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Abstract
We consider nonlinear-mediating-field generalizations of the Wick–Cutkosky
model. Using an iterative approach and eliminating the mediating field
by means of the covariant Green’s function we arrive at a Lagrangian
density containing many-point time-nonlocal interaction terms. In low-order
approximations of ϕ3 + ϕ4 theory we obtain the usual two-current interaction
as well as a three-current interaction of a confining type. The same result
is obtained without approximation for a version of the dipole model. The
transition to the Hamiltonian formalism and subsequent canonical quantization
is performed with time non-locality taken into account approximately. A
relativistic three-particle wave equation is derived variationally by using a
three-particle Fock space trial state. The non-relativistic limit of this equation
is obtained and its properties are analyzed and discussed.

PACS numbers: 11.10.Ef, 11.10.Lm

1. Introduction

Confinement is evidently related to the nonlinearity of chromodynamics. Since confining
solutions of classical non-Abelian field equations are not known at present [1], it is believed
that confinement is an essential quantum effect. This is supported by numerical computations
of QCD on the lattice [2, 3]. However, the analytical study of confinement, particularly in
gauge field theory like QCD, remains a challenging task [3]. Thus, the study of simpler field
theoretical models that simulate the characteristic features of confinement remains relevant.

In this regard, earlier models are worth mentioning such as the dipole model [4] and
the related higher derivative model [5] with its subsequent non-Abelian generalization [6].
They indicate a 1/k4 infrared behavior of the ‘gluon’ propagator, and thus a linear interaction
potential, even at the classical level. In spite of some quantization inconsistencies, these
phenomenological models treat the confinement interaction as an elementary process, i.e. a
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two-particle interaction arising from the lowest-order approximation of perturbative dynamics
of the models.

More realistic models are the Dual Abelian Higgs model [3] and non-Abelian versions
[3, 7] in which the spontaneous symmetry breaking mechanism is used to generate a vacuum
condensate with confining properties. In this approach the confinement interaction is a kind
of collective effect similar to that in condensed matter physics.

The two classes of models mentioned above represent quite different points of view on
the confinement mechanism. The purpose of this study is to shed light on the question: Is
an intermediate mechanism possible, in which confinement cannot be reduced to elementary
processes but is governed by cluster interactions involving finite numbers of particles?

To investigate such a possibility, we utilize the variational method, in a reformulated
Hamiltonian formalism of quantum field theory (QFT), which has been demonstrated to be a
promising and powerful approach to the relativistic bound-state problem [8–13]. In particular,
this approach has been used to derive (and solve approximately) relativistic equations for two
and three fermion systems, such as Positronium (Ps) and Muonium (Mu) [14], and also Ps−

and Mu− [15], and it was shown that the derived bound-state energies agree with conventional
perturbation theory and with experimental results (where available).

The use of many-particle Fock-space components in the variational trial states leads to
wave equations with systematically improvable bound-state energy levels, as has been shown,
for example, in the simple scalar Yukawa model [12, 13].

In this paper, we analyze the interactions that arise from the nonlinear terms in the
mediating-field sector of the QFT Lagrangian. In particular, we consider the (ϕ3 + ϕ4)-
generalization of the Wick–Cutkosky (i.e. massless scalar Yukawa) model [16] as well as a
version of the dipole model [4, 11].

We note that the models being considered are not of a non-Abelian gauge-field type.
The only two features which are common to the models of this paper and QCD are the
massless and nonlinear nature of the mediating field. Both features are important in the
generating confinement but the mechanism of this effect here is different from that in gauge
models [3, 7].

2. Partially-reduced Wick–Cutkosky model

The Wick–Cutkosky model [16] is based on the classical action integral:

I =
∫

d4xL(x), (2.1)

with the Lagrangian density (h̄ = c = 1)

L = ∂μφ∗∂μφ − m2φ∗φ − gφ∗φ χ + 1
2∂μχ∂μχ, (2.2)

where φ(x) is a complex scalar ‘matter’ field with the rest mass m, and χ(x) is a real massless
scalar field interacting with φ via the Yukawa term gφ∗φ χ (here g is an interaction constant).

The stationary property of the action (2.1)–(2.2), i.e. δI = 0, leads to the coupled set of
the Euler–Lagrange equations:

(� + m2)φ = −gφχ, (2.3)

(� + m2)φ∗ = −gφ∗χ, (2.4)

�χ = ρ, (2.5)

which determine the field dynamics; here ρ ≡ −gφ∗φ.
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Equation (2.5) can be solved exactly:

χ = D ∗ ρ + χ0, (2.6)

where ‘∗’ denotes the convolution [D ∗ ρ] (x) ≡ ∫
d4x ′D(x − x ′)ρ(x ′) and D(x) = 1

4π
δ(x2)

is the symmetric Green’s function of the d’Alembert equation. If the free χ field plays no
role in the investigation the arbitrary solution χ0 of the homogeneous d’Alembert equation
can be omitted. Then the use of the formal solution (2.6) (with χ0 = 0) in the Lagrangian
(2.2) leads to a self-contained variational principle for the interacting fields φ(x) and φ∗(x).
The modified Lagrangian L̄ which we shall refer to as the partially-reduced Lagrangian, is an
important basis for the quantization of the model; cf [9, 11].

