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a b s t r a c t

The microscopic approach to calculating the free energy of a three-dimensional Ising-
like system in a homogeneous external field is developed in the higher non-Gaussian
approximation (the ρ6 model) at temperatures above the critical value of Tc (Tc is the
phase-transition temperature in the absence of an external field). The free energy of the
system is found by separating the contributions from the short- and long-wave spin-
density oscillation modes taking into account both temperature and field fluctuations of
the order parameter. Our analytical calculations do not involve power series in the scaling
variable and are valid in thewhole field–temperature plane near the critical point including
the region in the vicinity of the limiting field h̃c , which divides external fields into theweak
and strong ones (i.e., the crossover region).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Isingmodel is one of themost studiedmodels in the theory of the phase transitions, not only because it is considered
as the prototype of statistical systems showing a non-trivial power-law critical behaviour but also because it describes
several physical systems [1]. Many systems characterized by short-range interactions and a scalar order parameter undergo
a transition belonging to the Ising universality class. Despite the great successes in the investigation of three-dimensional
(3D) Ising-like systems made by means of various methods (see, for example, Ref. [1]), the statistical description of the
critical behaviour of the mentioned systems in terms of both temperature and field variables and the calculation of scaling
functions are still of interest [2].

This article is a detailed presentation of the collective variables (CV) method [3–5] developed for a 3D Ising-like magnet
in the higher non-Gaussian approximation and in the presence of an external field. The CV method is non-perturbative and
similar to theWilson non-perturbative renormalization-group (RG) approach (integration on fastmodes and construction of
an effective theory for slowmodes) [6–8]. The term collective variables is a common name for a special class of variables that
are specific for each individual physical system [3,4]. The CV set contains variables associatedwith order parameters. Because
of this, the phase space of CV is most natural for describing a phase transition. For magnetic systems, the CV ρk are the
variables associatedwithmodes of spin-moment density oscillations, while the order parameter is related to the variable ρ0,
inwhich the subscript ‘‘0’’ corresponds to the peak of the Fourier transformof the interaction potential. Themethods existing
at presentmake it possible to calculate universal quantities to a quite high degree of accuracy (see, for example, Ref. [1]). The
advantage of the CV method lies in the possibility of obtaining and analysing thermodynamic characteristics as functions
of the microscopic parameters of the initial system [9–13]. Using the non-Gaussian basis distributions of fluctuations in
calculating the free energy of the system does not create the problem of the summation of various classes of divergent (with
respect to the Gaussian distribution) diagrams at the critical point. A consideration of the increasing number of terms in the
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exponent of the non-Gaussian distribution is an alternative to the use of a higher-order perturbation theory based on the
Gaussian distribution.

The free energy of a 3D Ising-like system in an external field at temperatures above Tc is calculated using the non-Gaussian
spin-density fluctuations, namely the sextic measure density. The latter is represented as an exponential function of the CV
whose argument includes the powers with the corresponding coupling constants up to the sixth power of the variable (the
ρ6 model). In our calculations, we use approximation for potential similar to the local potential approximation (LPA) (see,
for example, Refs. [8,14]), assuming that the correction for the potential averaging is zero, although it can be taken into
account if necessary (see Refs. [3–5]). The inclusion of this correction leads to a nonzero value of the critical exponent η
characterizing the behaviour of the pair-correlation function for T = Tc . In the ρ4 model approximation, we arrive at the
result η ≈ 0.024 [5,15]. For comparison, the exponents η = 0.0335(25), η = 0.0362(8) and η = 0.033 were obtained
within the framework of the field-theory approach (7-loop calculations) [16], Monte Carlo simulations [17] and the non-
perturbative RG approach (the order ∂4 of the derivative expansion) [18], respectively. Including the above-mentioned
correction and the related shift of the fixed point does not qualitatively change the main thermodynamic characteristics
of the system. It should be noted that the convergence of an expansion in field monomials φ2n at η = 0 has been studied
in detail using Wilson RG techniques [19–24]. Although the sum of the expansion does not converge, it appears [24] that
the asymptotic value of the critical exponent of the correlation length νasympt = 0.649562 for the Ising universality class is
reasonably closely approached at n > 6. This value agrees with our result ν = 0.649 [25] obtained for the ρ10 model at the
optimal RG parameter s = s∗ = 2.6108 and η = 0. The value of s = s∗ (for each of the ρ2m models) corresponds to nullifying
the average value of the coefficient of the quadratic term in the effective density of measure at the fixed point. It is expected
that the inclusion of a nonzero exponent η within the CV method will reduce the critical exponent of the correlation length
ν (as in the non-perturbative RG approach [18]). A tendency to saturation of the critical exponent ν with increasing order
of the ρ2m model has been graphically illustrated in Refs. [9,25–27].

The present publication supplements the earlier works [9,10,28,29], in which the ρ6 model was used for calculating the
free energy and other thermodynamic functions of the system in the absence of an external field. The ρ6 model provides a
better quantitative description of the critical behaviour of a 3D Ising-like magnet than the ρ4 model [9].

