
Collective dynamics in a liquid polyvalent metal: Liquid thallium
at the melting point

Taras Bryk1,a� and J.-F. Wax2

1Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine,
1 Svientsitskii Street, UA-79011 Lviv, Ukraine
and Institute of Applied Mathematics and Fundamental Sciences, National Polytechnic University of Lviv,
UA-79013 Lviv, Ukraine
2Laboratoire de Physique des Milieux Denses, Université Paul Verlaine Metz,
1, Boulevard Arago 57078 Metz Cedex 3, France

�Received 25 September 2009; accepted 24 January 2010; published online 18 February 2010�

Collective dynamics in liquid thallium at the melting point in a wide range of wave numbers and
frequencies is studied by molecular dynamics simulations and a theoretical analysis of time
correlation functions within the approach of generalized collective modes. The heat fluctuations
were explicitly treated in the theoretical scheme within the thermoviscoelastic dynamic model. We
report dispersion and damping of generalized longitudinal sound excitations, nonhydrodynamic
shear and heat waves, as well as wave number dependence of main relaxation processes.
Generalized wave number-dependent thermodynamic quantities and transport coefficients in liquid
Tl are discussed. © 2010 American Institute of Physics. �doi:10.1063/1.3319500�

I. INTRODUCTION

Collective dynamics in liquids is among the most fasci-
nating fields of condensed matter physics. Microscopic dy-
namics even in pure fluids is much less understood on a
molecular-size scale than phonon dynamics in crystals or vi-
brational dynamics of glasses.1 Among all the fluids, liquid
metals are of special interest because they display well-
defined collective excitations over a wide range of wave
numbers, k, as observed in inelastic neutron scattering and
inelastic x-ray scattering experiments.2 The hydrodynamic
theory, which is valid on macroscopic space and time scales,
predicts via the Landau–Placzek ratio3 that the pronounced
side peaks of the dynamic structure factors S�k ,�� can be
observed in liquids whose ratio of specific heats �=CP /CV is
close to unity. In liquid metals � usually ranges from �1.06
for liquid lithium up to �1.8–1.98 for liquid transition met-
als such as Fe, Co, and Ni.2

The shape of time correlation functions as well as the
main contributions to them can only be predicted analytically
on macroscopic time and space scales, where the local con-
servation laws correspond to the hydrodynamic equations.4

Time correlation functions between collective dynamic vari-
ables are the main quantities for a theoretical treatment of
liquid dynamics. On a length scale, when the atomic struc-
ture of the liquid becomes distinguishable, all the dynamic
processes show a crossover from a hydrodynamic behavior
to an atomic one. There does not exist a single theory, which
correctly describes all the variety of microscopic collective
processes existing on the atomic scale and coupling effects
between them. A significant breakthrough in understanding
the liquid dynamics on different length scales was achieved
when molecular dynamics �MD� computer simulations made

available calculations of density-density time correlation
functions Fnn�k , t� and their time Fourier transforms known
as dynamic structure factors S�k ,��, where k and � are the
wave number and frequency, respectively. However, the MD-
derived time correlation functions are of little use in them-
selves because the information on the different collective
processes is hidden in their shape and one does not a priori
know what kind of collective processes contribute to the
Fnn�k , t� �except in the case of extremely small wave num-
bers, where the main contributions are known from hydrody-
namic theory�. It is generally agreed that the leading oscil-
lating contribution to the shape of Fnn�k , t� comes from the
acoustic excitations, while one cannot separate and estimate
the strength and origin of the different relaxation processes
contributing to these time correlation functions beyond the
hydrodynamic regime. Besides, the widely used purely nu-
merical procedure of estimating the dispersion of collective
excitations from the positions of the side peak of S�k ,�� is
only valid in a rather narrow long-wavelength range, where
the overlap between the central and side peaks is negligible.
Another numerical approach for this evaluation is based on
the positions of the peak of the spectral function of the lon-
gitudinal current,

CL�k,�� =
�2

k2 S�k,�� ,

and yields frequencies slightly shifted with respect to those
obtained from the positions of the side peaks of S�k ,��, as
follows from the above relation. It is obvious that a consis-
tent definition of collective excitations in liquids must have a
correct analytical basis and lead to identical dispersion of
acoustic excitations when obtained either from S�k ,�� or
from CL�k ,��.

