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The study gives a decisive answer to the recently risen question about the type and origin of interaction
between spin vortices and spin vacancies in two-dimensional �2D� spin models. The approach is based on the
low-temperature approximation of the 2D XY model known as the Villain model and does not involve any
additional approximations, thus preserving the lattice structure. The exact form of the Hamiltonian describing
a system of topological charges and a vacant site supports the attractive type of interaction between the
vacancy and the charges. The quantitative difference between the characteristics of the vortex behavior in the
2D XY and Villain models due to the different energy of the vortex cores in the two models is pointed out. This
leads to a conclusion that the interaction between a vortex and a spin vacancy and between a vortex and the
antivortex differs quantitatively for small separations in the two mentioned models.
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I. INTRODUCTION

The term spin vortex has become common in theoretical
and experimental studies of magnetic materials. It is, in fact,
a particular case of a more general class of physical/
mathematical objects called topological defects,1–3

Although, strictly speaking, topological defects can be de-
fined only in terms of a continuous field, similar formations
can be observed in lattice spin models. Moreover, it is the
spin vortices that are responsible for the Berezinskii-
Kosterlitz-Thouless phase transition in the two-dimensional
�2D� XY model4–6 �or, speaking more generally, in classical
2D easy-plane magnets�.

Most of the theoretical studies of the vortex properties are
limited to the low-temperature continuum model proposed
by Kosterlitz and Thouless5 �KT model, hereafter�. However,
this approach obviously cannot give satisfactory results,
when essentially “discrete” phenomena, as the effects in-
duced by a spinless site, are studied. The lack of theoretical
studies regarding spin vortices on a lattice and the related
problem of spin vortex-spin vacancy interaction is the prin-
cipal motivation for the present work.

A. Spin vortices

The 2D XY model is usually defined as a system of two-
component spins Sr of unit length which states can be rep-
resented by a polar coordinate −�����: Sr
= �cos �r , sin �r�, placed at sites r of a square lattice, and
described by the Hamiltonian,

H2DXY = J �
�r,r��

�1 − cos��r − �r��� . �1�

Close enough to the ground state, we have �r−�r��0 or
�2� for neighboring sites r and r�.

Generally, considering two neighboring spins at sites r
and r�, one can encounter the two situations, 	�r−�r�	��
and 	�r−�r�	�� �the situation 	�r−�r�	=� can be ne-

glected�. In order to define spin vortices in the system under
consideration, let us introduce the lattice of sites R, dual to
the original lattice �the dual lattice is the set of all the centers
of elementary cells of the original lattice�, and consider only
those bonds �R ,R�� which intersect the bonds �r ,r�� of the
original lattice for which 	�r−�r�	��.

In order to consider the bonds of interest in a systematic
way, let us say that r= �x ,y�, r�= �x� ,y�� define the bond
�r ,r�� if r�= �x+a ,y� for a horizontal bond and r�= �x ,y
+a� for a vertical bond, where a is the lattice spacing. The
same rule is imposed for bonds of the dual lattice. Now, we
can ascribe to every bond �R ,R�� a direction defined by the
sign of �r−�r� of the intersected bond �r ,r��: �R→R�� if
�r−�r��� for a horizontal bond �R ,R�� or �r�−�r�� for a
vertical bond �R ,R��, and �R�→R� in the opposite case.
The introduced representation is unique for a given mi-
crostate of the spin system �the reverse statement is not true,
of course�.

The most basic structural unit that can be distinguished in
the representation we have built is a path L �either straight or
stepslike� connecting two sites of the dual lattice, formed by
one or several bonds connected together so that their direc-
tions comply with some general direction of the path. In the
most general case, that path can be either closed or not
closed.

While a closed path L represents a trivial situation, the
spin configuration with L starting and ending at different
sites of the dual lattice is of great interest and is called a
vortex-antivortex pair �it can be said that the vortex and the
antivortex are centered at the ends of the path L�. The above
concerns vortices with topological charges �1; pairs of vor-
tices with higher values of topological charge can be defined
in terms of several paths that start at the vortex and end at the
antivortex. Paths that start at the same site but end at differ-
ent sites correspond to clusters of vortices with different ab-
solute values of charge �for example, +2 and −1, −1�.

The regions around the vortex origins are characterized by
significant disorientation of spins and are called cores.7 Mod-
erate spin-wave excitations, when �r−�r��0, �2� every-
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where except for the vortex cores, cannot destroy the vortex-
antivortex pair unless the two defects annihilate at the same
point.

Short-range exchange forces between spins lead to long-
range effective interaction between vortices. The energy of
this interaction can be explicitly singled out in the Hamil-
tonian of the Villain model, and turns out to depend only on
the essentially inherent characteristic of the vortices called
topological charge.8 It will be shown that the logarithmic
asymptotic form, obtained by Villain for the attraction energy
of the vortex and the antivortex at large separations, in fact
holds sufficiently well on a lattice up to the smallest possible
separation of one lattice spacing a �if neglecting the subtle
anisotropy effects�.

On the contrary, the corresponding energy which we esti-
mate for the 2D XY model turns out to deviate from the
logarithmic law at small separations. In particular, our result
for the energy needed to create a vortex-antivortex pair is
approximately 6.6J �J is the coupling constant�, in contrast to
9.9J of the Villain model,8 and in reasonable agreement with
the recent results of Monte Carlo simulations.9,10 The details
of the results announced above can be found in Sec. II.

B. Spin vacancies

An aspect of the spin-vortex behavior, which only re-
cently drew attention of the researchers, is the effective in-
teraction with nonmagnetic inclusions in the lattice.11–13

Such spin vacancies are part of the models with quenched
disorder14–17 and the lattice-gas spin models.18,19 Here, we
will focus, however, not on the thermodynamic quantities but
on the effective Hamiltonian which describes the interaction
between spin vortices and vacancies.