We demonstrate here how to derive the partially-reduced Lagrangian for the Wick–
Cutkosky model without the use of the condition χ0 = 0. For this purpose we consider
equality (2.6) as a change of variable χ → χ0 where the new field χ0 is not a priori subjected
to any field equation. The substitution of (2.6) directly in the Lagrangian (2.2) gives

L = ∂μφ∗∂μφ − m2φ∗φ + ρ(D ∗ ρ + χ0) +
1

2
[∂μ(D ∗ ρ + χ0)∂

μ(D ∗ ρ + χ0)]

� ∂μφ∗∂μφ − m2φ∗φ + ρ(D ∗ ρ + χ0) − 1

2
(D ∗ ρ + χ0)�(D ∗ ρ + χ0)

� ∂μφ∗∂μφ − m2φ∗φ + 1
2ρD ∗ ρ︸ ︷︷ ︸

L̄

+ 1
2∂μχ0∂

μχ0︸ ︷︷ ︸
	Lfree

, (2.7)

where � denotes equality modulo surface terms. In this form the system is effectively split
into two independent subsystems: the interacting φ matter field and the free χ0 field. From this
point on the physically trivial χ0-dependent 	Lfree term can be ignored (as indicated above)3.

The partially-reduced Lagrangian L̄ is non-local in spacetime coordinates. The treatment
of non-local theories of this type is a conceptually intricate, but practically realizable procedure.
In particular, partially-reduced versions of Yukawa-like models are worked out in [11]. In
the next section we consider a nonlinear generalization of Wick–Cutkosky model within the
partially-reduced formulation.

3. Nonlocal Lagrangian from a nonlinear Wick–Cutkosky model

We proceed from the Lagrangian density

L = ∂μφ∗∂μφ − m2φ∗φ − gφ∗φ χ − 1
4λ(φ∗φ)2 + 1

2∂μχ∂μχ − V(χ), (3.1)

where λ > 0 is a self-interaction coupling constant and V(χ) is an arbitrary potential (all other
quantities are the same as in (2.2)).

The new terms, λ(φ∗φ)2 and V(χ), modify the Euler–Lagrange equations (2.3)–(2.5). In
particular, equation (2.5) becomes the nonlinear inhomogeneous d’Alembert equation

�χ = ρ − V ′(χ), (3.2)

where V ′(χ) ≡ dV(χ)/dχ . It can be formally solved by iteration (cf [17]). In the first-order
approximation we have

χ = D ∗ [ρ − V ′(D ∗ ρ)] + χ0, (3.3)

where χ0 includes an arbitrary solution of the homogeneous equation.

3 It is noteworthy that, within the variational problem based on (2.7), the primary meaning of χ0 in (2.6) as general
solution of the homogeneous d’Alembert equation is restored.
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Similarly to the case of the linear Wick–Cutkosky model, we use the replacement (3.3)
(where χ0 is a new field variable) in the Lagrangian (3.1). In first order this gives

L � ∂μφ∗∂μφ − m2φ∗φ + 1
2ρD ∗ ρ − 1

4λ(φ∗φ)2

+ 1
2∂μχ0∂

μχ0 − V(D ∗ ρ + χ0) + χ0V ′(D ∗ ρ). (3.4)

Unlike the Lagrangian (2.7), this functional is not completely split in the φ and χ0 variables.
The Euler–Lagrange equation for χ0,

�χ0 = −V ′(D ∗ ρ + χ0) + V ′(D ∗ ρ), (3.5)

is a free-field one only in the zero-order approximation. Nevertheless, it possesses the solution
χ0 = 0 which, upon substitution into (3.4), gives the reduced Lagrangian:

L̄ � ∂μφ∗∂μφ − m2φ∗φ + 1
2ρD ∗ ρ − 1

4λ(φ∗φ)2 − V(D ∗ ρ)

≡ Lfree + L(2)
int + L(>2)

int . (3.6)

It is non-local, and the action (2.1) and (3.6) includes 1-, 2- and >2-fold integrations over
Minkowsky space.