In order to accurately and consistently estimate the dis-
persion of the collective excitations as well as the origin ofa�Electronic mail: bryk@icmp.lviv.ua.
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the main collective processes responsible for the shape of
time correlation functions in different ranges of wave num-
bers, one has to perform their analysis based on correct mod-
els of generalized hydrodynamics. Many computational stud-
ies restrict the analysis by simply using fitting procedures
based on the oversimplified damped harmonic oscillator
model. In other studies one applies the hydrodynamic ex-
pressions for analysis of Fnn�k , t�, which obviously are incor-
rect beyond the hydrodynamic regime. The hydrodynamic
regime itself is difficult to reach in MD simulations, even at
the smallest wave numbers accessible. For this purpose, very
large simulation systems are required, typically of more than
2000 particles.

In order to be efficient at describing the collective dy-
namics of liquids over a wide range of wave numbers, gen-
eralized hydrodynamic models must account for the exis-
tence of nonhydrodynamic collective processes such as
structural relaxations, etc. Furthermore, these dynamic mod-
els must correctly reproduce the long-wavelength asymptotes
of the main hydrodynamic processes: acoustic modes and
nonpropagating relaxation processes connected with thermal
diffusivity and shear viscosity. Another important point in
analyzing the collective dynamics of liquids is the need of an
explicit treatment of heat fluctuations in the system. Analysis
of heat fluctuations from MD simulations of liquids is very
rare in the literature, even within the widely used memory
function formalism.5 The most complete scheme proposed so
far to take into account thermal fluctuations within the gen-
eralized hydrodynamic theory is a generalized collective
modes �GCM� approach.6 It is based on the treatment of a
hierarchy of dynamic variables, which is extended from the
hydrodynamic ones in order to take into account effects ex-
isting on shorter time scales than hydrodynamic processes.
Such a generation of extended dynamic variables is applied
to all the hydrodynamic variables �such as particle density,
heat density, concentration densities in many-component
case, etc.� in order to reach the desired level of accuracy in
the description of short-time processes in liquids. All the Nv
hydrodynamic and extended dynamic variables form the so-
called basis set of dynamic variables, which is used to esti-
mate the generalized hydrodynamic matrix, T�k�. Within the
GCM approach, the collective excitations are defined as the
eigenvalues of the generalized hydrodynamic matrix, T�k�,
being thus in complete agreement with the generally adopted
definition of collective excitations in statistical physics as
poles of the relevant Green functions. Hence, the Nv eigen-
values z��k���=1, . . . ,Nv� of the Nv�Nv generalized hydro-
dynamic matrix represent microscopic collective processes
in the liquid on length scales corresponding to the wave
number value k.

The GCM approach proved to be accurate in describing
the hydrodynamic and nonhydrodynamic modes of simple
metal Cs,7 polyvalent liquid metals Bi and Pb,8 as well as
liquid metallic alloys Mg–Zn and Li–Pb.9 To date, the GCM
approach is perhaps the most correct parameter-free method
for analyzing time correlation functions and evaluating non-
hydrodynamic processes in liquids. It is supported by numer-
ous analytical results for nonhydrodynamic relaxation and
propagating processes.

In this study we aimed to apply the well-tested GCM
approach to the exploration of collective dynamics in a triva-
lent liquid metal, namely, Tl, at its melting point. There were
no GCM studies of collective excitations and relaxation pro-
cesses in trivalent liquid metals before. Therefore, we aimed
to obtain the spectrum of propagating and relaxation eigen-
modes for liquid Tl over a wide range of wave numbers, in
order to trace back to their origin and estimate their long-
wavelength asymptotes from which different thermodynamic
quantities and transport coefficients can be calculated. The
paper is organized as follows. In Sec. II, we shortly describe
the details of our MD simulations and GCM analysis. Sec-
tion III contains the analysis of the dynamic eigenmodes in
liquid Tl obtained within a five-variables thermoviscoelastic
model, while Sec. IV summarizes the conclusions of this
study.