To our knowledge, the first theoretical works devoted to
this problem demonstrated global deformation of the vortex
structure caused by a single vacancy and repulsive interac-
tion between the vortex origin and the vacancy.11,14 This re-
sult was essentially caused by an application of the KT con-
tinuum model which required representation of the vacancy
by a cutout of a finite size in the continuous spin field. Sub-
sequently, the same authors denied this nonphysical result,
on the basis of their spin dynamics simulations.13

The problem was resolved phenomenologically, postulat-
ing that the vacancy does not change the vortex structure �or
the change is negligible�.13 Under this assumption, the KT
theory led to the attractive interaction which agreed with the
results of computer simulations. However, this approach,
giving correct qualitative picture, was not able to describe
the particular details of the lattice under consideration.

In our study, based on the Villain model, we obtain the
effective Hamiltonian describing interaction between spin
vortices and spin vacancies on a square lattice.

For example, as it will be shown in this paper, the inter-
action energy for an individual vortex of topological charge
q at point R and a spin vacancy at r reads

E�	r − R	� = − �� − 1�
Jq2

	r − R	2
+ O�	r − R	−2� , �2�

i.e., the vacancy and the vortex attract each other.

Equation �2� is the asymptotic expression which in fact
holds well enough for separations as small as just a few
lattice spacings. It will be argued that in the 2D XY model
this energy differs considerably from Eq. �2� for small sepa-
rations 	r−R	. For example, the vortex-on-vacancy pinning
energy of the Villain model E�a�=−�3�−4�Jq2�−5.425Jq2,
in contrast to that of the 2D XY model observed in spin
dynamics simulations, −3.54J,13 and other numerical studies,
−3.178J.12 The details of the results announced here can be
found in Sec. III.

II. VORTICES IN THE VILLAIN AND 2D XY MODELS

A. Topological charges in the Villain model

Studying the low-temperature properties of the model �1�,
it would be natural to apply the spin-wave �harmonic� ap-
proximation �SWA�, i.e., to replace 1−cos��r−�r�� in Eq. �1�
with 1

2 ��r−�r��
2. Indeed, this allows to examine many impor-

tant properties of the low-temperature phase of this
model.20–22 However, the states with 	�r−�r�	��, which are
crucial when considering spin vortices, will have nonphysi-
cal energy in this case. So, the proper harmonic approxima-
tion must be

H2DXY �
J

2 �
�r,r��

��r − �r� − 2�m��r − �r���
2 �3�

with

m��r − �r�� = 
+ 1, �r − �r� � �

− 1, �r − �r� � − �

0, 	�r − �r�	 � � .
�

At low temperatures, m��r−�r�� can be considered as inde-
pendent degrees of freedom taking discrete values 0 , �1. In
turn, this leads to the Hamiltonian of the Villain model,8,23

H =
J

2 �
�r,r��

��r − �r� − 2�mr,r��
2 �4�

�obviously, mr,r�=−mr�,r�.
Assuming that

�r = �r + 	r, �5�

where �r and 	r are chosen so that 	�r−�r�	�� for any pair
of spins in the system, i.e., one can say that the field �r is
vortexless, and all the vortices are “contained” in 	r, the
Hamiltonian �4� can be written as

H =
J

2 �
�r,r��

���r − �r��
2 + �	r − 	r� − 2�mr,r��

2�

+ J�
r

�r�
u

�	r − 	r+u − 2�mr,r+u� �6�

with u= ��a ,0� , �0, �a� and lattice spacing a.
Following Villain,8 one can choose 	r��mr,r�
� such that

�r and 	r decouple in the Hamiltonian, i.e., the last term in
Eq. �6� vanishes,
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�
u

�	r − 	r+u − 2�mr,r+u� = 0 for all r . �7�

This is realized when

	r =
�

2 �
R

��m3,4 − m1,2�Isc�x − X,y − Y� + �m4,1 − m2,3�Isc�y

− Y,x − X� + �m1,2 − m2,3 + m3,4 − m4,1�Iss�x − X,y − Y�
 ,

�8�

�see Fig. 1� where R are sites of the dual lattice, which are
situated in the centers of elementary cells of the original
lattice, and functions Isc and Iss are given by Eqs. �A1� and
�A2�. �The asymptotic properties of Isc and Iss are analyzed
in Appendix A.� In fact, Eq. �8� is another way of presenting
the expression obtained by Villain.8

In Eq. �8�, the sum over R= �X ,Y� spans the sites of the
dual lattice while coordinate r represents a site of the origi-
nal lattice, therefore, X−x and Y −y can be always presented
as �2n−1� a

2 , where n is an integer. The short notation

Isc�ss���2n − 1�
a

2
,�2m − 1�

a

2
� � Isc�ss�

nm

will be helpful.
Due to the properties, Isc�−X ,Y�=−Isc�X ,Y�, Isc�X ,−Y�

= Isc�X ,Y�, Iss�−X ,Y�=−Iss�X ,Y�, and Iss�X ,Y�= Iss�Y ,X�, it
is enough to define Isc

nm and Iss
nm only for n ,m being positive

nonzero integers �natural numbers�, thus they can be pre-
sented as infinite matrices. In the thermodynamic limit, one
has �see Appendix A for the general expression�

Isc
nm =�

1

�

1

2
−

1

�

3

2
−

13

3�

11

2
−

17

�
. . .

−
3

2
+

5

�

1

3�
−

3

2
+

5

�
−

15

2
+

119

5�
. . .

−
15

2
+

71

3�

5

2
−

23

3�

1

5�

5

2
−

23

3�
. . .

−
77

2
+

121

�

35

2
−

823

15�
−

7

2
+

167

15�

1

7�
. . .

] ] ] ] �

� �9�

and

Iss
nm =�

1

2
−

1

�
1 −

3

�
5 −

47

3�
26 −

245

3�
. . .

1 −
3

�
−

1

2
+

5

3�
− 2 +

19

3�
− 13 +

613

15�
. . .

5 −
47

3�
− 2 +

19

3�

1

2
−

23

15�
3 −

47

5�
. . .

26 −
245

3�
− 13 +

613

15�
3 −

47

5�
−

1

2
+

167

105�
. . .