The expressions for the thermodynamic characteristics of the system in the presence of an external field have already
been obtained on the basis of the simplest non-Gaussian measure density (the ρ4 model) in Refs. [30–33] using the point
of exit of the system from the critical regime as a function of the temperature (the weak-field region) or of the field (the
strong-field region). In Refs. [30,31], the thermodynamic characteristics are presented in the form of series expansions in
the variables, which are combinations of the temperature and field. Our calculations in the ρ4 model approximation were
also performed for temperatures T > Tc [32] and T < Tc [33] without using similar expansions for the roots of cubic
equations appearing in the theoretical analysis. In this article, the free energy of a 3D uniaxial magnet within the framework
of the more complicated ρ6 model is found without using series expansions introducing the generalized point of exit of the
system from the critical regime. This point takes into account temperature and field variables simultaneously. In our earlier
article [34], the point of exit of the system from the critical regime was found in the simpler non-Gaussian approximation
(the ρ4 model) using the numerical calculations. In contrast to [34], the point of exit of the system in the present article is
explicitly defined as a function of the temperature and field. This allows one to obtain the free energy without involving
numerical calculations.

2. Basis relations

We consider a 3D Ising-like system on a simple cubic lattice with N sites and period c in a homogeneous external field
h. The Hamiltonian of such a system has the form

H = −
1
2

−
j,l
Φ(rjl)σjσl − h

−
j
σj, (1)

where rjl is the distance between particles at sites j and l, and σj is the operator of the z component of spin at the jth site,
having two eigenvalues +1 and −1. The interaction potential is an exponentially decreasing function

Φ(rjl) = A exp

−

rjl
b


. (2)

Here A is a constant and b is the radius of effective interaction. For the Fourier transform of the interaction potential, we use
the following approximation [3,9,10]:

Φ̃(k) =


Φ̃(0)(1 − 2b2k2), k ≤ B′,
0, B′ < k ≤ B, (3)

where B is the boundary of the Brillouin half-zone (B = π/c), B′
= (b

√
2)−1, Φ̃(0) = 8πA(b/c)3.

In the CV representation for the partition function of the system, we have [3,35]

Z =

∫
exp


1
2

−
k
βΦ̃(k)ρkρ−k + βh

√
Nρ0


J(ρ) (dρ)N . (4)
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Here the summation over the wave vectors k is carried out within the first Brillouin zone, β = 1/(kT ) is the inverse
temperature, the CV ρk are introduced by means of the functional representation for operators of spin-density oscillation
modes ρ̂k = (

√
N)−1∑

l σl exp(−ikl),

J(ρ) = 2N
∫

exp


2π i

−
k
ωkρk +

−
n≥1

(2π i)2n N1−n M2n

(2n)!

−
k1,...,k2n

ωk1 · · ·ωk2n δk1+···+k2n


(dω)N (5)

is the Jacobian of transition from the set of N spin variables σl to the set of CV ρk, and δk1+···+k2n is the Kronecker symbol.
The variables ωk are conjugate to ρk, and the cumulants M2n assume constant values (see Refs. [3–5]).

Proceeding from Eqs. (4) and (5), we obtain the following initial expression for the partition function of the system in the
ρ6 model approximation:

Z = 2N2(N
′
−1)/2ea

′
0N

′

∫
exp


−a′

1(N
′)1/2ρ0 −

1
2

−
k

k≤B′

d′(k)ρkρ−k

−

3−
l=2

a′

2l

(2l)!(N ′)l−1

−
k1,...,k2l
ki≤B′

ρk1 · · · ρk2l δk1+···+k2l


(dρ)N

′

. (6)

Here N ′
= Ns−d

0 (d = 3 is the space dimension), s0 = B/B′
= π

√
2b/c , and a′

1 = −sd/20 h′, h′
= βh. The expressions for the

remaining coefficients are given in Refs. [9,10,28,29]. These coefficients are functions of s0, i.e., of the ratio of microscopic
parameters b and c. The integration over the zeroth, first, second, . . . , nth layers of the CV phase space [3–5,9] leads to the
representation of the partition function in the form of a product of the partial partition functions Qn of individual layers and
the integral of the ‘‘smoothed’’ effective measure density

Z = 2N2(Nn+1−1)/2Q0Q1 · · ·Qn[Q (Pn)]Nn+1

∫
W
(n+1)
6 (ρ) (dρ)Nn+1 . (7)

The expressions for Qn,Q (Pn) are presented in Refs. [9,10,28,29], and Nn+1 = N ′s−d(n+1). The sextic measure density of the
(n + 1)th block structure W

(n+1)
6 (ρ) has the form

W
(n+1)
6 (ρ) = exp

−a(n+1)
1 N1/2

n+1ρ0 −
1
2

−
k

k≤Bn+1

dn+1(k)ρkρ−k −

3−
l=2

a(n+1)
2l

(2l)!N l−1
n+1

−
k1,...,k2l
ki≤Bn+1

ρk1 · · · ρk2l δk1+···+k2l

 , (8)

where Bn+1 = B′s−(n+1), dn+1(k) = a(n+1)
2 − βΦ̃(k), a(n+1)

1 and a(n+1)
2l are the renormalized values of the coefficients a′

1 and
a′

2l after integration over n + 1 layers of the phase space of CV. The coefficients a(n)1 = s−ntn, dn(0) = s−2nrn [appearing
in the quantity dn(k) = dn(0) + 2βΦ̃(0)b2k2], a(n)4 = s−4nun and a(n)6 = s−6nwn are connected with the coefficients of the
(n + 1)th layer through the recurrence relations (RR)

tn+1 = s(d+2)/2tn,
rn+1 = s2


−q + u1/2

n Y (hn, αn)