II. DETAILS OF MD SIMULATIONS

We performed MD simulations for a system of 4000
particles with number density matching the experimental
value n=0.033 Å−3 �Ref. 10� under periodic boundary con-
ditions in NVT ensemble. The reliability of the model of
interactions is a crucial point when performing simulations
of real systems. Indeed, it is necessary to reproduce with the
highest accuracy the forces between the atoms in order for
the simulated system to behave as similarly to the real one as
possible. Therefore, the quality of the interaction model
needs to be tested versus experiments. Trivalent metals are
not as easy to describe as alkali ones and efficient potential
models are rather scarce. In this study, the effective two-body
interaction potential for liquid metallic Tl was obtained using
Fiolhais local pseudopotential to describe the electron-ion
interaction and Ichimaru–Utsumi local-field correction func-
tion to account for exchange and correlation effects. This
two-body effective potential was tested previously by com-
puting the static structure factor S�k� and evaluating the melt-
ing temperature of Tl.11 Obtained S�k� was in very nice
agreement with the experimental one at the melting
temperature,12 which was estimated at 590�20 K,11 in quite
good agreement with the experimental value of 577 K.

The time step was 10 fs in our simulations. The produc-
tion run was 300 000 steps long and each sixth configuration
was used to evaluate the static averages and time correlation
functions. The high accuracy of the elements of the general-
ized hydrodynamic matrix thus reached is required by the
GCM approach in order to avoid any unphysical behavior of
the dynamic eigenvalues.

Twenty k-points were considered when estimating the
k-dependent quantities. The smallest k-value reached in the
current study was 0.127 Å−1. Averages over all the wave
numbers with identical absolute value but different directions
were performed. For each k-point the elements of the gener-
alized hydrodynamic matrix T�k� were directly estimated
from MD simulations avoiding any fitting procedure. The
GCM analysis of time correlation functions for liquid Tl was
performed within a thermoviscoelastic five-variables dy-
namic model,
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A�5��k,t� = �n�k,t�,JL�k,t�,��k,t�, J̇L�k,t�, �̇�k,t�� , �1�

for the case of longitudinal dynamics and a two-variables
dynamic model,

A�2T��k,t� = �JL�k,t�, J̇T�k,t�� , �2�

for transverse case. The dynamic variables for density n�k , t�,
density of longitudinal/transverse mass-current JL/T�k , t�, and
energy density ��k , t� are the hydrodynamic ones and are
represented as follows:

n�k,t� =
1

�N
	
j=1

N

e−ikrj ,

JL�k,t� =
m
�N

	
j=1

N
kv j

k
e−ikrj ,

�3�

JT�k,t� =
m
�N

	
j=1

N
�kv j�

k
e−ikrj ,

��k,t� =
1

�N
	
j=1

N

� je
−ikrj ,

where N and m are the number and mass of particles in
simulations, and � j is the single-particle energy of the jth
particle, which can easily be calculated in the case of effec-
tive pair potentials such as used in our MD simulations. The
square brackets in expression for transverse mass-current
mean the vector product. The dotted variables in Eqs. �1� and
�2� are the extended ones and represent the first time deriva-
tives of the corresponding hydrodynamic variables �3�. Their
explicit expressions follow directly. All the five longitudinal
and two transverse dynamic variables were easily sampled
straight from MD simulations. The time evolution of these
dynamic variables was used to estimate the matrix of time
correlation functions, F�k , t�, and the corresponding elements
of the generalized hydrodynamic matrix,

T�k� = F̃�k,z = 0�F−1�k,t = 0� ,

where F̃�k ,z=0� is the matrix of Laplace-transformed corre-
lation functions in Markovian approximation. The general-
ized hydrodynamic matrix was calculated for each k-point
sampled in MD and corresponding eigenvalues were esti-
mated. We recall that as many eigenvalues as the considered
dynamic variables are to be determined. As we will see, they
can either be pairs of complex conjugated eigenvalues
�propagating modes� or purely real ones �relaxation modes�.
Moreover, it may happen at given k-values that two real
eigenvalues merge into a pair of complex ones, or vice versa.
In the range of small wave numbers the resulting eigenmodes
can be compared with the analytical five-mode solution of
the dynamic model A�5��k , t� in the long-wavelength limit.13