] ] ] ] �

� . �10�

Note that there was no reason for presenting Isc
nm and Iss

nm

as matrices, other than the convenient visualization.
We have found that the exact values of 	r, provided by

Eqs. �8�–�10� within the vortex core, are quite close to that of
its asymptotic form found by Villain,8

	r � �
R

qR
r�R� , �11�

where 
r�R� is the polar coordinate of point r in the coor-
dinate system with its origin at point R �the reference angles

� �

��

�R

1 2

34

�

�

�

�

FIG. 1. Plaquette of sites 1, 2, 3, and 4 of the initial lattice
adjacent to site R of the dual lattice.
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are such that 	r−	r��� if mr,r�=1, 	r−	r��−� if mr,r�
=−1, and 		r−	r�	�� if mr,r�=0�, and

qR = m1,2 + m2,3 + m3,4 + m4,1 �12�

is the topological charge defined at site R of the dual lattice
�see Fig. 1�.

Compare, for example, the field 	r given by Eqs. �8� and
�11� for a vortex-antivortex pair with the minimal separation
�see Fig. 2�, shown in Tables I and II.

It is worth mentioning that Eq. �11� can be derived from
Eq. �8�, using the asymptotic form of Isc and Iss, Eqs. �A9�
and �A10�, and integrating �instead of summing over R�
along a properly chosen path L �or along several paths for the
vortices with higher topological charges, see Sec. I A� con-
necting the vortex with its antivortex. We have verified that
the form of the field 	r given by Eq. �8� is independent of the
particular form of this path L.

B. Interaction between vortices in the Villain and 2D XY
models

If 	r is given by Eq. �8�, the Hamiltonian �6� can be
reduced to

H =
J

2 �
�r,r��

��r − �r��
2 + �

R,R�

qRqR�V�R − R�� , �13�

where topological charge qr is defined by Eq. �12�. Now the
vortex interaction energy is given by the second term in the
Hamiltonian �13� with

V�R − R�� =
�2J

N
�
k

cos kx�X − X��cos ky�Y − Y��

sin2kxa

2
+ sin2kya

2

.

�14�

In the thermodynamic limit, one can replace the sum over
the first Brillouin zone in Eq. �14� with an integral, and then,
since the difference between the Cartesian coordinates of the
vortices centered on sites of the dual lattice is always an
integer number of lattice spacing a: X−X�=na and Y −Y�
=ma, following the same scheme of integration which was
applied in Appendix A to obtain Eqs. �A3� and �A4�, one has

V�na,ma� = �
i=0

n
�− 1�i�2n�!

�2�n − i��!�2i�!�j=0

m
�− 1� j�2m�!

�2�m − j��!�2j�!

� �
k=0

n−i
�− 1�k�n − i�!
�n − i − k�!k! �l=0

m−j
�− 1�l�m − j�!
�m − j − l�!l!

F�i + k, j

+ l� �15�

with F�p ,q� given by Eq. �A5�.
Then the energy of a vortex-antivortex pair, qR=+1 and

qR�=−1, which follows from Eq. �13�, is Epair�x�=−V�x�,
where x= 	R−R�	 is the distance between the vortex and the
antivortex. Comparing Epair�x� that follows from Eq. �15�
with the asymptotic expression found by Villain,8

Epair�x� � 10.158J + 2�J ln�x/a� , �16�

see Fig. 3, we notice a fine agreement. The low number of
points for small x /a is due to limited number of possibilities
to situate the pair on a lattice, and the “oscillation” of data is

TABLE I. Field 	�i,j� �see Fig. 2� given by Eq. �11�.

i=1 i=2 i=3 i=4

j=1 0.1651 0.1651 0.1355 0.0555

j=2 0.2154 0.2450 0.2450 0.1244

j=3 0.2630 0.3430 0.4636 0.4636

j=4 0.2838 0.3948 0.6435 � /2

TABLE II. Field 	�i,j� �see Fig. 2� given by Eq. �8�.

i=1 i=2 i=3 i=4

j=1 26
15 − �

2 �0.1625 26
15 − �

2 �0.1625 9
2�−14�0.1372 118

5 − 25
2 ��0.0635

j=2 11
2 �− 256

15 �0.2121 �

2 − 4
3 �0.2375 �

2 − 4
3 �0.2375 8− 5

2��0.1460

j=3 194
3 − 41

2 ��0.2641 34
3 − 7

2��0.3378 2− �

2 �0.4292 2− �

2 �0.4292

j=4 63
2 �− 296

3 �0.2934 13
2 �−20�0.4203 3

2�−4�0.7124 � /2

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

FIG. 2. Field 	�i,j� for a vortex-antivortex pair situated at sites
�4.5.4.5� and �4.5,3.5� �the open and filled circles represent the vor-
tex and the antivortex, respectively� given by Eq. �11� �Table I�. The
difference with the exact result following from Eq. �8� �Table II� is
insignificant within the resolution of the present picture.
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the anisotropy effect for different orientations of vector R
−R�.

As it was already mentioned in Sec. I, the cores of vorti-
ces are characterized by large angles between the neighbor-
ing spins so the harmonic approximation �Eq. �3�� cannot
give the correct value of the energy of vortex cores in the
model �1�. Obviously, this can lead to different intervortex
interaction energies in the Villain and 2D XY models.

To estimate the energy of the vortex-antivortex interaction
in the 2D XY model, Epair

2DXY�x�, we consider field

	r� = 
r�R� − 
r�R�� �17�

�see Eq. �11��, which corresponds to the topological charges
qR=+1 and qR�=−1, and assume that

Epair
2DXY�x� = J �

�r,r��

�1 − cos�	r� − 	r�
� �� , �18�

performing the summation numerically over a system of suf-
ficiently large size. We are aware that this assumption is not
grounded since �r and 	r cannot be decoupled in the Hamil-
tonian �1� but it may be instructive.

The quantity which is accessible for measurement in
Monte Carlo simulations is the vortex-antivortex pair-
creation energy in the 2D XY model, i.e., the energy of a
vortex and its antivortex at the minimal separation a �see Fig.
2�: Epair

2DXY�a�. The microcanonical Monte Carlo simulations
showed that Epair

2DXY�a��7.3J �Ref. 9� while the canonical
MC simulations gave 7.55J.10 Our estimation which follows
from Eq. �18� is Epair

2DXY�a��6.6J, in reasonable agreement
with the mentioned computer experiments �the exact result
for the Villain model is �2J�9.9J, see Eq. �15��.