,

un+1 = s4−dunB(hn, αn),

wn+1 = s6−2du3/2
n D(hn, αn) (9)

whose solutions

tn = t(0) − sd/20 h′En
1 ,

rn = r (0) + c1En
2 + c2w

(0)
12 (u

(0))−1/2En
3 + c3w

(0)
13 (u

(0))−1En
4 ,

un = u(0) + c1w
(0)
21 (u

(0))1/2En
2 + c2En

3 + c3w
(0)
23 (u

(0))−1/2En
4 ,

wn = w(0) + c1w
(0)
31 u

(0)En
2 + c2w

(0)
32 (u

(0))1/2En
3 + c3En

4 (10)

in the region of the critical regime are used for calculating the free energy of the system. Here

Y (hn, αn) = sd/2F2(ηn, ξn) [C(hn, αn)]−1/2 ,

B(hn, αn) = s2dC(ηn, ξn) [C(hn, αn)]−1 ,

D(hn, αn) = s7d/2N(ηn, ξn) [C(hn, αn)]−3/2 . (11)
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The quantity q = q̄βΦ̃(0) determines the average value of the Fourier transform of the potential βΦ̃(Bn+1, Bn) =

βΦ̃(0) − q/s2n in the nth layer (in this article, q̄ = (1 + s−2)/2 corresponds to the arithmetic mean value of k2 on the
interval (1/s, 1]). The basic arguments hn and αn are determined by the coefficients of the sextic measure density of the
nth block structure. The intermediate variables ηn and ξn are functions of hn and αn. The expressions for both basic and
intermediate arguments as well as the special functions appearing in Eq. (11) are the same as in the absence of an external
field (see Refs. [9,10,28,29]). The quantities El in Eq. (10) are the eigenvalues of the matrix of the RG linear transformation

tn+1 − t(0)

rn+1 − r (0)

un+1 − u(0)

wn+1 − w(0)

 =

R11 0 0 0
0 R22 R23 R24
0 R32 R33 R34
0 R42 R43 R44




tn − t(0)

rn − r (0)

un − u(0)

wn − w(0)

 . (12)

We have E1 = R11 = s(d+2)/2. Other nonzero matrix elements Rij (i = 2, 3, 4; j = 2, 3, 4) and the eigenvalues E2, E3, E4
coincide, respectively, with the quantities Ri1j1 (i1 = i − 1; j1 = j − 1) and E1, E2, E3 obtained in the case of h = 0. The
quantities f0, ϕ0 and ψ0 characterizing the fixed-point coordinates

t(0) = 0, r (0) = −f0βΦ̃(0), u(0) = ϕ0(βΦ̃(0))2, w(0) = ψ0(βΦ̃(0))3 (13)
as well as the remaining coefficients in Eq. (10) are also defined on the basis of expressions corresponding to a zero external
field.

3. Method of calculation

Let us calculate the free energy F = −kT ln Z of a 3D Ising-like system above the critical temperature Tc . The basic idea
of such a calculation on the microscopic level consists in the separate inclusion of the contributions from short-wave (FCR,
the region of the critical regime) and long-wave (FLGR, the region of the limiting Gaussian regime) modes of spin-moment
density oscillations [3–5]:

F = F0 + FCR + FLGR. (14)
Here F0 = −kTN ln 2 is the free energy of N noninteracting spins. Each of three components in Eq. (14) corresponds to
individual factors in the convenient representation

Z = 2NZCRZLGR (15)
for the partition function given by Eq. (7). The contributions from short- and long-wave modes to the free energy of the
system in the presence of an external field are calculated in the ρ6 model approximation according to the scheme proposed
in Refs. [9,10,28,29]. Short-wavemodes are characterized by an RG symmetry and are described by a non-Gaussianmeasure
density. The calculation of the contribution from long-wave modes is based on using the Gaussian measure density as the
basis one. Here, we have developed a direct method of calculations with the results obtained by taking into account the
short-wavemodes as initial parameters. Themain results obtained in the course of deriving the complete expression for the
free energy of the system are presented below.

3.1. Region of the critical regime

A calculation technique based on the ρ6 model for the contribution FCR is similar to that elaborated in the absence of an
external field (see, for example, Refs. [5,9,29]). Carrying out the summation of partial tree energies Fn over the layers of the
phase space of CV, we can calculate FCR:

FCR = F ′

0 + F ′

CR,

F ′

0 = −kTN ′
[lnQ (M)+ lnQ (d)],

F ′

CR =

np−
n=1

Fn. (16)

An explicit dependence of Fn on the layer number n is obtained using solutions (10) of RR and series expansions of special
functions in small deviations of the basic arguments from their values at the fixed point. The main peculiar feature of the
present calculations lies in using the generalized point of exit of the system from the critical regime of order-parameter
fluctuations. The inclusion of the more complicated expression for the exit point (as a function of both temperature and
field variables) [36]

np = −
ln(h̃2

+ h̃2
c )

2 ln E1
− 1 (17)

leads to the distinction between formula (16) for F ′

CR and the analogous relation at h = 0 [9,29]. The quantity h̃ = h′/f0
is determined by the dimensionless field h′, while the quantity h̃c = τ̃ p0 is a function of the reduced temperature
τ = (T − Tc)/Tc . Here τ̃ = c̃(0)1 τ/f0, p0 = ln E1/ ln E2 = (d + 2)ν/2, c̃(0)1 characterizes the coefficient c1 in solutions
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Table 1
The eigenvalues El and the exponents ν,∆1,∆2 for the ρ6 model.