III. RESULTS AND DISCUSSION

A. Static properties

Static structure factor S�k� can be calculated from the
MD data using either pair distribution function g�r� or statis-
tical averages of instantaneous density-density correlations.
Having the main dynamic variables �3� sampled in MD
simulations it is straightforward to estimate via statistical
averages all the wave number-dependent thermodynamic
quantities using the known expressions.14,15 The static struc-
ture factor S�k�= 
n�−k�n�k�� of liquid Tl at the melting point
is shown in the top frame of Fig. 1. It perfectly reproduces
the previous results.11 We will keep in mind that the main
peak of the S�k� is located at �2.2 Å−1. Calculations of
other generalized wave number-dependent thermodynamic
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FIG. 1. Structure factor S�k� for liquid Tl at the melting point and wave
number-dependent thermodynamic quantities: generalized linear thermal ex-
pansion coefficient �T�k�, generalized specific heat at constant volume
CV�k�, and generalized ratio of specific heats ��k�. The experimental value
of �, namely, 1.14 �Ref. 2�, can be recovered by extrapolation of ��k� to the
limit k→0.
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quantities permit to verify whether the effective pair poten-
tials used in this study enable one to simulate correctly the
heat density fluctuations in the liquid polyvalent metal.

The wave number dependences of generalized linear
thermal expansion coefficient �T�k�, generalized specific
heat at constant volume CV�k�, and generalized ratio of spe-
cific heats ��k� are shown in Fig. 1. They display their
maxima close to the location of the main peak of static struc-
ture factor. It is interesting to notice that the generalized
linear thermal expansion coefficient takes negative values in
the region 2.1 Å−1�k�1.6 Å−1. Similar behavior of �T�k�
was observed in the case of liquid Pb close to the melting
point.8 The generalized specific heat at constant volume
CV�k� has a minimum at �0.75 Å−1, while with further de-
crease in wave number the CV�k� smoothly increases right to
the macroscopic value CV=2.98 kB, which was obtained di-
rectly from the temperature fluctuations during the MD run.
Another generalized thermodynamic quantity, the general-
ized ratio of specific heats ��k�, reflects the strengths of cou-
pling between thermal and viscous processes. For �=1 the
coupling between the two types of processes vanishes. One
can see that in the region 2.0 Å−1�k�1.3 Å−1 the cross
correlation between thermal and viscous processes is almost
absent, while it is very important at the location of the main
peak of static structure factor. The wave number dependence
��k� smoothly reaches a macroscopic value when k→0,
which is in perfect agreement with the experimental value of
1.14.2

B. Time correlation functions and dynamic structure
factors

Time correlation functions between hydrodynamic vari-
ables contain in their shape information about all the micro-
scopic collective processes and coupling effects between
them. Successful theoretical approaches to collective dynam-
ics of liquids have to reproduce the MD-derived time corre-
lation functions. The main advantage of the GCM approach
over the regular memory function method is the simulta-
neous fulfillment of sum rules for three hydrodynamic time
correlation functions: density-density, density-energy, and
energy-energy time correlation functions. Within the dy-
namic model A�5��k , t�, the density-density time correlation
function fulfills the sum rules up to the fourth frequency
moment of the dynamic structure factor, while the density-
energy and energy-energy functions reach up to the third and
second frequency moments of the corresponding spectral
functions, respectively.

The GCM approach requires the knowledge of wave
number-dependent correlation times �ij�k�, which can be cal-
culated directly from the MD-derived time correlation func-
tions. The requirement of equivalence between �ij�k� ob-
tained from the MD-derived functions and their GCM
replicas forms additional sum rules for zero time moments of
corresponding time correlation functions.

In Fig. 2 one can see the quality of GCM replicas of
density-density, density-energy, and energy-energy time cor-
relation functions. The frequency and decay rate of the os-
cillations of the MD-derived functions are perfectly repro-

duced by the GCM replicas, so that one can expect the
dynamic model A�5��k , t� to be able to correctly take into
account the main microscopic processes.