Comparing the result of Eq. �18� to the vortex-antivortex
interaction energy in the Villain model, see Fig. 3, we see
that while at large separations

Epair
2DXY�x� � 8.1J + 2�J ln�x/a� , �19�

Epair
2DXY�x� deviates considerably from the logarithmic form as

the vortex and its antivortex approach each other.

III. INTERACTION BETWEEN VORTICES AND SPIN
VACANCIES

A. Hamiltonian of the Villain model with spin vacancies

With the use of variables cr, taking values 1 and 0 de-
pending on whether site r is occupied with a spin or
“empty,” respectively, the Hamiltonian of the Villain model
with spin vacancies can be presented as24

H =
J

2 �
�r,r��

��r − �r� − 2�mr,r��
2crcr�. �20�

Alternatively, it can be written via variables pr=1−cr as

H = H0 + �
r

prH1�r� + �
�r,r��

prpr�H2�r,r�� , �21�

where H0 is the Hamiltonian of the Villain model without
vacancies �Eq. �20� with all cr=1�,

H1�r� = −
J

2�
u

��r − �r+u − 2�mr,r+u�2 �22�

with u= ��a ,0� , �0, �a� is the change in energy caused by
the removal of the four bonds adjacent to the spinless site r,
and

H2�r,r�� =
J

2
��r − �r� − 2�mr,r��

2 �23�

compensates the double removal of a common bond of two
neighboring sites r and r� when there happen vacancies on
neighboring sites.

Applying Eq. �5�, one can distinguish in the Hamiltonian
�20� terms dependent on vortexless field �r and/or vortex
field 	r �marking them with indices � and 	�,

H = H� + H	 + H�,	. �24�

The first term, considered separately, describes a system of
planar spins with angles �r on a diluted lattice in the SWA,
which was the subject of studies �Refs. 17 and 25�, for ex-
ample. Here, we focus primarily on the last two terms that
are connected to the presence of vortices in the system.

Notice that taking 	r in the form of Eq. �8� does not lead
to decoupling of �r and 	r in the Villain model with spin
vacancies �H�,	�0�.

B. Hamiltonian of the Villain model with spin vacancies in the
Fourier-transformed variables

Fourier transformation of variables �r, 	r, and mr,r� al-
lows to manipulate Hamiltonian �20� with much ease. The
corresponding Fourier transforms �k, 	k, and mk

� ��=x ,y
stands to distinguish two sets of Fourier transforms that

5

10

15

20

25

30

0 1 2 3

E
pa

ir(
x)

/J

ln(x/a)

Eq. (15)
Eq. (18)
Eq. (16)
Eq. (19)

FIG. 3. The energy of a pair of topological charges qR=+1,
qR�=−1 in the Villain and 2D XY models as a function of the
separation x= 	R−R�	. Open circles represent the exact result for the
Villain model, following from Eq. �15�; filled squares represent the
numerical result for the 2D XY model �see Eq. �18��; solid and
dashed lines are the asymptotic forms �16� and �19�.
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correspond to “vertical/horizontal” orientation of bond
�r ,r��� can be introduced via the following relations:

�k =
1

�N
�

r
eikr�r, �r =

1
�N

�
k

e−ikr�k, �25�

	k =
1

�N
�

r
eikr	r, 	r =

1
�N

�
k

e−ikr	k, �26�

mk
� =

1
�N

�
r

ei�kr+k�a/2�mr,r+u�
,

mr,r+u�
=

1
�N

�
k

e−i�kr+k�a/2�mk
�, � = x,y , �27�

where N is the number of sites in the lattice and the sums
over r and k span the original lattice and the first Brillouin
zone of the reciprocal lattice, respectively. Note that in Eq.
�27� ux= �a ,0� and uy = �0,a� so the property mr,r�=−mr�,r is
supposed to be used to obtain the Fourier transform of
mr+u�,r.

Then, for the field 	r given by Eq. �8�, one has the Fourier
transform,8

	k = − i�

mk
x sin

kxa

2
+ mk

y sin
kya

2

sin2kxa

2
+ sin2kya

2

. �28�

Now, using Eq. �28�, the condition �7� can be easily checked.
After applying Eq. �27� and introducing the Fourier trans-

form of the topological charge qr,

qk =
1

�N
�
R

eikRqR, qR =
1

�N
�
k

e−ikRqk. �29�

Equation �12� takes the form

qk = 2i�mk
x sin

kya

2
− mk

y sin
kxa

2
� . �30�

Then, it is quite straightforward to obtain �the reader is
referred to Eqs. �21� and �24� to understand the upper and
bottom indices in the left sides of the equations�,

H1
�	�r� =

4�J

N
�
k

�
k�

�kqk�

cos
�kx + kx��a

2
sin

kxa

2
sin

ky�a

2
− cos

�ky + ky��a
2

sin
kya

2
sin

kx�a

2

sin2kx�a

2
+ sin2ky�a

2

e−i�k+k��r, �31�

H1
	�r� =

�2J

N
�
k

�
k�

qkqk�

cos
�kx + kx��a

2
sin

kya

2
sin

ky�a

2
− cos

�ky + ky��a
2

sin
kxa

2
sin

kx�a

2

�sin2kxa

2
+ sin2kya

2
��sin2kx�a

2
+ sin2ky�a

2
� e−i�k+k��r, �32�

H2
�	�r,r�� = −

2�J

N
�
k

�
k�

�kqk�e
−i�k+k��r��
r�−r,ux

e−i�kx+kx��a/2 + 
r�−r,−ux
ei�kx+kx��a/2�sin

kxa

2
sin

ky�a

2
− �
r�−r,uy

e−i�ky+ky��a/2

+ 
r�−r,−uy
ei�ky+ky��a/2�sin

kya

2
sin

kx�a

2
��sin2kx�a

2
+ sin2ky�a

2
�−1

, �33�

H2
	�r,r�� = −

�2J

2N
�
k

�
k�

qkqk�e
−i�k+k��r��
r�−r,ux

e−i�kx+kx��a/2 + 
r�−r,−ux
ei�kx+kx��a/2�sin

kya

2
sin

ky�a

2
− �
r�−r,uy

e−i�ky+ky��a/2

+ 
r�−r,−uy
ei�ky+ky��a/2�sin

kxa

2
sin

kx�a

2
�/ �

�=x,y
sin2k�a

2 �
�=x,y

sin2k��a

2
. �34�
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C. Attractive interaction between spin vortices and a spin
vacancy