E1 E2 E3 E4 ν ∆1 ∆2

12.3695 4.8468 0.4367 0.0032 0.637 0.525 3.647

(10) of RR, ν = ln s/ ln E2 is the critical exponent of the correlation length. At h = 0, np becomes mτ = − ln τ̃ / ln E2 − 1
(see Refs. [5,9,29]). At T = Tc (τ = 0), the quantity np coincides with the exit point nh = − ln h̃/ ln E1 − 1 [37]. The limiting
value of the field h̃c is obtained by the equality of the exit points defined by the temperature and by the field (mτ = nh).

Having expression (17) for np, we arrive at the relations [38]

Enp+1
1 = (h̃2

+ h̃2
c )

−1/2, τ̃Enp+1
2 = Hc,

Hc = h̃1/p0
c (h̃2

+ h̃2
c )

−1/(2p0),

Enp+1
3 = H3, H3 = (h̃2

+ h̃2
c )
∆1/(2p0),

Enp+1
4 = H4, H4 = (h̃2

+ h̃2
c )
∆2/(2p0),

s−(np+1)
= (h̃2

+ h̃2
c )

1/(d+2), (18)

where ∆1 = − ln E3/ ln E2 and ∆2 = − ln E4/ ln E2 are the exponents, which determine the first and second confluent
corrections, respectively. Numerical values of the quantities El (l = 1, 2, 3, 4), ν,∆1 and ∆2 for the optimal RG parameter
s = s∗ = 2.7349 are contained in Table 1. For comparison, the other authors’ data calculated within the field-theory
approach (ν = 0.630,∆1 = 0.498) and high-temperature expansions (ν = 0.638,∆1 = 0.50) are given in Refs. [9,11]. The
values of the critical exponent of the correlation length ν = 0.6304(13), ν = 0.6297(5) and ν = 0.632 are presented in the
above-mentioned articles [16–18], respectively. It should be noted that, in comparison with ∆1 = 0.525 and ∆2 = 3.647
calculated for the ρ6 model at η = 0 (see Table 1), the exponents of the first and second confluent corrections∆1 = 0.448
and ∆2 = 2.57 [27] for the ρ10 model agree more closely with the estimates 0.425 . . . (for ∆1) and 2.065 . . . (for ∆2)
obtained using the Wilson RG equation in the LPA (see, for example, Ref. [39]).

In the weak-field region (h̃ ≪ h̃c), quantities (18) can be calculated with the help of the following expansions:

Enp+1
1 = h̃−1

c


1 −

1
2
h̃2

h̃2
c


, h̃−1

c = τ̃−p0 ,

Hc = 1 −
1

2p0

h̃2

h̃2
c

,

H3 = h̃∆1/p0
c


1 +

∆1

2p0

h̃2

h̃2
c


, h̃∆1/p0

c = τ̃∆1 ,

H4 = h̃∆2/p0
c


1 +

∆2

2p0

h̃2

h̃2
c


, h̃∆2/p0

c = τ̃∆2 ,

s−(np+1)
= h̃2/(d+2)

c


1 +

1
d + 2

h̃2

h̃2
c


, h̃2/(d+2)

c = τ̃ ν . (19)

In the strong-field region (h̃ ≫ h̃c), these quantities satisfy the expressions

Enp+1
1 = h̃−1


1 −

1
2

h̃2
c

h̃2


,

Hc = (h̃c/h̃)1/p0

1 −

1
2p0

h̃2
c

h̃2


,

H3 = h̃∆1/p0


1 +

∆1

2p0

h̃2
c

h̃2


,

H4 = h̃∆2/p0


1 +

∆2

2p0

h̃2
c

h̃2


,
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s−(np+1)
= h̃2/(d+2)


1 +

1
d + 2

h̃2
c

h̃2


. (20)

It should be noted that the variables h̃/h̃c (the weak fields) and (h̃c/h̃)1/p0 (the strong fields) coincide with the accepted
choice of the arguments for scaling functions in accordance with the scaling theory. In the particular case of h = 0 and
τ ≠ 0, expressions (19) are defined as Enp+1

1 = τ̃−p0 ,Hc = 1,H3 = τ̃∆1 , H4 = τ̃∆2 , s−(np+1)
= τ̃ ν . At h ≠ 0 and τ = 0, we

have h̃Enp+1
1 = 1,Hc = 0,H3 = h̃∆1/p0 ,H4 = h̃∆2/p0 , s−(np+1)

= h̃2/(d+2) [see Eq. (20)].
We shall perform the further calculations on the basis of Eq. (18), which are valid in the general case for the regions of

small, intermediate (the crossover region) and large field values. The inclusion of Enp+1
3 (or H3) leads to the formation of the

first confluent corrections in the expressions for thermodynamic characteristics of the system. The quantity Enp+1
4 (or H4) is

responsible for the emergence of the second confluent corrections. The cases of the weak or strong fields can be obtained
from general expressions by using Eqs. (19) or (20). We disregard the second confluent correction in our calculations. This
is due to the fact that the contribution from the first confluent correction to thermodynamic functions near the critical
point (τ = 0, h = 0) for various values of s is more significant than the small contribution from the second correction
(h̃2

+ h̃2
c ≪ 1,∆1 is of the order of 0.5 and∆2 > 2, see Table 1, [28]).