Dynamic structure factors S�k ,�� are connected to the
density-density time correlation functions via time Fourier
transform. In Fig. 3 the dynamic structure factors, obtained
numerically from MD-derived density-density time correla-
tion functions �solid red lines�, and those represented by the
theoretical five-variable GCM approach �dashed green lines�
are shown for three wave numbers. In general, good agree-
ment is observed between the MD and theoretical curves,
especially perfect reproduction of S�k ,�� by the five-variable
GCM approach is obtained at low and high wave numbers.
For intermediate wave numbers the theory leads to side
peaks a little bit higher and narrower than those yielded by
MD simulations, although they are located at the correct fre-
quency of collective excitation. Besides the central peak is
reproduced very nicely. In all cases the theoretical S�k ,��
have exactly the same frequency moments up to the fourth
order as the MD-derived dynamic structure factors.

Having dynamic structure factors we can estimate the
Landau–Placzek ratio, which in case of pure fluids is a mea-
sure of contributions from thermal processes �central peak of
dynamic structure factor� and sound propagation �Brillouin
peaks� to the long-wavelength collective dynamics. The ratio
of integral intensities of central and side peaks of calculated
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replicas is provided by exact reproduction of frequency sum rules up to the
fourth frequency moment of dynamic structure factor. The time unit is
�=5.1376 ps.

074504-4 T. Bryk and J.-F. Wax J. Chem. Phys. 132, 074504 �2010�

Downloaded 19 Feb 2010 to 194.44.242.242. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



S�k ,�� for the smallest wave number is �0.17, that is in
good agreement with the right hand side of relation,

Icentral

2Iside
= �� − 1� , �4�

taking into account our calculated value of the ratio of spe-
cific heats �. This is an evidence that the calculated dynamic
properties are in good agreement with thermodynamics. We
have to mention here, that for the case of many-component
fluids the Landau–Placzek ratio has a more complicated form
than Eq. �4�. Recently we have shown on example of a mol-
ten binary alloy Li4Tl �Ref. 16� how the Landau–Placzek
ratio for binary systems takes into account concentration
fluctuations.

C. Spectrum of collective excitations

1. Longitudinal modes

The pairs of complex-conjugated eigenvalues,

z��k� = 	��k� � i���k� ,

correspond to two collective excitations propagating in op-
posite directions with damping 	��k� and dispersion ���k�.
Dispersion and damping of the generalized sound excitations
obtained from the analysis of the MD data within the five-

variable dynamic model A�5��k , t� are shown in Fig. 4. In the
long-wavelength range the �sound�k� displays a small “posi-
tive dispersion,” which is usually treated as a consequence of
coupling of the propagating longitudinal acoustic modes with
nonhydrodynamic process of structural relaxation.17 A
straight dashed line corresponds to hydrodynamic sound dis-
persion with the adiabatic speed of sound cs=1648 ms−1.
This value was obtained from the smooth extrapolation of
our estimated k-dependence of ���k� /S�k� to the limit
k→0. The obtained value of adiabatic speed of sound is
in good agreement with the experimental value of
cexp=1663 ms−1.18 The dispersion of the generalized sound
excitations has a minimum at the position of the first peak of
the static structure factor S�k� that corresponds to their strong
scattering �and damping� on the pseudo-Brillouin zone
boundary.

The wave number dependence of the damping of the
generalized sound excitations is shown in the bottom frame
of Fig. 4. The corresponding hydrodynamic asymptote
should be 	�k�=
k2 with 
 being the sound damping coef-
ficient. From the lowest k-points we were able to estimate the
value of 
=1.37�10−7 m2 /s. On the whole, 	�k� shows a
crossover from a quadratic dependence with k in the hydro-
dynamic region to an almost linear one in the interval
0.5 Å−1–1.2 Å−1. Similar features in the wave number de-
pendence of damping of generalized acoustic excitations
were observed previously for liquid Pb.8 Besides, the sound
damping reaches its maximum at the location of the main
maximum of static structure factor �k�2.2 Å−1�.

