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The approach is based on a short range Yukawa reference which incorporates, in addition to repulsive
interactions, also attractive interactions at short separations. The considered models of common interest
are the Sutherland, Lennard-Jones, and EXP6 fluids. It is shown that using the proposed approach the
reference system captures a good deal of properties of the studied fluids and that an accurate equation
of state can be obtained using only the crude mean field (augmented van der Waals) approach.
ugmented van der Waals
ukawa fluid

. Introduction

The idea that matter is made up of certain microscopic objects
called atoms or molecules nowadays) which are subject to their

utual interactions was at the time of van der Waals only emerging
nd several decades away from general acceptance [1]. Nonethe-
ess, van der Waals was convinced that such particles did exist,

ere real material objects and had thus to have a certain volume.
sing then simple physical arguments and intuition he derived his

amous ‘van der Waals’ (vdW) equation of state [2]. The vdW equa-
ion provides a qualitatively correct description of the fluid phase,
.e., it yields the critical point and vapor–liquid (L–V) equilibrium
nvelope but for practical applications is too crude. This would not
ave been a problem if the equation had been developed within
ny statistical mechanical scheme so that it would have been clear
ow to improve its performance. With respect to its purely spec-
lative nature and lack of any understanding of behavior of fluids
t the molecular level, the vdW equation was viewed as an inter-

sting and successful attempt without any deeper understanding
nd a chance to systematically improve it. Nonetheless, it formed a
ertain basis for developing dozens of empirical equations of state
EOS) used in engineering applications.

Abbreviations: EOS, equation of state; EXP6, Buckingam potential LJ Lennard
ones; MSA, mean spherical approximation; HS, hard sphere; HTE, high temperature
xpansion; PY, Percus Yevick; S, Sutherland; vdW, van der Waals; V–L, vapor–liquid;
general, notation for the property of the system Y Yukawa; 1Y, one Yukava 2Y two
ukawas.
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oi:10.1016/j.supflu.2010.10.041
© 2010 Elsevier B.V. All rights reserved.

Only the development of molecular theories of fluids in the late
1960s, based primarily on results of computer simulations, made it
possible to put the vdW equation on a firm theoretical basis by plac-
ing it into the framework of perturbation theories. It turns out that
the vdW equation is a perturbed hard sphere (HS) equation result-
ing from the first order perturbation theory using well defined (and
justified) approximations. This follows from molecular simulation
results performed on various simple fluid models which revealed
that their structure (and, in general, the structure of normal fluids)
is determined primarily by short range interactions. The straight-
forward interpretation of this finding was that it was the repulsive
interaction (i.e., excluded volume) which determined the struc-
ture of these fluids. This finding opened the way for non-empirical
improvements of the original vdW equation. Unfortunately, this
possibility has not been fully acknowledged by the engineering
community which continued stubbornly with purely empirical cor-
rections at the level of the original equation. A typical example is
adherence to the original vdW expression for the reference HS fluid
instead of using the simple but very accurate Carnahan–Starling
equation (cf., cubic equations of state). An excuse for the continuous
use of such equations may be only a technical reason: when deter-
mining the L–V equilibrium, roots of an algebraic cubic equation
would have to be determined numerically.

When a rigorous statistical mechanical expansion about a HS
reference is followed then the perturbation expansion must be

considered, in general, up to the second order if accurate results
for thermodynamic properties are to be achieved. The primary
reason is that, despite having a very similar structure, the ther-
modynamic properties of the HS fluid are significantly different
from those of more realistic fluids. The evident question is whether

dx.doi.org/10.1016/j.supflu.2010.10.041
http://www.sciencedirect.com/science/journal/08968446
http://www.elsevier.com/locate/supflu
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Nomenclature

a van der Waals coefficient
A Helmholtz free energy
B2 second virial coefficient
d hard core diameter
E internal energy
g radial distribution function
N number of particles
P pressure
r distance
rm position of the potential energy minimum in parent

fluid
u pair interaction
�u perturbation interaction
�X general notation for the perturbation correction to

system property

Greek letters
˛ softness parameter
ˇ inverse temperature
ε potential energy minimum in parent fluid
ε1 relative strength of the repulsion in a 2Y reference

fluid
ε2 relative strength of the attraction in a 2Y reference

fluid
� decay parameter for the attraction in a 1Y reference

fluid
�1 decay parameter for the repulsion in a 2Y reference

fluid
�2 decay parameter for the attraction in a 2Y reference

fluid
� chemical potential
� density
� zero of potential energy in parent and reference flu-

ids

Super/subscripts
att attraction
pert perturbation
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ref reference
rep repulsion

nother model, closer to the system of interest, could be used. For
nstance, the square-well (SW) fluid for the considered realistic
ennard–Jones (LJ) one. Such attempts were made but, for obvious
easons (e.g., the phase diagram of the LJ fluid cannot be superim-
osed on that of the SW fluid), without any success.