Returning to variables �r and qR in Eqs. �31� and �32�,
one has

H1
�	�r� = �J�

R
qR���r+ux

− �r−ux
�Isc�y − Y,x − X� − ��r+uy

− �r−uy
�Isc�x − X,y − Y� + ��r+uy

+ �r−uy
− �r+ux

− �r−ux
�Iss�x − X,y − Y�
 �35�

and

H1
	�r� = − �2J�

R
�
R�

qRqR��Isc�x − X,y − Y�Isc�x − X�,y − Y��

+ Isc�y − Y,x − X�Isc�y − Y�,x − X�� + 2Iss�x − X,y

− Y�Iss�x − X�,y − Y��
 , �36�

where Isc and Iss are defined by Eqs. �A1� and �A2�. Analo-
gous expressions for �33� and �34� can be obtained easily.

In order to obtain the effective Hamiltonian describing
interaction between vacancies and topological charges only,
one has to integrate out �r in the partition function,

Z = Tr�,	 e−��H�+H	+H�,	� �37�

so that

Z = Tr	 e−�Heff
	

, �38�

where Heff
	 is the desired Hamiltonian.

We have to restrict our consideration to the case of one
spin vacancy at site r� to be able to use the results of Appen-
dix B. Then, using Eqs. �B2� and �31�, one has the effective
Hamiltonian,

Heff
	 �r�� = H1

�	�r�� +
�2J

N
�
k,k�

qkqk���� − 2��sin
kxa

2
cos

kya

2
sin

kx�a

2
cos

ky�a

2
+ sin

kya

2
cos

kxa

2
sin

ky�a

2
cos

kx�a

2
�

− 2
4 − �

� − 2
sin

kxa

2
sin

kya

2
sin

kx�a

2
sin

ky�a

2
�e−i�k+k��r�

/ �
�=x,y

sin2k�a

2 �
�=x,y

sin2k��a

2
. �39�

Finally, using Eqs. �36� and �29�, one can write

Heff
	 �r�� = − �2J�

R
�
R�

qRqR���� − 1��Isc�x� − X,y� − Y�Isc�x� − X�,y� − Y�� + Isc�y� − Y,x� − X�Isc�y� − Y�,x� − X���

+
4

� − 2
Iss�x� − X,y� − Y�Iss�x� − X�,y� − Y��� . �40�

While Eqs. �A3� and �A4� provide the exact value of Eq. �40� for a discrete lattice, it is instructive to find its asymptotic
form

Heff
	 �r�� = − �� − 1�Ja2 �

R,R�

qRqR�� �r� − R��r� − R��
	r� − R	2	r� − R�	2

+ O� 1

	r� − R	2	r� − R�	2
�� , �41�

which follows from Eqs. �A9� and �A10�. If, for example,
one has a vortex of topological charge either + or −1 and a
spin vacancy, separated by distance x, Eq. �41� gives the
energy of their interaction,

E�x� = − J�� − 1�a2/x2 + O�1/x2� �42�

�compare it to the exact result following from Eq. �40�
shown in Fig. 4�.

D. A vortex pinned by the vacancy

An analog of the condition �7� for the field 	r, which
would assure that H�,	=0 in the diluted Villain model �20�,
reads as

cr�
u

�	r − 	r+u − 2�mr,r+u�cr+u = 0 for all r . �43�

Numerical studies of spin vortices in the presence of a
spinless site12,13 suggest that it is energetically preferable for
a vortex to be pinned �centered� on the vacancy. Thus, one
can assume that

	̃r = � 
r�r�� , �44�

where 
r�r�� was defined after Eq. �11� and r� is the coor-
dinate of the vacancy, might satisfy Eq. �43� when the topo-
logical charge q= �1 is on one of the four dual lattice sites
R� adjacent to r� �see Fig. 5�.

Then, the vortex-on-vacancy pinning energy, i.e., the en-
ergy of the vortex centered on r� minus that of the vortex

SPIN VORTICES AND VACANCIES: INTERACTIONS AND… PHYSICAL REVIEW B 81, 134437 �2010�

134437-7



centered on R�, can be estimated by numerical summation
over a lattice of sufficiently large size,

Epin =
J

2 �
�r,r��

��	̃r − 	̃r� − 2�mr,r��
2 − �	̃r� − 	̃r�

� − 2�mr,r��
2� ,

�45�

where 	r�= �
r�R��, which gives Epin�−5.22J.
The corresponding energy that follows from Eq. �40� is

Epin=−�3�−4�J�−5.42J. The difference from the result of

Eq. �45� is not surprising, if one notices that 	̃r only approxi-
mately fulfills Eq. �43� for almost all the lattice sites.

It is worth mentioning that using the exchange potential
of the 2D XY model, Eq. �1�, numerical summation analo-
gous to that of Eq. �45� leads to Epin

2DXY �−3.21J, which
agrees with −3.178J of the energy minimizing iterative
method12 and −3.54J of the spin dynamics simulations.13

IV. CONCLUSIONS

The exact and asymptotic expressions for the interaction
energy of topological charges and a spinless site, Eqs. �40�

and �41�, found for the Villain model on a square lattice,
definitively confirm the attractive character of the interac-
tion. This agrees with the results of the spin dynamics simu-
lations for the 2D XY model13 and the energy minimizing
iterative method for the easy-plane Heisenberg model.12

However, we showed that this interaction in the 2D XY
model can differ from Eq. �40�, that corresponds to the Vil-
lain model, considerably at small separations due to different
energies of the vortex cores �regions with strong disorienta-
tion of spins�. In particular, the exact value of the vortex-on-
vacancy pinning energy in the Villain model, Epin=−�3�
−4�J�−5.42J, differs significantly from that found in Refs.
12 and 13 �−3.54J and −3.178J, respectively�.

Moreover, we showed that the mentioned difference of
the vortex cores’ energies in the two models leads to a de-
viation of the vortex-antivortex interaction energy in the 2D
XY model from a logarithmic law at small separations while
the corresponding energy of the Villain model retains loga-
rithmic dependence on separation x �if we neglect slight an-
isotropy effects� up to the smallest possible distance on a
lattice which is of one lattice spacing, x=a.