The difference 	L = L − L̄, i.e. the χ0-dependent part of the total Lagrangian (3.4), is
at least quadratic in the χ0 variable:

	L = 	Lfree + 	Lint where 	Lfree = 1

2
∂μχ0∂

μχ0,

	Lint = V(D ∗ ρ) + χ0V ′(D ∗ ρ) − V(D ∗ ρ + χ0)

= − 1

2!
χ2

0V ′′(D ∗ ρ) − 1

3!
χ3

0V ′′′(D ∗ ρ) − · · · . (3.7)

This structure shows that the term 	L is not important in this work, as will be explained in
more detail in section 7.

The non-local Lagrangian (3.6) is the first-order approximate result of the reduction
procedure applied to nonlinear generalizations of the Wick–Cutkosky model. In the appendix
we construct another local model, a kind of dipole model (with a pair of mediating fields), that
can be reduced to the Lagrangian (3.6) exactly.

4. Quantization

In order to proceed further we need to specify the interaction potential V(χ). We choose

V(χ) = 1
3κχ3 + 1

4�χ4, (4.1)

where κ and � > 0 are the coupling constants. In this case the nonlinear Wick–Cutkosky
model (3.1) possesses a stable perturbative vacuum and is renormalizable.

We proceed from the partially-reduced Lagrangian (3.6), construct the Hamiltonian of the
model and perform the canonical quantization. Due to the non-locality of the Lagrangian (3.6),
the Hamiltonization is a rather complicated procedure. It can be performed perturbatively,
following [11–13]. In the leading-order approximation the Hamiltonization proceeds as
follows. We work out the Hamiltonian density:

H = Hfree + H(2)
int + H(3)

int + H(4)
int , (4.2)

where

H(2)
int (x) = −1

2

∫
d4x ′ρ(x)D(x − x ′)ρ(x ′) +

1

4
λ(φ∗(x)φ(x))2

≡ −1

2

∫
d4x ′ρ(x)

[
D(x − x ′) − λ

2g2
δ(x − x ′)

]
ρ(x ′), (4.3)

4
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H(3)
int (x) = 1

3
κ

∫∫∫
d4x ′ d4x ′′ d4zD(z − x)D(z − x ′)D(z − x ′′)ρ(x)ρ(x ′)ρ(x ′′), (4.4)

H(4)
int (x) = 1

4
�

∫∫∫∫
d4x ′ d4x ′′ d4x ′′′ d4zD(z − x)D(z − x ′)D(z − x ′′)D(z − x ′′′)

× ρ(x)ρ(x ′)ρ(x ′′)ρ(x ′′′). (4.5)

The total interaction Hamiltonian density (4.2) is then expressed in terms of the Fourier
amplitudes Ak, Bk and A

†
k, B

†
k, of the field φ(x) (see equation (2.14) in [13]; actually, the

procedure is somewhat more intricate [11] but the result is the same). Upon quantization
these amplitudes satisfy the standard commutation relations and become the creation and
annihilation operators. Then the canonical Hamiltonian operator is given by

H =
∫

d3x : H(t = 0, x) :, (4.6)

where ‘: :’ denotes the normal ordering of operators. Other canonical generators, such as
linear and angular momentum, can be easily obtained.

The term Hfree is the standard Hamiltonian of the free complex scalar field. The explicit
form of the pair interaction term H

(2)
int is known (see [9, 11]) and so we shall concentrate on

the H
(3)
int term. It has the following somewhat cumbersome form:

H
(3)
int = − κg3

24(2π)6

∫
d3k1 . . . d3k6√

k10 . . . k60

∑
η1=±
......

η6=±

D̃(η1k1 + η2k2)D̃(η3k3 + η4k4)D̃(η5k5 + η6k6)

× δ(η1k1 + . . . + η6k6) :
η1

Bk1

η2

Ak2

η3

Bk3

η4

Ak4

η5

Bk5

η6

Ak6 : , (4.7)

where
+
B = B,

−
B = A†,

+
A = A,

−
A = B† and the Fourier transform, D̃(k) = −P/k2, of the

symmetric Green’s function of the d’Alembert equation depends on the on-shell 4-momentum
k = {k0, k}, where k0 =

√
m2 + k2. Expression (4.7) includes 26 = 64 terms. The term H

(4)
int

is of similar but more cumbersome form. We do not exhibit it explicitly, since, as will be seen
below, it makes no contribution to the three-body equation derived in this work.

5. Variational three-particle wave equations

In the variational approach to QFT the trial state of the system is built of few particle
channel components [12, 13] such as the two-particle state vector |2〉 = 1√

2

∫
d3p1 d3p2

F2(p1, p3) A†
p1

A†
p2

|0〉, the particle-antiparticle one |1+1̄〉 = ∫
d3p1 d3p2 G(p1, p3) A†

p1
B†

p2
|0〉,

and so on. The three-particle component has the form

|3〉 = 1√
3!