Considering the perturbation expansion for fluids in general and
ot only for normal fluids, it is evident that the concept of HS (hard
ody in general) reference cannot work. Extensive molecular sim-
lations performed in the 1990s on a variety of models, including
olar [3,4] and associating [5–8] fluids, showed that the structure
f fluids is determined primarily by short range interactions but
ffered also a more general interpretation: The structure of fluids
s determined by the short range part of the total interaction which

ay be both repulsive and attractive. This result justifies attempts
o consider the perturbed EOS about a more sophisticated refer-
nce system also for simple fluids and the only question is which

odel may be used to represent the short range interactions in a
anageable way.
To find such model one should first answer the question why the

S-based approach has been so successful. Not only because of the
vailability of accurate analytic results for the HS fluid properties,
l Fluids 55 (2010) 448–454 449

but primarily because of the flexibility of the HS fluid. The HS fluid
exists only in the fluid phase (i.e., it does not exhibit the L–V phase
transition) and this ‘defect’ makes it possible to change the hard
core diameter (and hence the packing density) over a large range
of values without imposing serious restrictions on the properties
of the considered system and tune thus the results to the wished
outcome.

The system that shares with the HS fluid similar properties is the
Yukawa (Y) fluid [9]. First, by varying its range parameter Y model
can be made short ranged and like HS model existing in a one fluid
phase only. Second, as regards available equations for the proper-
ties of the Y reference fluid, they also are comparable with those
for the HS reference fluid. An analytical treatment of the Y model
is available within the mean spherical approximation (MSA) [10]
that can be viewed as a counterpart of the common Percus–Yevick
(PY) theory in the case of the HS reference system (we remind in
passing that for the HS fluid the PY theory is identical to the MSA
theory). There are also analytic results for single Yukawa tail devel-
oped within the high temperature expansions (HTE) by Henderson,
Blum and Noworyta [11], Duh and Mier-y-Teran [12], and Shukla
[13] that make it possible to evaluate the thermodynamic proper-
ties (the free energy, equation of state and chemical potential) for
the Y fluid. By comparison with computer simulation data it has
been already shown [13] that the HTE equations work well within
broad density and temperature windows. It also possible to com-
bine several Yukawa terms to better reproduce variety of shapes
of various potential functions. Even in this case the HTE equations
have been developed recently by Guerin [14] for the sum of two
Yukawa (2Y) potentials and by Tang et al. [15] for the multi-Yukawa
potentials.

Having in mind all the above mentioned properties of the Y
fluid and, simultaneously, the problems of HS-based perturbation
methods at high temperatures, we have recently formulated a
perturbation theory with a short range Y reference [16–18]. A con-
sequence of this choice is that the reference system captures a good
deal of the properties of the considered fluid and the correction
terms in the perturbation expansion can be confined to the first
order only. Moreover, the mean field approximation can be used to
evaluate this term to obtain quite accurate results. In this paper we
present first the theoretical basis of the method in the next section
and the basic formulas of the augmented vdW approach in Section
3. Results of the method obtained for selected model fluids are then
shown and discussed in Section 4.

2. General considerations

To keep the theoretical part as general as possible, we con-
sider an arbitrary simple pairwise additive intermolecular potential
model u(r). Given the potential u, the perturbation expansion
method proceeds then formally as follows:

1. u is first decomposed into a reference part, uref, and a perturba-
tion part, upert,

u(r) = uref(r) + upert(r) (1)

The decomposition is not unique and is governed by both phys-
ical and mathematical considerations. This is the crucial step
of the method that determines convergence (physical consid-
erations) and feasibility (mathematical considerations) of the

expansion.