Since Tl is a trivalent liquid metal it is interesting to
compare the obtained results for long-wavelength longitudi-
nal collective modes with the Bohm–Staver theory of collec-
tive excitations in metallic systems.19,20 According to the
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Bohm–Staver model the long-wavelength dispersion of
acoustic excitations in metallic systems is expressed by a
simple expression,

�BS
2 �k� =

1

��k�
�p

2,

where �p is the ion plasma frequency and ��k� is the static
dielectric function of homogeneous electron gas that di-
verges in the long-wavelength limit as k−2. Taking the ��k� in
the standard random phase approximation we have obtained
for the speed of long-wavelength acoustic Bohm–Staver ex-
citations in liquid Tl a value cBS=2716.3 m /s, that is more
than 60% higher, that the experimental adiabatic speed of
sound. This value supports an original assumption by Bohm
and Staver,19 that the non-Coulombic part of the interionic
potential, which was ignored in the original Bohm–Staver
model, is appreciable for polyvalent metals. We have to men-
tion here recent attempts to improve the Bohm–Staver model
by introducing low-k corrections to plasma dispersion and an
account for finite mean square ionic radii.21,22 These correc-
tions work very nicely for alkali metals, however for dense
metallic systems such as Al or Ga �with small GellMann–
Bruckner parameters rs of 2.191 and 2.426 Bohr radius, re-
spectively� they must have yielded negative corrections to
the Bohm–Staver dispersion.22 It seems that the liquid Tl
with rs=2.532 a.u. is another polyvalent liquid metal in this
row, for which the mentioned corrections should be negative.

A common feature of liquid metals studied before by the
GCM approach7–9 was the existence of another branch of
propagating modes, which corresponded to nonhydrody-
namic heat waves. The branch of nonhydrodynamic propa-
gating collective modes appears in liquid Tl for wave num-
bers k�0.62 Å−1 �Fig. 5�. This low-frequency branch
corresponds to heat density propagating on distances not
larger than 10–15 Å. On macroscopic scales the only mecha-

nism of heat transfer is a relaxation process connected with
thermal conductivity. To some extent the behavior of heat
waves is similar to the dispersion of shear waves in liquids,
and this analogy was known for years in continuum
mechanics.23 However, there are no studies of heat waves in
MD simulations, except within the GCM approach.8 Namely,
the GCM approach can predict the width of the propagating
gap for heat waves in long-wavelength region.8 Inside the
propagation gap, for k
0.62 Å−1 in liquid Tl, the heat trans-
fer is only via hydrodynamic thermal relaxation. One can see
in Fig. 5 that the damping of heat waves is larger than for
sound excitations, that implies they contribute smaller to the
density-density time correlation functions.

2. Transverse modes

Transverse dynamics of pure fluids can be analyzed
within the two-variables dynamic model A�2T� Eq. �2�, where
the only extended dynamic variable is the first time deriva-
tive of the hydrodynamic transverse momentum density. The
corresponding transverse eigenvalues are shown in Fig. 6. In
the top frame one can see that there exists a propagation gap
for the long-wavelength transverse collective excitations in
complete agreement with the hydrodynamic theory. From our
analysis, the width of the propagation gap of shear waves is
ks�0.22 Å−1 for liquid Tl at the melting point. Beyond this
gap the dispersion of shear modes �imaginary parts of trans-
verse complex eigenvalues� shows a steep increase followed
by an almost flat part for k�1.5 Å−1. The damping of shear
waves �real parts of complex eigenvalues� increases almost
linearly from ks up to about 2 Å−1 where the curve reaches a
plateau.

For wave numbers k
ks, one obtains two purely real
eigenvalues instead of the pair of complex-conjugated ones.
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ymptote of the lowest transverse relaxation process.
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They are shown by line-connected “plus” symbols in Fig. 6.
The lowest real eigenvalue in the long-wavelength limit must
behave as

d1
T�k� = DTk2,

where DT�k�=�s�k� /� with �s�k� being the shear viscosity
and �, mass density. The dashed line in the bottom frame of
Fig. 6 corresponds to this hydrodynamic asymptote and al-
lows to estimate the value of the shear viscosity at 0.026 P.10

The real eigenvalue with the shorter lifetime, d2
T�k�, corre-

sponds to a kinetic transverse relaxation process. Analytical
results for the transverse real modes9 make evidence, that the
long-wavelength limit of the d2

T�k� is defined by the shear
modulus.