∫
d3p1 d3p2 d3p3 F(p1, p2, p3) A†

p1
A†

p2
A†

p3
|0〉, (5.1)

where the channel wavefunction F, which is to be determined variationally, is completely
symmetric under the permutation of the variables p1, p2, p3. In the variational method the
channel components, |ψN 〉, are used to determine the matrix elements of the Hamiltonian,
namely 〈ψN |H |ψN ′ 〉, where N,N ′ stand for 1, 1̄, 2, 1+1̄, 2̄, 3, 2+1̄, 2+2̄, . . ..

We are interested here in the matrix element of the interaction Hint = H
(2)
int + H

(3)
int + H

(4)
int

of the Hamiltonian. We note that 〈1+1̄|H(3)
int |1+1̄〉 = 0, 〈2|H(3)

int |2〉 = 0. In other words, purely
two-particle trial states, and so the resulting variational wave equations, do not sample the

5
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term H
(3)
int . Thus, we first consider the three-particle case and calculate the matrix element

〈3|Hint|3〉=
∫

d3p′
1 . . . d3p′

3 d3p1 . . . d3p3F
∗(p′

1 . . . p′
3)F (p1 . . . p3)K33(p

′
1 . . . p′

3, p1 . . . p3),

(5.2)

where the kernel K33 = K(2)
33 + K(3)

33 consists of the following components:

K(2)
33 (p′

1 . . . p′
3, p1 . . . p3) = − 3

4(2π)3
δ(p′

1 + p′
2 + p′

3 − p1 − p2 − p3)

× δ(p′
3 − p3)√

p′
10p

′
20p10p20

[g2D̃(p′
2 − p2) − λ/2], (5.3)

K(3)
33 (p′

1 . . . p′
3, p1 . . . p3) = − κg3

4(2π)6
δ(p′

1 + p′
2 + p′

3 − p1 − p2 − p3)

× D̃(p′
1 − p1)D̃(p′

2 − p2)D̃(p′
3 − p3)√

p′
10 . . . p′

30p10 . . . p30
, (5.4)

and pi0 =
√

m2 + p2
i and similarly for p′

j0 (i, j = 1, 2, 3). The term H
(4)
int does not contribute

in K33, i.e. K(4)
33 = 0.

The kernel K33 determines the interaction in the relativistic three-particle wave equation
that follows from the variational principle δ 〈3|H − E|3〉 = 0, namely

{p10 + p20 + p30 − E}F(p1, p2, p3)

+
∫

d3p′
1 d3p′

2 d3p′
3 K33(p1, p2, p3, p′

1, p′
2, p′

3)F (p′
1, p′

2, p′
3) = 0, (5.5)

where the kernel is understood to be the completely symmetrized expression (with respect to
the variables p′

1, p′
2, p′

3 and p1, p2, p3) of (5.3) and (5.4).
The term K(2)

33 of the kernel corresponds to the attractive interaction via massless boson
exchange and repulsive contact interaction between each pair of particles while K(3)

33 describes
a cluster three-particle interaction.

From the mathematical viewpoint the three-body wave equation (5.5) is an integral
equation with a singular kernel. Even in simpler (say, two-particle) cases such equations
are usually solved approximately (variationally, numerically, perturbatively), and it is not easy
to get a general qualitative characteristic of the solutions, or to estimate the role of different
terms of the kernel.

In order to have some understanding of the properties of the cluster interaction we consider
the non-relativistic limit of equation (5.5), in which case the kernels simplify considerably,
and then perform the Fourier transformation into coordinate space. In this representation the
equation is simply a Schrödinger equation for the three-particle eigenfunction �(x1, x2, x3)

(see [12]) and eigenenergy ε = E − 3m:{
1

2m

(
p2

1 + p2
2 + p2

3

)
+ V (x1, x2, x3) − ε

}
�(x1, x2, x3) = 0, (5.6)

where pi = −i∇i (i = 1, 2, 3), and the potential V (x1, x2, x3), like the relativistic kernel
K33, consists of two parts, V = V

(2)
33 + V

(3)
33 :

V
(2)

33 (x1, x2, x3) = − g2

16πm2

{
1

|x1 − x2| +
1

|x2 − x3| +
1

|x3 − x1|
}

+
λ

8m2
{δ(x1 − x2) + δ(x2 − x3) + δ(x3 − x1)} , (5.7)

6
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V
(3)

33 (x1, x2, x3) = 2κg3

(8πm)3
U(x1, x2, x3), (5.8)

where

U(x1, x2, x3) ≡ −
∫

d3z

|z − x1||z − x2||z − x3| . (5.9)