2. The properties of the reference system (thermodynamics and
structure) must be estimated accurately and relatively simply
so that the evaluation of the perturbation terms is feasible (see
below).
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. Finally, property X of the original system is then estimated as

X = Xref + �X (2)

where �X denotes the contribution that has its origin in the per-
turbation potential upert. It is important to stress here that the
correction term �X is obtained as the average over the reference
system.

From the mathematical point of view, the perturbation the-
ry (expansion) is an expansion in powers of upert. Thus, intuition
ould tell us that the closer the reference potential uref is to the

riginal full potential, u, the faster convergence of the expansion
hould be achieved. However, such a choice would be evidently in
onflict with step (2) of the above scheme because the evaluation
f the properties of such a reference may be as difficult as of the
riginal one. It is easy to show that the actual form of the reference
otential is rather immaterial and that a much weaker condition
an do the job regardless of the (relative) magnitudes of the pertur-
ation part upert: A sufficient condition for the convergence of the
erturbation expansion is a similarity (identity) of the short range
r, in other words, of the local structure of the full and reference flu-
ds [19,20]. The entire problem of the perturbation theory reduces
hen to finding an appropriate model for the reference system, i.e.,
he model that (i) is simple enough to comply with requirement (2)
nd, simultaneously, (ii) whose structure would be (nearly) iden-
ical to that of the fluid of interest (referred to as the parent fluid
enceforth).

To satisfy the above requirement, besides the repulsive inter-
ction part a piece of the attractive interaction must also be
ncorporated into the reference system. To this end, the interac-
ion must be classified by its range (radius of interaction) rather
han its strength/intensity. It is exactly this reason which makes
he Y potential a natural candidate for the reference system: it is
ery convenient to tune its radius of interaction.

When considering the Y fluid as the reference, it is convenient
o distinguish two types of fluid models of interest or parent fluid

odels to which it can be applied. The first type includes the class of
uid models whose repulsive interaction is purely HS repulsion. An
xample of such models are the Sutherland fluid and the medium
nd long-range Yukawa fluids. The second class consists of fluid
odels without any hard core at all. However, the hard-core repul-

ion can be embedded at some short separation without affecting
he properties of the original model (which, in fact, is the usual
ractice for purely computational reasons). Typical representatives
f such class of model fluids are the LJ and EXP6 (modified Buck-
ngham potential) models. The main distinction between the two
ypes of fluids is that only one Y term is sufficient to describe the
eference system in the former case of HS-based models while two
terms are necessary in the latter.

Namely, for the HS-based fluid models of interest we proposed
o use for the reference system the hard spheres plus attractive one
ukawa (1Y) potential of the form

1
ε

uref(r) ≡ 1
ε

u1Y(r) = ∞, r < d

= −d exp[−�(r − d)]/r , r ≥ d
(3)

here d is the hard-core diameter, �−1 determines the range of
n attractive tail while ε is the potential depth. Reference poten-
ial given by Eq. (3) is characterized by a so far unspecified decay
arameter � and potential depth parameter ε. The idea behind is
hat the potential depth ε in the reference fluid model is the same

s in the parent fluid, while value of � must yield the attraction
ange of uref(r) that is shorter than that of u(r). To be more specific,
o retain the flexibility of the 1Y fluid similar to that of the HS fluid,
he range of attraction �−1 should be smaller than one sixth of the
ard-core diameter to make the critical point in the 1Y fluid disap-
l Fluids 55 (2010) 448–454

pear [21]. Since for �d = 3 the 1Y fluid critical temperature nearly
coincides with the temperature of the LJ triple point, any 1Y fluid
with �d between 3 and 6 may thus be an acceptable choice for the
1Y reference in the studies of the LJ-like fluids.

In the case of fluid models of interest determined by continuous
potentials a two Yukawa (2Y) model must be used for the reference,

1
ε

uref(r) ≡ 1
ε

u2Y(r) = ε1
rm

r
exp[−�1r] − ε2

rm

r
exp[−�2r], (4)

where rm is the location of the potential minimum of the parent
fluid model (e.g., LJ or EXP6) and ε is its depth. In what follows all
distances and length parameters are measured relative to rm while
ε is used as the energy unit. The parameters ε1 > 0 and ε2 > 0 are
the relative strengths of the repulsive and attractive contributions,
respectively, and �−1