D. Wave number-dependent relaxation processes

One can distinguish between two kinds of relaxation
processes: hydrodynamic ones with corresponding relaxation
times proportional to k−2 and nonhydrodynamic �kinetic�
ones with finite relaxation times in the hydrodynamic limit.
For longitudinal dynamics in pure liquids, the only hydrody-
namic relaxation process in the region of small wave num-
bers is the one connected with thermal diffusivity. This re-
laxation process makes the leading contribution to the central
peak of dynamic structure factor S�k ,�� in long-wavelength
region. In Fig. 7 we show the purely real eigenvalues
dj�k� , j=1, . . .3 of the generalized hydrodynamic matrix and
corresponding to wave number-dependent relaxation pro-
cesses. In the long-wavelength range the lowest real eigen-
value d1�k� behaves almost proportionally to k2. This allows
to ascribe it to the hydrodynamic mode and to estimate the
value of the thermal diffusivity at DT=1.88�10−7 m2 s−1.
The other two real eigenvalues tend to nonzero values in the
long-wavelength limit that means finite relaxation times on
macroscopic distances �in comparison with the k−2 asymptote
of hydrodynamic processes�. According to analytical solu-

tions of the dynamic model A�5��k , t� �Ref. 13� the relaxation
mode d2�k� shown by crosses in Fig. 7 tends to a long-
wavelength limit,

d2�0� =
c�

2 − cs
2

DL
,

that is known as the strength of the structural relaxation.17,24

In this former expression, c� denotes the high-frequency
speed of sound and DL, the kinematic viscosity. Hence, the
relaxation process d2�k� is the wave number-dependent struc-
tural relaxation. One of its most interesting features is a
crossover with the hydrodynamic relaxation mode d1�k� at
k�0.5 Å−1. For larger wave numbers d2�k� becomes the
slowest relaxation process in the system on short length
scales, while on macroscopic ones the slowest relaxation
process is the one connected with thermal diffusion d1�k�.
This explains why viscoelastic theories are very successful in
describing the collective dynamics on intermediate and short
length scales.

The third real eigenvalue d3�k� shown by plus symbols
in Fig. 7 corresponds to a fast kinetic thermal relaxation
process. Both thermal processes d1�k� and d3�k� merge for
k�0.62 Å−1. In this region the kinetic heat waves emerge
instead of the two thermal relaxation processes and bring an
additional mechanism of heat transport on microscopic dis-
tances, while heat waves cannot exist in liquids on macro-
scopic distances in complete agreement with hydrodynamics.

E. Generalized transport coefficients

The generalized wave number- and frequency-dependent
transport coefficients can be calculated from the matrix of

lowest order �hydrodynamic� memory functions M̃�k ,�� 6,25

as follows:

M̃�k,�� = k2VkBTL̃�k,��F�k,t = 0� , �5�

where L̃�k ,�� is the 3�3 matrix of generalized wave
number- and frequency-dependent transport coefficients,
V is the volume of the system, and T is the temperature. In
such a way we obtained the generalized static kinematic vis-
cosity DL�k ,�=0� and thermal conductivity ��k ,�=0�.
In the case of transverse dynamics we calculated similarly
the wave number-dependent shear viscosity �s�k ,�=0�
=�DT�k ,�=0�, where � is the mass density of the system.

In Fig. 8 the wave number dependences of DL�k� and
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FIG. 7. Wave number-dependent relaxation processes in liquid Tl. The low-
est real eigenvalue d1�k� in long-wavelength limit �stars� has a correct hy-
drodynamic asymptote �dashed line� and corresponds to relaxation processes
connected with thermal diffusivity �dotted line�. Estimated value of thermal
diffusion coefficient is DT=1.88�10−7 m2 s−1. The eigenvalue d2�k�
�crosses� corresponds to structural relaxations and for k�0.5 Å−1; it is the
slowest relaxation process in the melt. Above 0.62 Å−1, both d1�k� �stars�
and d3�k� �plus� merge into a single propagating branch �squares� corre-
sponding to heat waves, which is shown in Fig. 5.
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FIG. 8. Generalized wave number-dependent kinematic viscosity DL�k�
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DT�k� are shown. The kinematic viscosity can be represented
as a sum of contributions from shear ��s� and bulk viscosi-
ties ��v�,