The integral on the r.h.s. of (5.9) is a divergent quantity and thus equation (5.6) may seem to
be meaningless. However, the gradients ∂U(x1, x2, x3)/∂xi (i = 1, 2, 3) which determine
the forces in the classical background of this problem, are well defined and finite. Thus,
‘function’ (5.9) can be presented in the form

U(x1, x2, x3) = Ũ (x1, x2, x3) + U0, (5.10)

where Ũ (x1, x2, x3) in a regular (finite) function and U0 is an infinite negative constant
(independent of the variables x1, x2, x3). This constant can be absorbed by the eigenenergy
ε so that the wave equation (5.6) gets reformulated as follows:

V
(3)

33 (x1, x2, x3) → Ṽ
(3)

33 (x1, x2, x3) = 2κg3

(8πm)3
{U(x1, x2, x3) − U0}

≡ 2κg3

(8πm)3
Ũ (x1, x2, x3), (5.11)

ε → ε̃ = E − 3m − 2κg3

(8πm)3
U0, (5.12)

where the eigenenergy ε̃ is finite (as is the potential Ṽ
(3)

33 ).
In order to perform this reformulation explicitly, we need to resort to regularization of

integral (5.9) which we consider in the next section.
The problem of divergences is expected in the relativistic case too. But the analysis of the

integral equation (5.5) is a more subtle problem which shall not be undertaken in this work.

6. Properties and evaluation of the three-point potential

Various regularization procedures are possible. In essence, one introduces some cut-off
parameter which finally is put to 0 (or ∞). We enumerate some possibilities:

(1) We could consider the case where the mediating χ field is massive, whereupon there
would be a mass term − 1

2 μ2 χ2 in the Lagrangian (3.1). In that case the gravity-like 1
r

factors would be replaced by the Yukawa forms e−μr

r
. Thus, we could regard U of equation

(5.9) as the massless-mediating-field limit of the massive-mediating-field case:

Uμ(x1, x2, x3) = −
∫

d3z
e−μ|z−x1|

|z − x1|
e−μ|z−x2|

|z − x2|
e−μ|z−x3|

|z − x3| , (6.1)

which is well defined and finite for any μ > 0.
We note that by changing the variable of integration from z to v = z − x1 in

equation (6.1), we can write Uμ as

Uμ(x1, x2, x3) = −
∫

d3v
e−μv

v

e−μ|v+x12|

|v + x12|
e−μ|v+x13|

|v + x13| = Ūμ(x12, x13), (6.2)

where xij = xi − xj and v = |v|.
7
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(2) Another way would be to regard U of equation (5.9) as a limiting case, as R → ∞, of

ŪR(x12, x13) = −
∫ R

0
dv v

∫
dv̂

1

|v + x12||v + x13| , (6.3)

where v̂ = v/v and R is an arbitrarily large, but finite, ‘radius of space’.
(3) We could, also, regard U of equation (5.9) as a limiting case, as � → 0+, of

Ū�(x12, x13) = −
∫ ∞

0
dv v e−�v

∫
dv̂

1

|v + x12||v + x13| . (6.4)

Evidently, any other suitable and convenient cut-off function can be used in place of e−�v .

Of course, physical results would be meaningful to the extent that they were independent
of the choice of the regularization procedure.

Below we establish some general properties of the regularized Ũ function. We discuss in
detail a convenient method of its evaluation and show that it possesses a logarithmic confining
property when μ → 0.

Let us consider the regularization Uμ(x1, x2, x3) (6.1). It obviously obeys the following
symmetry properties:

(i) translational invariance: Uμ(x1 + λ, x2 + λ, x3 + λ) = Uμ(x1, x2, x3), where λ ∈ R
3;

(ii) rotational invariance: Uμ(Rx1, Rx2, Rx3) = Uμ(x1, x2, x3), where R ∈ SO(3);
(iii) permutational invariance: Uμ(x2, x1, x3) = Uμ(x1, x3, x2) = Uμ(x1, x2, x3);
(iv) scaling transformation: Uμ(λx1, λx2, λx3) = Uλμ(x1, x2, x3), where λ ∈ R+.

These properties have implications for the structure of the regularized potential.
The properties (i)–(iii) hold for arbitrary values of the cut-off parameter μ, including the

formal limiting case μ → 0. Moreover, these are fundamental symmetries inherent to any
interaction potential of a closed (nonrelativistic) system of three identical particles. Thus, the
regularized potential must possess the properties (i)–(iii) of necessity.

The scaling property (iv) has specific implication for regularization (6.1). In the formal
limit μ → 0 the ‘function’ U ≡ Uμ=0 is scale invariant:

(iv) ′ scale invariance: U(λx1, λx2, λx3) = U(x1, x2, x3), where λ ∈ R+.

However, as is shown below, the scaling property of the regularized potential
Ũ (x1, x2, x3) is different.