1 and �−1
2 are the measures of the range of the

corresponding tails of the 2Y reference fluid. To specify the 2Y ref-
erence, a relation between the parent fluid and the 2Y fluid must be
established. The 2Y potential contains four parameters. Three con-
ditions seem evident: the coincidence of the location rm and depth
ε of the potential minimum of uref(r) and u(r) functions,

u2Y(r = rm) = u(r = rm) = −ε, (5)

du2Y(r)
dr

|r=rm = du(r)
dr

|r=rm = 0 , (6)

and the location of the potential zero at r = � in both parent and
reference potential functions,

u2Y(r = �) = u(r = �) = 0 . (7)

Then there remains to impose one more condition on the 2Y
potential parameters to complete the set of equations. When doing
this one should realize that the goal is not to approximate the given
potential model u by a 2Y potential but to use the latter model as a
convenient (more appropriate) reference. And this should be done
without any a priori reference to the properties of the parent fluid.
This goal can be achieved in a number of ways. One such possibility
is to argue within the spirit of perturbation theories and impose
the condition that the second virial coefficients, B2, of the parent
and 2Y fluids, calculated for their repulsive parts only, be as close
as possible one to another over a wide range of temperatures. This
will further enhance the physical identity of the repulsive interac-
tions in the parent and reference fluids. If necessary, one can also be
more specific and account for some specific features of the poten-
tial curve. For instance, for the LJ fluid the coincidence of the LJ
and 2Y curves in the inflection point of their attractive part may
be imposed. The inflection point of the repulsive part of the EXP6
potential can be used similarly. Details of these specific choices are
given in Section 4.

3. Augmented van der Waals equation

Provided that the intermolecular potential u(r) of the parent
fluid can be written in the form given by Eq. (1), a route to the
augmented vdW equation of state (EOS) goes via the expansion of
the Helmholtz free energy A in powers of ˇupert (denoted further
as �u for simplifying the notation) [22,23],

ˇA = ˇAref + ˇ〈�U〉ref + · · ·

= ˇAref + 2�ˇ�N

∫
gref(r)�u(r)r2dr + · · · (8)
= ˇAref − Nˇ�a(T, a) + · · · (9)

where ˇ = 1/kBT, kB is the Boltzmann constant and T is the absolute
temperature, �U is the total contribution of pair energies �u ≡ upert

to the total internal energy, 〈· · ·〉 denotes canonical averaging, N is
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Fig. 1. Pair interaction in the case of the hard-core parent fluid model and its decom-
position into the reference uref and perturbation upert terms. Part (a) shows the parent
fluid model u (thick solid line) and two possible reference fluid models – HS model
and 1Y model. Part (b) corresponds to the case of the HS reference fluid and shows
the perturbation interaction upert ≡ �u(r) for this case and the radial distribution
function gref(r) of the HS reference system. Part (c) shows the same as part (b) but
for the case of the 1Y reference fluid.
I. Nezbeda et al. / J. of Super

he number of molecules, � is the number density, and g is the radial
istribution function.

Since the potential energy minima in the reference and parent
uids are the same, neglecting the high order expansion terms in
9) is justified. Within the first order expansion the EOS assumes
hen the form

ˇP

�
= ˇPref

�
− ˇ�

[
a(T, �) + �

∂a(T, �)
∂�

]
, (10)

here P is the pressure. The correction function a(T, �) is obtained
y averaging over the structure of the reference system, i.e., from
he integral involving the reference radial distribution function
ref(r). In the simplest approximation, the mean field approach, it
s assumed that the molecules form a uniform background which
mplies that gref(r) ≈ 1. This is the route that leads to the augmented
dW approach. Assuming gref(r) to be a uniform is rather crude
pproximation if the reference system is made up of hard spheres,
.e. in the case of the common vdW/HS approach. However, as it

ill be shown in the next section, the uniformity approximation
s fully justified if a more sophisticated Yukawa reference system
s chosen, i.e. in the case of the proposed vdW/Y approach. Thus,
sing mean field approximation, Eq. (10) simplifies to

ˇP

�
= ˇPref

�
− ˇ�a, (11)

here a is an easily evaluated constant,

= −2�

∫
�u(r)r2 dr. (12)

All other thermodynamic quantities can then be written in a
imilar way, e.g., the Helmholtz free energy, A,