We have estimated the vortex-antivortex pair-creation en-
ergy for the 2D XY model as Epair

2DXY�a��6.6J �in contrast to
�2J�9.9J of the Villain model�, which is in reasonable
agreement with the results of the recent Monte Carlo
simulations9,10 �7.55J and 7.3J, respectively�.
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APPENDIX A: FUNCTIONS Isc(X ,Y) AND Iss(X ,Y)

In this appendix, we study the functions

Isc�X,Y� =
1

N
�
k

sin
kxa

2
cos

kya

2

�
�=x,y

sin2k�a

2

sin kxX cos kyY , �A1�

Iss�X,Y� =
1

N
�
k

sin
kxa

2
sin

kya

2

�
�=x,y

sin2k�a

2

sin kxX sin kyY , �A2�

which enter many important expressions concerning the be-
havior of topological charges, and the sums over k in Eqs.
�A1� and �A2� span the first Brillouin zone.

For X= �2n−1�a, Y = �2m−1�a�n ,m=1,2 ,3 , . . .�, Eqs.
�A1� and �A2� can be calculated exactly, replacing the sums

-6

-5

-4

-3

-2

-1

0

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
ef

f.(
x)

/J

x/a

Eq. (40)
Eq. (42)

FIG. 4. Interaction energy of a vortex of charge �1 and a va-
cancy as a function of their separation x. Open squares represent the
exact result �40� and the solid curve represents the asymptotic ex-
pression �42�.

FIG. 5. Representation field 	r of topological charge q=+1 situ-
ated at site R� of the dual lattice, which leads to its decoupling in
the Hamiltonian of the pure Villain model �black and white arrows�
and a model with a vacancy at site r� �gray arrows�.
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with integrals in the thermodynamic limit. The integration gives

Isc��2n − 1�a,�2m − 1�a� = �
i=0

n−1
�− 1�i�2n − 1�!

�2�n − i − 1��!�2i + 1�! �
j=0

m−1
�− 1� j�2m − 1�!

�2�m − j� − 1�!�2j�! �
k=0

n−i−1
�− 1�k�n − i − 1�!
�n − i − k − 1�!k! �l=0

m−j
�− 1�l�m − j�!
�m − j − l�!l!

F�i + k

+ 1, j + l� , �A3�

Iss��2n − 1�a,�2m − 1�a� = �
i=0

n−1
�− 1�i�2n − 1�!

�2�n − i − 1��!�2i + 1�! �
j=0

m−1
�− 1� j�2m − 1�!

�2�m − j − 1��!�2j + 1�! �
k=0

n−i−1
�− 1�k�n − i − 1�!
�n − i − k − 1�!k!

� �
l=0

m−j−1
�− 1�l�m − j − 1�!
�m − j − l − 1�!l!

F�i + k + 1, j + l + 1� �A4�

with

F�p,q� = �
u=0

q−1

�− 1�u �2�p + u� − 1�!!
�2�p + u��!!

�2�q − u − 1� − 1�!!
�2�q − u − 1��!!

+
1

2 �
u=0

p+q−1
�− 1�q+u�p + q − 1�!�2u − 1�!!

�p + q − u − 1�!�u!�2

−
1

�
�
u=1

p+q−1
�− 1�q+u�p + q − 1�
�p + q − u − 1�!u! ��2u − 1�!!

u! �
w=1

u−1
�u − w − 1�!

�2�u − w� − 1�!!
+

1

u� . �A5�

These results were obtained by expressing sin kxX, sin kyY, and cos kyY as polynomials P�sin
k�a
2 ,cos

k�a
2 �, and then applying

the standard tables of integrals.26 We used the notations: �2n� ! !��i=1
n 2i, �2n−1� ! !��i=1

n �2i−1�; when n=0: �2n� ! !�1, and
�2n−1� ! !�1. The sums of no meaning, such as �i=n

m with m�n, that may be encountered in Eq. �A5� for some values of p,
q, should be interpreted as equal to zero.

It is instructive to find an asymptotic form for Eqs. �A1� and �A2�. It turns out that simple analytic expressions can be
obtained, assuming that at least one of the arguments X ,Y is large. Using the integral27

�
0

� cos x

x2 + a2dx =
�

2	a	
e−	a	, �A6�

one can show that

Isc�X → �,Y� =
a

�
�

0

�/a

dkye
−X�2/a�sin�kya/2� cos kyYsinh�sin

kya

2
�cot

kya

2
=

a

�
�

0

�/a

dkye
−Xky cos kyY �A7�

and

Isc�X,Y → �� =
a

�
�

0

�/a

dkxe
−Y�2/a�sin�kxa/2� cos kxXcosh�sin

kxa

2
� =

a

�
�

0

�/a

dkye
−Ykx sin kxX . �A8�

So,

Isc�X,Y� =
a

�

X

X2 + Y2 , �A9�

when at least one of the arguments X ,Y is sufficiently large.
In a similar way, one can show that

Iss�X,Y� =
a2

�

XY

�X2 + Y2�2 , �A10�

if at least one of the arguments X ,Y is sufficiently large.

APPENDIX B: HAMILTONIAN DESCRIBING
TOPOLOGICAL CHARGES IN A SYSTEM WITH A SPIN

VACANCY

The aim of the present appendix is to show how the “vor-
texless” degrees of freedom �r can be integrated out in the
partition function �Eq. �37�� when only one spin vacancy at
site r� is considered, so that �see Sec. III A�

cr = �0, r = r�,

1, r � r�;
� or pr = �1, r = r�,

0, r � r�.
� �B1�

As we will show below, the partition function can be pre-
sented in this case in the form �38� with
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Heff = H	 −
1