We note that an important property of the potential U(x1, x2, x3), with any of the
regularizations (6.1)–(6.4), follows from the symmetries 1–3, namely that it actually depends
only on the three inter-point distances x12, x13, x23, where xij = |xij |. Explicitly, this is readily

seen if the factors e−μ|v+xij |
|v+xij | in equations (6.1)–(6.4) are expanded in spherical harmonics (μ ≡ 0

in (6.3) and (6.4)), the angular integrations
∫

dv̂ . . . are carried out, and the orthogonality
properties of the spherical harmonics are used, then (after the remaining integration over dv),
the result is seen to depend only on the lengths of the two vectors x12, x13 and on the angle
between them (or, equivalently, on x12, x13, x23).

The direct calculation of the regularized potential, with any of the regularizations (6.1)–
(6.4), is complicated. Instead, we propose a representation for function (5.9) in which its
dependence on scalar arguments is manifest. This greatly simplifies the regularization and
evaluation of U. Let us apply the well-known formula:

1

r
= 1√

π

∫ ∞

−∞
dk e−k2r2

8
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to each factor of the integrand of expression (5.9) (which shall be treated formally). Then
changing the order of integration we have

U(x1, x2, x3) = − 1

π3/2

∫
d3k

∫
d3z e−k2

1 (z−x1)
2−k2

2(z−x2)
2−k2

3(z−x3)
2

= −
∫

d3k

k3
e−(k2

1k2
2x2

12+k2
2k2

3x2
23+k2

1k2
3x2

13)/k2

= −
∫

dk̂

∫ ∞

0

dk

k
e−(k̂2

1 k̂2
2x2

12+k̂2
2 k̂2

3x2
23+k̂2

1 k̂2
3x2

13)k
2
, (6.5)

where k̂ = k/k. It is obvious in this form that U(x1, x2, x3) = U(x12, x23, x13) and, in
addition, that the internal integral in the last line of (6.5) is divergent at its lower boundary
k = 0.

The potential difference:

U(x12, x23, x13) − U(y12, y23, y13) = −
∫

dk̂

∫ ∞

0

dk

k

[
e−X2k2 − e−Y 2k2]

, (6.6)

where X2 = k̂2
1 k̂

2
2x

2
12 + k̂2

2 k̂
2
3x

2
23 + k̂2

1 k̂
2
3x

2
13, Y 2 = k̂2

1 k̂
2
2y

2
12 + k̂2

2 k̂
2
3y

2
23 + k̂2

1 k̂
2
3y

2
13, will be finite

since infinite constants U0 (see (5.10)) from the first and second terms of (6.6) mutually
cancel. Indeed, using the cut-off parameter ε in the internal integral on the r.h.s. of (6.6)
yields ∫ ∞

ε

dk

k

[
e−Y 2k2 − e−X2k2] =

[∫ ∞

Yε

−
∫ ∞

Xε

]
dt

t
e−t2 =

∫ Xε

Yε

dt

t
e−t2 −→

ε→0
ln

X

Y
,

i.e. the integral is convergent.
Next, we introduce angular variables {ϑ, ϕ} on the unit sphere in k-space, so that

k̂1 = sin ϑ cos ϕ, k̂2 = sin ϑ sin ϕ, k̂3 = cos ϑ . Then

U(x12, x23, x13) − U(y12, y23, y13) = W(x̄12, x̄23, x̄13) − W(ȳ12, ȳ23, ȳ13), (6.7)

where

W(x̄12, x̄23, x̄13) = 1

2

∫ 2π

0
dϕ

∫ π

0
sin ϑ dϑ ln[(x̄12 sin ϑ cos ϕ sin ϕ)2

+ (x̄23 cos ϑ sin ϕ)2 + (x̄13 cos ϑ cos ϕ)2] (6.8)

and x̄ij = xij /a . The arbitrary constant a (with dimension of length) is introduced so that the
argument of the logarithm will be dimensionless. Actually, the potential difference (6.7) does
not depend on a while function (6.8) itself does. Since this function is well defined and finite,
it can be considered, up to some additive constant, as the regularized potential:

Ũ (x1, x2, x3) = W(x̄12, x̄23, x̄13) − W0. (6.9)

The choice of the constant W 0 is a matter of taste; it can be canceled by an appropriate rescaling
of the constant a: W(x12/a, . . .) = W(x12/b, . . .) + 4π ln(b/a). Thus, an arbitrariness of the
regularized potential arises due to the scale constant a.

We note that the regularized function (6.9) obeys the following scaling property:

(ĩv) scale invariance: Ũ (λx1, λx2, λx3) = Ũ (x1, x2, x3) + 4π ln λ, where λ ∈ R+.