Proceeding from an explicit dependence of Fn on the layer number n [5,28,29] and taking into account Eq. (18), we can
now write the final expression for FCR (16):

FCR = −kTN ′


γ
(CR)
0 + γ1τ + γ2τ

2


+ Fs,

Fs = kTN ′s−3(np+1)

γ̄
(CR)(0)+
3 + γ̄

(CR)(1)+
3 c(0)20 H3


. (21)

Here c(0)20 characterizes c2 in solutions (10) of RR,

γ̄
(CR)(0)+
3 =

f (0)CR

1 − s−3
+

f (1)CR ϕ
−1/2
0 f0Hc

1 − E2s−3
+

f (7)CR ϕ
−1
0 (f0Hc)

2

1 − E2
2 s−3

,

γ̄
(CR)(1)+
3 =

f (2)CR ϕ
−1
0

1 − E3s−3
+

f (4)CR ϕ
−3/2
0 f0Hc

1 − E2E3s−3
+

f (8)CR ϕ
−2
0 (f0Hc)

2

1 − E2
2E3s−3

, (22)

and the coefficients
γ
(CR)
0 = γ

(0)
0 + δ

(0)
0 ,

γk = γ
(k)
0 + δ

(k)
0 , k = 1, 2 (23)

are determined by the components of the quantities

γ0 = γ
(0)
0 + γ

(1)
0 τ + γ

(2)
0 τ 2,

δ0 = δ
(0)
0 + δ

(1)
0 τ + δ

(2)
0 τ 2. (24)

The components δ(i)0 (i = 0, 1, 2) satisfy the earlier relations [5,28,29] obtained in the case of a zero external field. The
components γ (i)0 are given by the corresponding expressions at h = 0 under condition that the eigenvalues E1, E2 and E3
should be replaced by E2, E3 and E4, respectively.

Let us now calculate the contribution to the free energy of the system from the layers of the CV phase space beyond
the point of exit from the critical-regime region. The calculations are performed according to the scheme proposed in
Refs. [3,5,9,10]. As in the previous study, while calculating the partition function component ZLGR from Eq. (15), it is
convenient to single out two regions of values of wave vectors. The first is the transition region (Z (1)LGR) corresponding to
values of k close to Bnp , while the second is the Gaussian region (Z (2)LGR) corresponding to small values of wave vector (k → 0).
Thus, we have

ZLGR = Z (1)LGRZ
(2)
LGR. (25)

3.2. Transition region

This region corresponds to m̃0 layers of the phase space of CV. The lower boundary of the transition region is determined
by the point of exit of the system from the critical-regime region (n = np +1). The upper boundary corresponds to the layer
np + m̃0 + 1. We use for m̃0 the integer closest to m̃′

0. The condition for obtaining m̃′

0 is the equality [9,29]

|hnp+m̃′
0
| =

A0

1 − s−3
, (26)

where A0 is a large number (A0 ≥ 10).
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The free energy contribution

F (1)LGR = −kTNnp+1

m̃0−
m=0

s−3mfLGR1(m),

fLGR1(m) = ln


2
π


+

1
4
ln 24 −

1
4
ln C(ηnp+m, ξnp+m)+ ln I0(hnp+m+1, αnp+m+1)+ ln I0(ηnp+m, ξnp+m) (27)

corresponding to Z (1)LGR from Eq. (25) is calculated by using the solutions of RR.
The basic arguments in the (np + m)th layer

hnp+m = (rnp+m + q)(6/unp+m)
1/2,

αnp+m =

√
6

15
wnp+m/u

3/2
np+m (28)

can be presented using the relations

tnp+m = −sd/20 f0Em−1
1 h̃(h̃2

+ h̃2
c )

−1/2,

rnp+m = βΦ̃(0)

−f0 + f0HcEm−1

2 + c(0)20 H3ϕ
−1/2
0 w

(0)
12 E

m−1
3


,

unp+m = (βΦ̃(0))2

ϕ0 + f0Hcϕ

1/2
0 w

(0)
21 E

m−1
2 + c(0)20 H3Em−1

3


,

wnp+m = (βΦ̃(0))3

ψ0 + f0Hcϕ0w

(0)
31 E

m−1
2 + c(0)20 H3ϕ

1/2
0 w

(0)
32 E

m−1
3


(29)

obtained on the basis of Eqs. (10) and (18). We arrive at the following expressions:

hnp+m = h(0)np+m


1 + h̄(1)np+mc

(0)
20 H3


,

h(0)np+m =
√
6

q̄ − f0 + f0HcEm−1
2

(ϕ0 + f0Hcϕ
1/2
0 w

(0)
21 E

m−1
2 )1/2

,

h̄(1)np+m = Em−1
3


ϕ

−1/2
0 w

(0)
12

q̄ − f0 + f0HcEm−1
2

−
1
2

1

ϕ0 + f0Hcϕ
1/2
0 w

(0)
21 E

m−1
2


;

αnp+m = α
(0)
np+m


1 + ᾱ

(1)
np+mc

(0)
20 H3


,

α
(0)
np+m =

√
6

15
ψ0 + f0Hcϕ0w

(0)
31 E

m−1
2

(ϕ0 + f0Hcϕ
1/2
0 w

(0)
21 E

m−1
2 )3/2

, (30)

ᾱ
(1)
np+m = Em−1

3


ϕ

1/2
0 w

(0)
32

ψ0 + f0Hcϕ0w
(0)
31 E

m−1
2

−
3
2

1

ϕ0 + f0Hcϕ
1/2
0 w

(0)
21 E

m−1
2


.