4�2J��
k

�k�−k

�k
−

�

4�� − 2�
1

N
�
k,k�

�gk,−k�

+ gk,k��
�−k�−k�

�k�
e−i�k+k��r�

+
�

4

1

N
�
k,k�

�gk,−k�

+ gk,k��
�−k�−k�

�k�
e−i�k+k��r�� , �B2�

where �k�2�sin2 kxa
2 +sin2 kya

2 �,

gk,k� � ��k+k� − �k − �k��/�k, �B3�

and

�k �
�J
�N

e−ikr��
u

e−iku�	r�+u − 	r� − 2�mr�+u,r�� . �B4�

1. Partition function of the Villain model on the lattice with a
spin vacancy

Let us denote

Z	 � Tr� e−��H�+H�,	� �B5�

so

Z = Tr	�e−�H	Z	� . �B6�

Using Fourier transformation �Eq. �25��, one can rewrite
the terms that depend on �r in the Hamiltonian �24� as �see
Ref. 25�,

H� = J�
k

�k�k�−k +
J

N
�
k,k�

e−i�k+k��r�
gk,k��k�k�, �B7�

where gk,k� was defined in Eq. �B3� and the sums are over
the first Brillouin zone. Correspondingly, the mixed �	 term
in Eq. �24� reads

H�,	 = −
J

�N
�
k
��ke−ikr��

u
e−iku�	r�+u − 	r� − 2�mr�+u,r��� .

�B8�

Using the Taylor-series expansion, Z	 can be written as

Z	 = Tr� e−�J�k�k�k�−k+�k�k�k

� �1 + �
n=1

�
1

n!
I��k1

,�k2
�,. . .,��k2n−1

,�k2n
�� , �B9�

where �k was defined in Eq. �B4� and

I��k1
,�k2

�,. . .,��k2n−1
,�k2n

�

�
�− �J�n

Nn �
k1,k2

¯ �
k2n−1,k2n

�e−i�k1+¯+k2n�r�
gk1,k2

. . . gk2n−1,k2n
�k1

. . . �k2n
.

�B10�

Now, introducing the notations

Z� � Tr� e−�J�k�k�k�−k+�k�k�k �B11�

and

� ¯ �� � Z�
−1 Tr��e−�J�k�k�k�−k+�k�k�k. . .� , �B12�

Eq. �B9� becomes

Z	 = Z��1 + �
n=1

�
1

n!
�I��k1

,�k2
�,. . .,��k2n−1

,�k2n
���� . �B13�

2. Calculation of Z� and Š�k1
. . .�k2n

‹�

Z� and ��k1
. . .�k2n

�� are the first quantities to be calcu-
lated. Since �k �for k�0� is a complex quantity: �k=�k

c

+ i�k
s , Tr� should be understood as

Tr� = �
k�B1/2

�
−�

�

d�k
c�

−�

�

d�k
s , �B14�

where B1/2 stands for a half of the first Brillouin zone exclud-
ing k=0 ��k

c and �k
s in the other half are not independent,

due to the relations: �−k
c =�k

c and �−k
s =−�k

s �. It was possible
to extend the bounds of integration to infinity in Eq. �B14�
and omit writing the integral over �0 since the functions that
stand after the trace in our calculations are always rapidly
decaying when �J→� and independent from �0.

Then, it is straightforward to obtain

Z� = ��
k�0

� �

2�J�r
�e1/4�J�k�0�k�−k/�k. �B15�

Using Eq. �B15�, it is easy to show that

��k1
. . . �k2n

�� = Z�
−12−2n �

��k1

¯

�

��k2n

Z�, �B16�

where

�

��k
�

�

��k
c − i

�

��k
s ,

�

��−k
�

�

��k
c + i

�

��k
s . �B17�

Noting that
��k

��k�
=2
k,k� �
k,k� is Kronecker delta�, one ar-

rives at

��k1
. . . �k2n

�� = �
l=0

n
1

�2�J�2n−l �
pairs 2n→l

� �
u=1

l 
kiu
,−kju

�kiu

�
w=1

2n−2l �−kpw

�kpw

, �B18�

where the sum �pairs 2n→l spans all the possible ways of se-
lecting l indistinguishable unordered pairs �iu , ju� , u
=1, . . . , l out of 2n indexes 1 , . . . ,2n. �It is easy to see that

�
pairs 2n→l

1 =� �2n�!
l!�2!�l�2n − 2l�!

.�
3. Calculation of ŠI(�k1

,�k2
),. . .(�k2n−1

,�k2n
)‹�

According to Eqs. �B10� and �B12�,
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�I��k1
,�k2

�,. . .,��k2n−1
,�k2n

��� =
�− �J�n

Nn �
k1,. . .,k2n

e−i�k1+¯+k2n�r�
gk1,k2

. . . gk2n−1,k2n
��k1

. . . �k2n
��. �B19�

At this stage, it is convenient to introduce the notions

Ii �
1

Ni �
k1,. . .,ki

gk1,−k2
gk2,−k3

. . . gki−1,−ki
gki,−k1

, �B20�

Ii
� �

1

Ni �
k1,. . .,ki+1

gk1,−k2
gk2,−k3

. . . gki−1,−ki
gki,ki+1

e−i�k1+ki+1�r� �k1
�ki+1

�ki+1

. �B21�

Then, insertion of Eq. �B18� into Eq. �B19� leads to a polynomial form with respect to Ii and Ii
� �i=1, . . . ,��,

�I��k1
,�k2

�,. . .,��k2n−1
,�k2n

��� = �− 1�n�
l=0

n
2−n

�2�J�n−l��
i=1

l

�
�i=0

�l/i� ���
j=1

n−l

�
�j

�=0

��n−l�/j� �
��
i=1

l

i�i − l�
� 
��

j=1

n−l

j� j
� − �n − l����1,. . .,�l

�1
�,. . .,�n−l

�

I1
�1 . . . Il

�l�I1
���1

�

. . . �In−l
� ��n−l

�

, �B22�

where �a� means the nearest integer not exceeding a, 
�x�= � 1, x=0
0, x�0
, and

��1,. . .,�l

�1
�,. . .,�n−l

�

= n!�
i=1

l
�2i−1�i − 1�!��i

�i!�i!��i
�
j=1

n−l
�2 j−1j!��j

�

�i
�!�i!��i

� �B23�

is the combinatorial “weight” given by the number of ways of selecting �1 unordered elements, �2 unordered groups of two
unordered elements, . . ., �l unordered groups of l unordered elements, �1