The inner integration (over ϑ) in (6.8) can be performed explicitly. Then the change of
variable ϕ → s = cos ϕ yields

Ũ (x1, x2, x3) = 4π ln
x13 + x23

4a
+ I (ξ, η), (6.10)

9
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where

I (ξ, η) = 4
∫ 1

−1

ds√
(s + ξ)2 + η2

arctan

√
(s + ξ)2 + η2

1 − s2
, (6.11)

ξ = x2
13 − x2

23

x2
12

, η2 =
[
(x13 + x23)

2 − x2
12

][
x2

12 − (x13 − x23)
2
]

x4
12

, (6.12)

and we have chosen for convenience: W0 = 4π(ln 2 − 1). We note that the interparticle
distances must satisfy the triangle inequalities: x13 + x23 � x12, x23 + x12 � x13 and
x12 + x13 � x23.

The regularized potential (6.10)–(6.12) possesses the permutational invariance (iii)
implicitly. This is evident from the fact that any particle permutation is equivalent to some
renumbering of k-variables in integrals (6.5) and (6.6) and, finally, to another choice of angular
variables in integral (6.8).

In particular cases where the points x1, x2 and x3 lie on a straight line integral (6.11) can
be calculated analytically:

Ũ (x1, x2, x3) = 4π ln
x>

2a
, where x> = max(x12, x13, x23). (6.13)

Another analytically solvable case is that of equidistant points, x12 = x13 = x23 = r ,
whereupon in (6.12), ξ = 0 and η2 = 3, so that I of (6.11) is a finite constant independent of r.
Thus, Ũ (r, r, r) = 4π ln(r/a) + c1, where c1 is a finite constant, which we can ignore (it does
not affect energy differences). For convenience we shall use ‘atomic units’, that is, energies
will be in units of mα2, and lengths in units of a = mα, where α = g2

16πm2 is the dimensionless

‘fine structure constant’. The total potential V = V
(2)

33 + V
(3)

33 (cf equation (5.7) and (5.8)) is
(with λ = 0), in atomic units,

V (r) = −3

r
+ γ ln r, (r is rmα, and V is V/mα2), (6.14)

where γ = 4κ/g. We see that V (r), in this equidistant-points subspace, is a uniformly
increasing, logarithmically confining potential (for γ > 0). Note that V (r) � − 3

r
for small r

(r → 0+) but V (r) � γ ln r for large r. Recall that if κ = γ = 0, the bound-state eigenvalue
spectrum (in atomic units) is the Rydberg spectrum εn = − 3

2
1
n2 , where n = 1, 2, 3, . . . ,

and there are no bound states for ε > 0. However, for γ > 0, the logarithmic confining
potential stretches out this Rydberg spectrum, so that there is a purely bound-state spectrum
for ε > 0. Using various approximations [18, 19] one can estimate εn � γ ln n for n � 1.
(The repulsive contact (delta-function) potentials, which we have ignored by taking λ = 0,
are of little consequence, since such repulsive contact potentials have an insignificant effect
on the energy spectrum.)

Other regularization methods lead, basically, to the same results. For example, if
we use the cut-off regularization of (6.3), then for the case x13 = 0, we obtain ŪR =
−4π[1 + ln(R/x12)] = 4π ln(x12/a) − c2 , where a is an arbitrary length parameter (length
unit), and c2 = 4π [1 + ln(R/a)] is a very large constant, which has to be absorbed into a
redefined (shifted) energy, as in (5.12). This result is the same as equation (6.13).

In the general case, a numerical integration of (6.11) is required. We illustrate the behavior
of the potential in figure 1 for the particular case x1 = a, x2 = −a as a function of x3 = r.
The value of potential for arbitrary configuration can be obtained from it using the symmetry
properties (i)–(iii) and (ĩv).

In the case where one of the points is far from the others, equality (6.13) is valid
asymptotically. Thus, the regularized potential reveals logarithmic confinement properties.

10
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z/a /aρ

0
1

2
3

1
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Figure 1. The potential Ũ (a, −a, r) as a function of r = {x, y, z}; ρ =
√

x2 + y2; a = |a|.
The function is symmetric under the inversion z → −z and rotation around 0z. In particular,
Ũ = 4πθ(|z| − a) ln 1

2 (|z|/a + 1) if ρ = 0.

A detailed analysis of the (non-relativistic) bound-state spectrum for the general case
requires the solution of the three body equation (5.6). This is a quite challenging task in itself.
However, from the confining nature of the three-point potential, we can see that the spectrum
will reflect confinement, much like for the equidistant-points subspace of (6.14).

7. Concluding remarks

We have considered generalizations of the Wick–Cutkosky (massless scalar Yukawa) model
that include nonlinear mediating fields. Covariant Green’s functions were used to eliminate
the mediating field, thus arriving at a Lagrangian that contains nonlocal interaction terms.

