ2(k)4 � k2Gh(k)� � 12 : (9)The fun
tion Æ(k) = CVGh(k)m� :tends in longwave limit Æ(k) to a 
onstant. One 
an see, that the Eq. (9)has two di�erent kinds of solutions. In the 
ase, whenÆ(k)�h(k)4 < 1 (10)one obtains two 
omplex 
onjugated eigenvaluesz�h = �i!h(k) + �h(k) ;whi
h 
orrespond to propagating in opposite dire
tions heat waves withfrequen
y !h(k) and damping �h(k). The 
ondition for existen
e of heatwaves in the system (10) de�nes a limiting k-value, whi
h is, in fa
t, thewidth of propagating gap for low-frequen
y heat-waves:kH ' CV2�rnGhm : (11)Sin
e the left side of 
ondition (10) 
ontains �h(k) � k�2, it will alwaysnot be valid for small k-values. Inside the propagation gap, for k < kH ,
ICMP{00{03E 6Eq. (10) derives two purely real eigenvalues, whi
h in longwave limitbehave as:z+h (k) = z2Rh (k) = CVGhm� � �nCV k2; z�t (k) = z1Rt (k) = �nCV k2 :One 
an see, that the lowest real eigenvalue z�t (k) is just the thermod-i�usive hydrodynami
 eigenvalue for the 
ase, when the 
oupling withvis
oelasti
 pro
esses is negle
ted (see [11℄).Within our two-variable treatment of heat 
u
tuations, one 
an im-prove the analyti
al hydrodynami
 expression for time 
orrelation fun
-tions (5). The basis setA2;h allows to derive the time 
orrelation fun
tionFhh(k; t) within the pre
ision of the se
ond order frequen
y moment:F (2)hh (k; t)F (2)hh (k; 0) = � z�h (k)z+h (k)� z�h (k) e�z+h (k)t + z+h (k)z+h (k)� z�h (k) e�z�h (k)t : (12)It is possible to perform a self-
onsistent loop, taking for evaluation of
orrelation time �h(k) expression (12), what would allow to get some
orre
tions to expressions obtained above. However, the general pi
turewill remain the same: there always exists a propagation gap for low-frequen
y heat waves in a liquid. Its width depends on the values ofthermal 
ondu
tivity, spe
i�
 heat at 
onstant volume and heat-rigiditymodulus.4. Con
lusionsThe main results of this study are the following:(i) We were able to identify in the spe
tra of propagating 
olle
-tive ex
itations of liquid metals and semimetals bran
hes, whi
h 
orre-sponded heat waves. For metalli
 Cs and Pb there exist two (high- andlow-frequen
y) bran
hes of heat waves, that is in perfe
t agreement withresults obtained within the 
ontinuum me
hani
s. This explains "fastwaves 
arrying small amounts of heat and slower speeds 
arrying largeramounts of heat" [1℄;(ii) There exists a propagation gap for low-frequen
y heat waves inliquids in the region of small wavenumbers, that is in agreement with hy-drodynami
 treatment. Inside the propagation gap instead of two 
om-plex 
onjugated eigenvalues one obtains two relaxing modes, the lowerof whi
h is the generalized thermodi�usive eigenvalue;(iii) A simple analyti
al two-variable treatment within the GCM ap-proa
h allows to explain propagation gap for low-frequen
y heat wavesand to obtain the 
ondition for their existen
e.
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