In contrast to Hc , the quantity H3 in expressions (30) for hnp+m and αnp+m as well as in expression (21) for Fs takes on small
valueswith the variation of the field h̃ (see Fig. 1). The quantityHc at h̃ → 0 andnear h̃c is close to unity and series expansions
in Hc are not effective here.

Power series in small deviations (hnp+m − h(0)np+m) and (αnp+m − α
(0)
np+m) for the special functions appearing in the

expressions for the intermediate arguments

ηnp+m = (6sd)1/2F2(hnp+m, αnp+m)

C(hnp+m, αnp+m)

−1/2
,

ξnp+m =

√
6

15
s−d/2N(hnp+m, αnp+m)


C(hnp+m, αnp+m)

−3/2 (31)

allow us to find the relations

ηnp+m = η
(0)
np+m


1 −


η̄
(np+m)
1 h(0)np+mh̄

(1)
np+m + η̄

(np+m)
2 α

(0)
np+mᾱ

(1)
np+m


c(0)20 H3


,

ξnp+m = ξ
(0)
np+m


1 −


ξ̄
(np+m)
1 h(0)np+mh̄

(1)
np+m + ξ̄

(np+m)
2 α

(0)
np+mᾱ

(1)
np+m


c(0)20 H3


. (32)

The quantities η(0)np+m, η̄
(np+m)
1 , η̄(np+m)

2 and ξ (0)np+m, ξ̄
(np+m)
1 , ξ̄

(np+m)
2 are functions of F∗(np+m)

2l = I∗(np+m)
2l /I∗(np+m)

0 , where

I∗(np+m)
2l =

∫
∞

0
x2l exp(−h(0)np+mx

2
− x4 − α

(0)
np+mx

6) dx. (33)
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Fig. 1. Dependence of quantities Hc and H3 on the ratio h̃/h̃c for the RG parameter s = s∗ = 2.7349 and the reduced temperature τ = 10−4 .

Proceeding from expression (27) for fLGR1(m), we can now write the following relation accurate to within H3:

fLGR1(m) = f (0)LGR1
(m)+ f̄ (1)LGR1

(m)c(0)20 H3,

f (0)LGR1
(m) = ln


2
π


+

1
4
ln 24 −

1
4
ln C(η(0)np+m, ξ

(0)
np+m)+ ln I0(h

(0)
np+m+1, α

(0)
np+m+1)+ ln I0(η

(0)
np+m, ξ

(0)
np+m),

f̄ (1)LGR1
(m) = ϕ

(np+m)
1 h(0)np+mh̄

(1)
np+m + ϕ

(np+m)
2 α

(0)
np+mᾱ

(1)
np+m

+ϕ
(np+m+1)
3 h(0)np+m+1h̄

(1)
np+m+1 + ϕ

(np+m+1)
4 α

(0)
np+m+1ᾱ

(1)
np+m+1,

ϕ
(np+m)
k = b(np+m)

k + P (np+m)
4k /4, k = 1, 2,

ϕ
(np+m+1)
3 = −F∗(np+m+1)

2 , ϕ
(np+m+1)
4 = −F∗(np+m+1)

6 . (34)

The quantities b(np+m)
k , P (np+m)

4k depend on F∗(np+m)
2l as well as on F∗∗(np+m)

2l = I∗∗(np+m)
2l /I∗∗(np+m)

0 , where

I∗∗(np+m)
2l =

∫
∞

0
x2l exp(−η(0)np+mx

2
− x4 − ξ

(0)
np+mx

6) dx. (35)

The final result for F (1)LGR [see Eqs. (27) and (34)] assumes the form

F (1)LGR = −kTN ′s−3(np+1)

f̄ (0)TR + f̄ (1)TR c(0)20 H3


,

f̄ (0)TR =

m̃0−
m=0

s−3mf (0)LGR1
(m),

f̄ (1)TR =

m̃0−
m=0

s−3m f̄ (1)LGR1
(m). (36)

On the basis of Eqs. (26) and (30), it is possible to obtain the quantity m̃′

0 determining the summation limit m̃0 in formulas
(36):

m̃′

0 =
ln L0 − lnHc

ln E2
+ 1,

L0 = A1 + (A2
1 − A2)

1/2,

A1 = 1 −
q̄
f0

+
A2
0ϕ

1/2
0 w

(0)
21

12f0(1 − s−3)2
,

A2 = 1 − 2
q̄
f0

+


q̄
f0

2

−
A2
0ϕ0

6f 20 (1 − s−3)2
. (37)

Let us now calculate the contribution to the free energy of the system from long-wave modes in the range of wave vectors

k ≤ B′s−n′
p ,

n′

p = np + m̃0 + 2 (38)

using the Gaussian measure density.
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3.3. Region of small values of wave vector (k → 0)

The free energy component

F (2)LGR =
1
2
kT

Nn′
p
ln P

(n′
p−1)

2 +

Bn′p−
k=0

ln d̃n′
p
(k)−

N(h′)2

d̃n′
p
(0)

 (39)

corresponding to Z (2)LGR from Eq. (25) is similar to that presented in Refs. [5,9,29]. The calculations of the first and second terms
in Eq. (39) are associated with the calculations of the quantities