In the case of a massless mediating field χ , with a 1
3κχ3+ 1

4�χ4 nonlinearity, we evaluate
the corresponding interaction term explicitly and show that the kernel has the form of a three-
and four-point ‘cluster potential’, cf (4.4) and (4.5).

We consider the quantized version of this model in the Hamiltonian formalism, and use the
variational method, with trial states built from Fock-space components, to derive a relativistic
integral wave equation for the three-particle system. The kernels (relativistic potentials) are
shown to contain one-quantum exchange terms and a three-point cluster term. In the non-
relativistic limit we evaluate the explicit coordinate-space form of the interaction potentials
and show that they consist of attractive pairwise Coulombic potentials and a cluster three-
point confining potential. The three-point potential, which arises from the 1

3κχ3 term in the
Hamiltonian, is divergent (and so needs regularization), but the potential differences are finite.
The regularized three-point potential is shown to be logarithmically confining, and dependent
only on the three inter-point distances. Its evaluation, for arbitrary values of its arguments, is
shown to be reducible to a single quadrature.

The three-body wave equation derived in this paper is quite complicated and must be
solved using approximation methods. This will be the subject of forthcoming work.

The three-particle trial state (5.1) is found to be the simplest variational ansatz which
manifests the confinement properties of the model. However, other sectors of the Fock space
in the variational problem are also of interest. For example, an open problem is the role of the
three-point interaction in the particle-antiparticle problem. It was pointed out in the section 5

11
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that the simple variational particle-antiparticle trial state |1+1̄〉 does not sample the H
(3)
int term

(4.7) of the Hamiltonian. Thus, this term does not influence the variational wave equation
derived only by using |1 + 1̄〉 (see [9, 11, 12]), in which case the only Coulomb-like interaction
arise. But the inclusion of both the |1+1̄〉 and |2+2̄〉 sectors leads to a coupled set of two
many-body wave equations [13] in which the effects of H

(3)
int and H

(4)
int are present. Whether

these effects are confining is a question that needs to be investigated.
Lastly, we comment on the role of ‘chion’ Fock-space sector in the variational bound-state

problem within the reduced Hamiltonian formalism of QFT used in this work. This role can
be examined by taking into account the χ0-dependent extra terms 	L of the total non-local
Lagrangian (3.4). They are at least quadratic in χ0 including the free-field term 1

2∂μχ0∂
μχ0

and interaction terms; see equation (3.7). Thus, the additional Hamiltonian corresponding
to the extra terms, 	H , has no effect on variational states |�〉 without free ‘chions’ (i.e.
quanta of the field χ0), since 〈�|	H |�〉 = 0 for such states. A non-trivial contribution to a
variational bound-state problem may arise from states with two or more virtual ‘chions’ but
this is a higher order effect in the coupling constants (κ , � or others) of the potential V .
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Appendix. Nonlocal Lagrangian from a nonlinear dipole model

In this section we consider a model which is built in analogy to the linear ‘dipole model’
[4, 11] that simulates the confinement interaction of quarks in mesons. This model is nonlinear
and gives Yukawa + cluster interactions. It is specified by the Lagrangian

L = ∂μφ∗∂μφ − m2φ∗φ − 1
4λ(φ∗φ)2 + ρ

(
χ + 1

2ϕ
)

+ ∂μχ ∂μϕ − V(ϕ), (A.1)

where both the χ(x) and ϕ(x) are real massless scalar fields and ρ = −gφ∗φ as in (3.1).
The variation of the action (2.1) and (A.1) leads to the coupled set of the Euler–Lagrange

equations

(� + m2)φ = −gφ
(
χ + 1

2ϕ
) − λφ(φ∗φ), (A.2)

(� + m2)φ∗ = −gφ∗(χ + 1
2ϕ

) − λφ∗(φ∗φ), (A.3)

�ϕ = ρ, (A.4)

�χ = 1
2ρ − V ′(ϕ), (A.5)

which determine the field dynamics.
Equations (A.4) and (A.5) possess the exact formal solution:

ϕ = D ∗ ρ, (A.6)

χ = D ∗ {
1
2ρ − V ′(ϕ)

} = D ∗ {
1
2ρ − V ′(D ∗ ρ)

}
, (A.7)

which can immediately be used on the r.h.s. of equation (A.2) and (A.3):

(� + m2)φ = −gφD ∗ {ρ − V ′(D ∗ ρ)} − λφ(φ∗φ), (A.8)

and similarly for φ∗. These equations can be derived from δ I = 0, with a Lagrangian identical
to (3.6) (but note that no iterative expansion, like that in equation (3.6), needs to be made in
this case).
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