DL�k� =
4

3
DT�k� +

�v�k�
�

=
4

3

�s�k�
�

+
�v�k�

�
. �6�

It is observed that the kinematic viscosity tends to a macro-
scopic value DL�3�10−7 m2 /s, while the shear viscosity
corresponds to the value of DT�2.35�10−7 m2 /s. Interest-
ingly, according to Eq. �6� and Fig. 8, the contribution from
bulk viscosity to DL�k� is decreasing with wave number and
the generalized bulk viscosity �v�k� even becomes negative
in the region of k�1.7 Å−1. This change of sign happens in
the range of wave numbers, where the generalized linear
thermal expansion coefficient becomes also negative �Fig. 1�.
However, the generalized bulk viscosity becomes again posi-
tive for k�2.5 Å−1. One has to mention that a similar fea-
ture of the wave number dependence, namely, a negative
range of generalized bulk viscosity was previously reported
for Lennard-Jones fluids.25

The generalized thermal conductivity is shown in Fig. 9.
In general it is a monotonically decaying function of k,
which tends to the macroscopic value of the ionic part of the
thermal conductivity in the long-wavelength limit. In the
case of liquid metals, we stress that another contribution to
the thermal conductivity comes from the electronic excita-
tions �Fermi liquid�, which is impossible to obtain in the
frame of classical MD. The ionic part of the thermal conduc-
tivity obtained in this study is in complete agreement with
the value reported in the previous section about thermal re-
laxation processes and obtained from thermodynamic quan-
tities such as specific heat at constant volume and ratio of
specific heats �see Fig. 1�. In Fig. 9, we show by open box at
k=0 the value of �=0.296 J / �s m K� obtained from the re-
ported above quantities using the relation

� = nCpDT,

where n is number density and DT, the thermal diffusivity.
The agreement between both approaches for the estimation
of � is very good.

IV. CONCLUSION

We have studied the collective modes and generalized
transport coefficients in the polyvalent liquid metal Tl at its

melting point. The parameter-free GCM approach was ap-
plied to estimate the spectrum of dynamic eigenmodes in-
cluding collective excitations and nonpropagating wave
number-dependent relaxation processes. The pair potentials
derived from Fiolhais pseudopotential permit to simulate
correctly the heat fluctuations in the liquid polyvalent metal
and obtain the ratio of specific heats close to its experimental
value. The obtained eigenmodes and eigenvectors permitted
to reproduce very well the MD-derived time correlation
functions without any fitting, demonstrating the accuracy of
the dynamic model chosen for this theoretical study.

The calculated value of the adiabatic speed of sound is in
very good agreement with experimental data. We also predict
a small positive deviation of long-wavelength acoustic exci-
tations from a linear dispersion law. It was shown that in the
region k�0.62 Å−1 there exists another branch of collective
propagating modes that correspond to nonhydrodynamic heat
waves. In complete agreement with hydrodynamics of liq-
uids, they cannot exist in the long-wavelength range, sup-
porting an analogy with shear waves known from continuum
mechanics.23

Wave number-dependent thermodynamic quantities and
transport coefficients were estimated for liquid Tl. We ob-
tained perfect agreement with the macroscopic value for the
calculated generalized ratio of specific heats. The wave num-
ber dependence of generalized linear thermal expansion co-
efficient reveals negative values of �T�k� in the region
2.1 Å−1�k�1.6 Å−1 that is similar to the observation for
the case of liquid Pb close to its melting point8 and can be a
precursor of bonding correlations on nanoscale at the melting
point. The generalized kinematic and shear viscosities show
a standard monotonically decaying wave number depen-
dence. For 2.5 Å−1�k�1.7 Å−1, our calculations suggest
that the bulk viscosity of liquid Tl becomes negative, similar
to the reported for Lennard-Jones fluids.25 The region of
wave numbers with negative bulk viscosity corresponds to
the region with negative generalized linear thermal expan-
sion coefficient.
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