P
(n′

p−1)
2 = 2hn′

p−1F2(hn′
p−1, αn′

p−1)

dn′

p−1(Bn′
p
, Bn′

p−1)
−1

,

d̃n′
p
(k) =


P
(n′

p−1)
2

−1
+ βΦ̃(Bn′

p
, Bn′

p−1)− βΦ̃(k), (40)

where

dn′
p−1(Bn′

p
, Bn′

p−1) = s−2(n′
p−1)(rn′

p−1 + q), (41)

and rn′
p−1, hn′

p−1 = h(0)n′
p−1


1 + h̄(1)n′

p−1c
(0)
20 H3


, αn′

p−1 = α
(0)
n′
p−1


1 + ᾱ

(1)
n′
p−1c

(0)
20 H3


satisfy the corresponding expressions from

Eqs. (29) and (30) atm = m̃0 + 1.
Introducing the designation

p = hn′
p−1F2(hn′

p−1, αn′
p−1) (42)

and presenting it in the form

p−1
= p0(1 + p̄1c

(0)
20 H3), (43)

we obtain the following relations for the coefficients:

p0 =


h(0)n′

p−1p
(n′

p−1)
20

−1
,

p̄1 = −h̄(1)n′
p−1


1 − p

(n′
p−1)

21 h(0)n′
p−1


+ p

(n′
p−1)

22 α
(0)
n′
p−1ᾱ

(1)
n′
p−1. (44)

The quantities

p
(n′

p−1)
20 = F

∗(n′
p−1)

2 , p
(n′

p−1)
21 =

F
∗(n′

p−1)
4

F
∗(n′

p−1)
2

− F
∗(n′

p−1)
2 ,

p
(n′

p−1)
22 =

F
∗(n′

p−1)
8

F
∗(n′

p−1)
2

− F
∗(n′

p−1)
6 (45)

determine the function

F2(hn′
p−1, αn′

p−1) = p
(n′

p−1)
20


1 −


p
(n′

p−1)
21 h(0)n′

p−1h̄
(1)
n′
p−1 + p

(n′
p−1)

22 α
(0)
n′
p−1ᾱ

(1)
n′
p−1


c(0)20 H3


. (46)

Here F
∗(n′

p−1)
2l = I

∗(n′
p−1)

2l /I
∗(n′

p−1)
0 , where

I
∗(n′

p−1)
2l =

∫
∞

0
x2l exp(−h(0)n′

p−1x
2
− x4 − α

(0)
n′
p−1x

6) dx. (47)

Taking into account Eqs. (41) and (43), we rewrite formulas (40) as

P
(n′

p−1)
2 =


1
2
s−2(n′

p−1)βΦ̃(0)p0(q̄ − f0 + f0HcE
m̃0
2 )


1 +


ϕ

−1/2
0 w

(0)
12 E

m̃0
3

q̄ − f0 + f0HcE
m̃0
2

+ p̄1


c(0)20 H3

−1

,

d̃n′
p
(k) = s−2(n′

p−1)βΦ̃(0)G̃ + 2βΦ̃(0)b2k2,

G̃ = g0(1 + ḡ1c
(0)
20 H3),

g0 =
1
2


(−f0 + f0HcE

m̃0
2 )p0 + (p0 − 2)q̄


,

ḡ1 =
1
2
p0
g0


p̄1(q̄ − f0 + f0HcE

m̃0
2 )+ ϕ

−1/2
0 w

(0)
12 E

m̃0
3


. (48)
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The second term in Eq. (39) is defined by the expression

1
2

Bn′p−
k=0

ln d̃n′
p
(k) = Nn′

p


1
2
ln(G̃ + s−2)+ ln s − n′

p ln s +
1
2
ln(βΦ̃(0))

−
1
3

+ G̃s2 − (G̃s2)3/2 arctan

(G̃s2)−1/2


. (49)

Relations (48) and (49) make it possible to find the component F (2)LGR in the form

F (2)LGR = −kT
[
N ′s−3(np+1)(f̄ (0)

′

+ f̄ (1)
′

c(0)20 H3)+
N(h′)2γ̄+

4

βΦ̃(0)
s2(np+1)(1 − ḡ1c

(0)
20 H3)

]
,

f̄ (0)
′

= s−3(m̃0+1)f (0), f̄ (1)
′

= s−3(m̃0+1) f̄ (1),

f (0) = −
1
2
ln

s−2

+ g0
g0 + q̄


+

1
3

− g ′

0


1 −


g ′

0 arctan


1
g ′

0


,

f̄ (1) =
1
2


g0ḡ1
g0 + q̄

−
ḡ1

(g ′

0)
−1 + 1

−
g ′

0ḡ1
(g ′

0)
−1 + 1


−g ′

0ḡ1


1 −

3
2


g ′

0 arctan


1
g ′

0


,

g ′

0 = s2g0, γ̄+

4 = s2m̃0/(2g0). (50)

On the basis of Eqs. (36) and (50), we can write the following expression for the general contribution FLGR = F (1)LGR + F (2)LGR to
the free energy of the system from long-wave modes of spin-moment density oscillations:

FLGR = −kT
[
N ′s−3(np+1)(f̄ (0)LGR + f̄ (1)LGRc

(0)
20 H3)+

N(h′)2γ̄+

4

βΦ̃(0)
s2(np+1)(1 − ḡ1c

(0)
20 H3)

]
,

f̄ (l)LGR = f̄ (l)TR + f̄ (l)
′

, l = 0, 1. (51)

4. Total free energy of the system at T > Tc

The total free energy of the system is calculated taking into account Eqs. (14), (21) and (51). Collecting the contributions
to the free energy from all regimes of fluctuations at T > Tc in the presence of an external field and using the relation for
s−(np+1) from Eq. (18), we obtain