ˇA

N
= ˇAref

N
− ˇ�a . (13)

he internal energy E,

ˇE

N
= ˇEref

N
− ˇ�a . (14)

nd the chemical potential �,

� = ˇAref

N
+ ˇPref

�
− 2ˇ�a . (15)

. Results and discussion

To demonstrate usability of the presented approach for deriving
OS, we consider two kinds of model systems, namely, one with the
urely HS repulsion and the other with a soft repulsion. Although
he ultimate goal of the theory is an analytic EOS, we focus here
rimarily on the methodology to show that the proposed vdW/Y
pproach may yield better results than the vdW/HS. For this reason
n some cases we will also use, in addition to analytic results, also
imulation data for the reference fluid to check an accuracy of the
dW/Y approach.

.1. The hard-core parent fluids

There is only a few HS-based simple fluid models that have
een intensively studied over past decades. Most popular among
hem are the Yukawa fluid of the medium range (decay parameter
d = 1.8) [24] and Yukawa fluid of the long range (decay parameter

d ≤ 1) [25], and the Sutherland fluid [27,26]. We focus here only
n the Sutherland (S) fluid defined by the potential

1
ε

u(r) ≡ 1
ε

uS(r) =
{

∞, if r < d,

−(d/r)6, if r ≥ d,
(16)
where d is the hard-core diameter of the particles, ε is the potential
depth.

Following the methodology outlined in Section 2 we choose the
1Y model fluid, Eq. (3), with �d = 5 as the reference. In Fig. 1 we
show the perturbation potential upert = uS − uHS for the case of the
HS reference

1
ε

upert(r) = 0, r < d
(17)
= − d

r6
, r ≥ d
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ig. 2. Compressibility factor of the S fluid at two temperatures as indicated at the
urves. Symbols correspond to the computer simulation data of Diez et al. [26], thick
olid lines show results of the vdW/Y approach, and thin solid lines – results of the
dW/HS approach.

nd upert = uS − u1Y for the case of the 1Y reference

1
ε

upert(r) = 0, r < d

= − d

r6
+ d

r
exp[−5(r/d − 1)], r ≥ d.

(18)

As we can see from the figure, the inclusion into the reference
art of the short range attraction of the same energy minimum ε
s in the parent fluid, makes the perturbation interaction upert(r)
ery weak at the short and intermediate distances r. In particu-
ar, the perturbation term is exactly zero at the hard-core contact
/d = 1, i.e., upert(r = d) = 0. It means that the perturbation poten-
ial upert(r) ≡ �u(r) contributes to the correction term a, Eq. (12),
rimarily at larger separations where the radial distribution func-
ion gref(r) fluctuates around unity. Consequently, the mean field
pproximation, gref(r) ≈ 1 is fully justified in the case of 1Y reference
uid. On contrary, when the HS fluid is employed as the reference
ystem then the perturbation interaction upert(r) is composed of
he entire attraction energy uS(r) and is the strongest at the hard-
ore contact r = d. Indeed, it has been already shown that with the
S reference the perturbation expansion in the case of the S fluid
ust be considered to the second order to obtain reasonably accu-

ate results for the thermodynamic functions [26]. The same applies
lso to the results for the L–V phase diagram of the S fluid [27].

When evaluating thermodynamic properties, both augmented
dW approaches have been followed, i.e., using the HS refer-
nce (referred to as the vdW/HS) and the 1Y reference (vdW/Y).
he properties of the HS reference have been obtained from the
arnahan–Starling equation [28], for the 1Y reference from the
TE equations [12]. The compressibility factor P/�kT for selected

sotherms are shown in Fig. 2. As it is seen from this figure, per-
ormance of the vdW/HS approach for thermodynamic properties
s not satisfactory with increasing density and, especially, when
emperature decreases towards the triple point temperature. On
ontrary, the proposed vdW/Y theory works well for all considered
ensity and temperature conditions. Some small discrepancies can
e noticed at very high densities and very low temperatures only.

he failure of the vdW/HS theory is even more evident when it is
pplied to the calculations of L–V equilibrium, see Fig. 3. Although
he performance of the vdW/Y is not perfect, it is both quantita-
ively and qualitatively significantly better than the predictions of
he traditional vdW/HS theory. It is also worth mentioning that
Fig. 3. Liquid–vapor coexisting envelope of the S fluid. Symbols correspond to com-
puter simulation data of Camp [27], thick solid lines show results of the vdW/Y
approach, and thin solid lines – results of the vdW/HS approach.

the liquid–vapor envelope obtained within the vdW/Y approach is
nearly of the same accuracy as that reported for the S fluid within
the second-order thermodynamic perturbation theory by Camp
[27] (e.g., see Fig. 7 in Ref. [27]).