� unordered elements, �2
� unordered groups of two

unordered elements,…, and �n−l
� unordered groups of n− l unordered elements out of n distinct elements, which is

n!/��1!�2! . . . �l!�1
�!�2

�! . . . �n−l
� !�1!��1�2!��2 . . . �l!��l�1!��1

�

�2!��2
�

. . . ��n − l�!��n−l
�




times the number of distinct ways of connecting four distinct
elements belonging to two distinct groups, each consisting of
two elements, with two indistinguishable links in such a
manner that the two elements of one group are connected to
the elements belonging to another group, raised to the power
�2, times the product over i=1, l of the number of distinct
ways of connecting 2i distinct elements belonging to i dis-
tinct groups, each consisting of two elements, with i indis-
tinguishable links in such a manner that the two elements of
each group are connected to the elements belonging to two
another groups, raised to the power �i, i.e.,

��
i=1

l

�2i−1�i − 1�!��i, �B24�

times the number of distinct ways of connecting four distinct
elements belonging to two distinct groups, each consisting of
two elements, with one link in such a manner that one of the
two elements of one group is connected to one of the two
elements belonging to another group, raised to the power �2

�,
times the product over j=1,n− l of the number of distinct
ways of connecting 2j distinct elements belonging to j dis-
tinct groups, each consisting of two elements, with j−1 in-
distinguishable links in such a manner that one of the two
elements of any group is connected to one of the two ele-

ments of another group and the second element is either con-
nected to one of the two elements of a different group or not
connected, raised to the power � j

�, i.e.,

��
j=1

n−l

�2 j−1j!��j
�

. �B25�

Inserting Eq. �B23� into Eq. �B22�, one has

�I��k1
,�k2

�,. . .,��k2n−1
,�k2n

���

= �− 1�nn!�
l=0

n
1

�2�J�n−l

� �
i=1

l

�
�i=0

�l/i�
1

�i!
� Ii

2i
��i

�
j=1

n−l

�
�j

�=0

��n−l�/j�
1

�i
�!
� Ii

�

2
��i

�

� 
��
i=1

l

i�i − l�
��
j=1

n−l

j� j
� − �n − l�� �B26�

and then, inserting Eq. �B26� in Eq. �B13�, one can notice
that the infinite series in Eq. �B13� can be rearranged as it is
shown below,
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Z	 = Z��
i=1

� �1 + �− 1�i Ii

2i
+

1

2!
��− 1�i Ii

2i
�2

+
1

3!
��− 1�i Ii

2i
�3

+ ¯��
j=1

� �1 + �− 1� j Ij
�

4�J
+

1

2!
��− 1� j Ij

�

4�J
�2

+
1

3!
��− 1� j Ij

�

4�J
�3

+ ¯�

or

Z	 = Z� exp�1

2�
i=1

�

�− 1�iIi/i�exp� 1

4�J
�
j=1

�

�− 1� jIj
�� .

�B27�

4. Calculation of Ii and Ii
�

Equations �B20� and �B21� can be written as

Ii =
1

N
�
k

Ĩi−1�k,− k� �B28�

and

Ii
� =

1

N
�
k,k�

Ĩi−1�k,k��
�−k�−k�

�k�
e−i�k+k��r�

�B29�

�i�1� with

Ĩi�k,k�� �
1

Ni �
k1,. . .,ki

gk,−k1
gk1,−k2

. . . gki−1,−ki
gki,k�

�B30�

for i�1 and Ĩ0�k ,k���gk,k�. One can notice the obvious
recurrent relation

Ĩi+1�k,k�� =
1

N
�
k�

Ĩi�k,− k��gk�,k�. �B31�

In the thermodynamic limit, one can replace the sum 1
N�k

over the first Brillouin zone by the integrals
a2

�2��2 �−�/a
�/a dkx�−�/a

�/a dky, and then, noticing that

a2

�2�
0

�/a

dkx�
0

�/a

dky

sin4kxa

2

sin2kxa

2
+ sin2kya

2

=
1

�

and

a2

�2�
0

�/a

dkx�
0

�/a

dky

sin2kxa

2
cos2kxa

2

sin2kxa

2
+ sin2kya

2

=
a2

�2

� �
0

�/a

dkx�
0

�/a

dky

sin2kxa

2
sin2kya

2

sin2kxa

2
+ sin2kya

2

=
1

2
−

1

�
,

one can show that

1

N
�
k�

gk,−k�gk�,k� = �1 −
2

�
�gk,−k� −

1

�
�gk,−k� + gk,k��

+ �1

2
−

1

�
��k�,

1

N
�
k�

gk,k�gk�,k� = �1 −
2

�
�gk,k� −

1

�
�gk,−k� + gk,k��

+ �1

2
−

1

�
��k�,

and

1

N
�
k

�kgk,k� = − �k�.

Then, it is easy to see that

Ĩi�k,k�� = Aigk,�− 1�ik� + Bi�gk,−k� + gk,k�� + Ci�k�

with coefficients Ai, Bi, and Ci, obeying the recurrent rela-
tions

Ai+1 = �1 −
2

�
�Ai,

Bi+1 = −
1

�
Ai + �1 −

4

�
�Bi,

Ci+1 = �1

2
−

1

�
��Ai + 2Bi� − Ci,

and A0=1, B0=0, and C0=0. Thus,
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Ai = �1 −
2

�
�i

,

Bi = −
1

�
�
j=0

i−1 �1 −
4

�
� j�1 −

2

�
�i−1−j

= −
1

2
��1 −

2

�
�i

− �1 −
4

�
�i� ,

Ci = �− 1�i−1�1

2
−

1

�
��

j=0

i−1

�− 1� j�1 −
4

�
� j

=
1

4
��− 1�i−1 + �1 −

4

�
�i� .

Finally, one can obtain expressions for Ii and Ii
� and check that

�
i=1

�

�− 1�iIi
� = −

�

4�� − 2�
1

N
�
k,k�

�gk,−k� + gk,k��
�−k�−k�

�k�
e−i�k+k��r�

+
�

4

1

N
�
k,k�

�gk,−k� − gk,k��
�−k�−k�

�k�
e−i�k+k��r�

. �B32�

In conclusion, using Eqs. �B6�, �B15�, �B27�, and �B32�, we obtain Eq. �B2�.
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