F = −kTN
[
γ ′

0 + γ ′

1τ + γ ′

2τ
2
+ (γ̄

(0)+
3 + γ̄

(1)+
3 c(0)20 H3)(h̃2

+ h̃2
c )

3/5
+
γ̄+

4 (h
′)2

βΦ̃(0)
(1 − ḡ1c

(0)
20 H3)(h̃2

+ h̃2
c )

−2/5
]
,

γ ′

0 = ln 2 + s−3
0 γ

(CR)
0 , γ ′

1 = s−3
0 γ1, γ ′

2 = s−3
0 γ2,

γ̄
(l)+
3 = s−3

0 (−γ̄
(CR)(l)+
3 + f̄ (l)LGR), l = 0, 1. (52)

The coefficients γ (CR)0 , γ1, γ2 are defined by Eq. (23), ḡ1 is presented in Eq. (48) and γ̄+

4 is given in Eq. (50). The coefficients
of the non-analytic component of the free energy F [see Eq. (52)] depend on Hc . The terms proportional to H3 determine the
confluent corrections by the temperature and field. As is seen from the expression for F , the free energy of the system at
h̃ = 0 and τ̃ = 0, in addition to terms proportional to τ̃ 3ν (or h̃6/5

c ) and h̃6/5, contains the terms proportional to τ̃ 3ν+∆1 and
h̃6/5+∆1/p0 , respectively. At h̃ ≠ 0 and τ̃ ≠ 0, the terms of both types are present. It should be noted that ∆1 > ∆1/p0. At
h̃ = h̃c , we have τ̃ 3ν+∆1 = h̃6/5+∆1/p0 and the contributions to the thermodynamic characteristics of the system from both
types of corrections become of the same order.

When h ≠ 0 (or h̃ ≠ 0), the order parameter of the system is nonzero both for τ > 0 (or τ̃ > 0) and for τ < 0 (or τ̃ < 0),
and τ = 0 is not physically distinctive. The free energy for h ≠ 0 and τ → 0 (the strong-field region) has no singularity with
respect to τ and must therefore have an expansion in integral powers of this variable [or the scaling variable (h̃c/h̃)1/p0 ].
The concept of the weak field presupposes that τ ≠ 0. For a given nonzero value of τ , a zero field is not a singularity of the
thermodynamic functions. Hence the free energy for τ ≠ 0 and h → 0 (the weak-field region) can be expanded in integral
powers of the variable h [or h̃/h̃c ]. The mentioned series expansions in the scaling variables for the regions of the weak and
strong fields can be obtained using Eqs. (19) and (20), respectively.



5400 I.V. Pylyuk, M.P. Kozlovskii / Physica A 389 (2010) 5390–5401

The advantage of the method presented in this article is the possibility of deriving analytic expressions for the free-
energy coefficients as functions of the microscopic parameters of the system (the lattice constant c and parameters of the
interaction potential, i.e., the effective radius b of the potential, the Fourier transform Φ̃(0) of the potential for k = 0).

5. Conclusions

An analytic method for calculating the total free energy of a 3D Ising-like system (a 3D uniaxial magnet) near the critical
point is developed on the microscopic level in the higher non-Gaussian approximation based on the sextic distribution for
modes of spin-moment density oscillations (the ρ6 model). The simultaneous effect of the temperature and field on the
behaviour of the system is taken into account. An external field is introduced in the Hamiltonian of the system from the
outset. In contrast to previous studies on the basis of the asymmetric ρ4 model [30,31,40], the field in the initial process of
calculating the partition function of the system is not included in the Jacobian of transition from the set of spin variables to
the set of CV. Such an approach leads to the appearance of the first, second, fourth and sixth powers of CV in the expression
for the partition function and allows us to simplify the mathematical description because the odd part is represented only
by the linear term. In the case of another approach when the field is included in the transition Jacobian, themeasure density
involves the odd powers of CV in addition to the even powers. The coefficients (which proportional to different powers of
the field) and RR for the asymmetric ρ6 model have already been considered in Ref. [41].

The theory is being built ab initio beginning from the Hamiltonian of the system up to the expression for the free energy.
Themain distinctive feature of the proposedmethod is the separate inclusion of the contributions to the free energy from the
short- and long-wave spin-density oscillation modes. The generalized point of exit of the system from the critical regime
contains both temperature and field variables. The form of temperature and field dependences for the free energy of the
system is determined by solutions of RR near the fixed point. The expression for the free energy F obtained at temperatures
T > Tc without using power series in the scaling variable and without any adjustable parameters can be employed in the
field regionnear h̃c (the crossover region between the so-calledweak and strong external fields). The limiting field h̃c satisfies
the condition of the equality of sizes of the critical-regime region by the temperature and field (the effect of the temperature
and field on the system in the vicinity of the critical point is equivalent) [30,31,37,40]. The interesting crossover region is
difficult for the analytic treatment since the scaling variable calculated here is of the order of unity and power series in this
variable are not effective. We hope that the proposed method as well as our analytic representations may provide useful
benchmarks in studying the effect of an external magnetic field on the critical behaviour of 3D Ising-like systems within the
framework of the higher non-Gaussian approximation. Proceeding from the expression for the free energy, which involves
the leading terms and the terms determining temperature and field confluent corrections, we can find other thermodynamic
characteristics (the average spinmoment, susceptibility, entropy and specific heat) by direct differentiation of F with respect
to field or temperature.
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