4.2. Parent fluid with continuous potentials

Typical examples of this type of fluids are the LJ and EXP6 poten-
tial models. Whereas in the case of LJ fluid a number of methods
and results are available, to derive analytic expressions for the EXP6
fluid model is not a trivial task and we will therefore focus only on
this model also called a modified Buckingham potential,

1
∈ u(r) ≡ 1

∈ uEXP6(r) = ∞for r < rmax

= 1
˛ − 6

[
6 exp

[
˛

(
1 − r

rm

)]
− ˛

(
rm

r

)6
]

for r > rmax

(19)

where rm is the location of the potential minimum and ε is the
depth of the minimum. Parameter ˛ (usually chosen within the
range 11–15) determines the softness of repulsion: the repulsion
becomes softer with decreasing ˛. In this study we choose the val-
ues of ˛ = 11.5.

To determine the 2Y reference for the EXP6 fluid we have fol-
lowed the methodologies outlined in Section 2. Additionally, we
have employed the best fit of the virial coefficients of the respective
repulsive parts of the urep

2Y and urep
EXP6 potentials

urep(r) = u(r) + ε for r < rm

= 0 for r > rm.
(20)

over a wide range of temperatures, 1 < T* < 20. The defined
in such a way parameters of the descending 2Y potential
are: ε1 = 15026.860731, �1rm = 9.454846, ε2 = 227.606845 and
�2rm = 4.649829.

Fig. 4 shows the decomposition of the total pair interaction into
a reference and perturbation parts in the case of parent fluid with
continuous potential. It is supposed that resulting 2Y potential
function reproduces the repulsive part of the EXP6 including the

region of potential minimum (Fig. 4a), consists of an attractive tail
that slightly differs at the intermediate separations from the attrac-
tive tail in the EXP6 potential. Namely, the 2Y attraction decays
faster, i.e. the u2Y(r) potential is of a shorter range as it is required
for the reference potential. As a check of the quality of such a map-
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Fig. 4. Pair interaction in the case of the parent fluid model with a continuous poten-
tial and its decomposition into the reference uref and perturbation upert terms. Part
(a) shows the parent fluid model u (thick solid line) and two possible reference fluid
m
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t
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c
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T
C
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Table 2
Computer simulation data for the pressure P∗ = Pr3

m/ε of the EXP6 and 2Y fluid
models and the pressure difference 
P = PEXP6 − P2Y.

T* �* EXP6 2Y �P* −{p*)2a

2.0 1.4 12.95 ± 0.2 14.933 ± 0.001 −1.983 −1.883
1.6 24.73 ± 0.3 27.052 ± 0.002 −2.322 −2.460
1.8 43.22 ± 0.1 45.824 ± 0.004 −2.604 −3.114
2.0 70.28 ± 0.1 73.045 ± 0.006 −2.765 −3.844

15.0 2.4 294.4 ± 0.5 295.94 ± 0.01 −1.54 −5.536
3.2 722.0 ± 1.0 721.02 ± 0.02 0.96 −9.841
3.6 1048.8 ± 2.1 1047.63 ± 0.03 1.17 −12.454
4.0 1466.0 ± 3.0 1464.90 ± 0.03 1.1 −15.376
4.4 1978.0 ± 4.0 1982.75 ± 0.05 −4.75 −18.605

Table 3
Pressure, Patt = P − Prep, of the 2Y and EXP6 fluids, obtained as the difference between
computer simulation data for the full potential and for only repulsive part of corre-
sponding potential.

T* �* patt
PEXP6 Patt

2Y Patt
EXP6 − Patt

2Y −(�∗)2a

in Table 2 as well, indicate that these differences can be easily han-
dled within an augmented vdW/Y approach, similarly as we did it in
the case of the S fluid. We note, that deviations between computer
simulation data for the pressure difference �P = PEXP6 − P2Y and the

1000 T
*
= 15
odels – HS model and 2Y model. Part (b) corresponds to the case of the HS ref-

rence fluid and shows the perturbation interaction upert ≡ �u(r) for this case and
he radial distribution function gref(r) of the HS reference system. Part (c) shows the
ame as part (b) but for the case of the 2Y reference fluid.

ing, the thermodynamic properties of the only repulsive EXP6 and

nly repulsive 2Y fluids have been evaluated with the result that
hey are practically identical although some discrepancies, espe-
ially, for the pressure at higher temperatures and densities still
xist (see Table 1). Evidently, the HS reference system is a very

able 1
omputer simulation data for the pressure P∗ = Pr3

m/ε of the purely repulsive 2Y
nd EXP6 model fluids.

T* �* Prep
PEXP6 Prep

2Y

2.00 1.4 24.38 ± 0.01 24.28 ± 0.01
2.0 90.04 ± 0.01 89.01 ± 0.01

15.00 2.4 326.42 ± 0.01 321.87 ± 0.01
2.00 1.4 −11.43 ± 0.01 −9.347 ± 0.01 −2.083 −1.883
2.0 −19.76 ± 0.01 −15.965 ± 0.01 −3.795 −3.844

15.00 2.4 −32.02 ± 0.01 −25.93 ± 0.01 −6.09 −5.536

crude approximation for the EXP6 function. For comparison, the
perturbation potentials for the case of the HS reference (Fig. 4b)
and the 2Y reference (Fig. 4c) are shown as well. In contrast, the
2Y reference potential shows notable differences with parent fluid
potential at the intermediate and large separations only, resulting
in a rather weak perturbation term upert(r). As for the coefficient
a, in the case of the EXP6 fluid with ˛ = 11.5 it can be evaluated
analytically yielding the value a = 0.961εr3

m.
To assess the performance of the augmented vdW/Y approach

based on this 2Y reference two temperatures, T* = 2 and T* = 15, that
are within the temperature range encountered in the geochemical
applications are considered. Table 2 presents the computer simu-
lation data for the pressure of the parent EXP6 fluid and reference
2Y fluid. As expected the deviations at intermediate separations
between the EXP6 and 2Y potential functions lead to some differ-
ences, 
P, in the pressure of two fluids. Our estimates, −�2a, shown
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
10

100

T
*
= 2

Pr
m

3 /ε

density, ρr
m

3

Fig. 5. Pressure of the EXP6 fluid. Symbols correspond to computer simulation data
while solid lines represent the results of the vdW/Y approach based on computer
simulation data for the 2Y reference fluid model.
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nalytical prediction −�2a for this difference at higher temperature
* = 15 originates from the differences between repulsive interac-
ions urep

2Y and urep
EXP6 (see Table 1). Indeed, the results in Table 3

how that taking these differences into account makes the vdW/Y
pproach consistent with computer simulation data. Using com-
uter simulations data for the 2Y reference system, in Fig. 5 we
how that augmented van der Waals approach vdW/Y can be devel-
ped for EXP6 fluid. We can see, that the simulation data for the
ressure of the supercritical EXP6 fluid can be rather accurately
xpressed via coefficient a.

. Conclusions

The commonly used augmented vdW equations are based on
he hard sphere (hard body) primary contribution to the proper-
ies of fluids. This choice suffers from two defects: (i) inaccuracy
hen only one simple correction term is used, and (ii) limitation to

mbient and not too much elevated temperature range only. As
n attempt to remove these drawbacks we have formulated an
xpansion (augmented vdW EOS) about a reference system with
oft interactions which incorporates also the attractive interaction
t short separations. The method is based on the knowledge of the
ukawa fluid properties and its flexibility.

In this paper we have formulated the methodology of the
pproach and then presented its implementation in the case of
wo simple fluids. Particularly the application of the method to the
XP6 fluids extends the applicability of augmented vdW equations
o the region of supercritical conditions, i.e. the region where a spe-
ial theoretical treatment is required and the available results are
ither only in a numerical form or represent only empirical cor-
elations. The presented results clearly show that the suggested
pproach may provide a simple and yet quite accurate augmented
dW equation in analytic form able to perform over a very large
ange of thermodynamic conditions. In other words, to evaluate
hermodynamics for EXP6 fluids one needs to calculate (by simu-
ations or theoretically) the properties of 2Y fluid and then employ
hese data in augmented van der Waals theory.
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