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The frequency dependence of dynamical conductivity of the quasi-one-dimensional structures with hydrogen
bonds is studied on the basis of pseudospin-electron model. It takes into account the proton-electron inter-
action, external longitudinal field &, the tunneling hopping of protons, electron transfer and direct interaction
between protons. The dependences of the electron concentration and mean number of protons at the site on
temperature and external field are obtained. The phase transition lines from uniform phase into charge ordered
phase are determined. The dependence of dynamical conductivity on temperature and field & and its changes
at the phase transitions are obtained.
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1. Introduction

The properties of molecular and crystalline structures with hydrogen bonds are mainly determined
by the character of proton redistribution on the bonds. We investigate the microscopic mechanisms of
charge transfer in such systems on the basis of the proposed pseudospin-electron model [1, 2] that takes
into account the correlation between the proton displacement and reconstruction of electron states as
well as the change of their occupancy. This interaction manifests itself as a cooperative proton-electron
transfer (PET) in a number of experimental works [3-10] and it follows also from the results of quantum-
chemical calculations [1,/11H13]. Quantum chemical methods allow us to examine these charge redistribu-
tions more in detail. The structural and optical studies of the proton transfer in N-salicylideneaniline [8,
10] show that photochromism and thermochromism in these object arise from a proton transfer that is
accompanied by a configurational change of electron structure. It was shown that the behaviour of pro-
ton dynamics is quite consistent with the temperature dependence of visible absorption spectra of this
crystal. If we could construct a molecular conductor based on this type of molecules, the charge trans-
port might strongly be modulated by the proton motion. Photoinduced proton-coupled electron transfer
(PCET) is investigated in a number of works [14-17] as one of the mechanisms of energy transformation
in biological and chemical systems. The effect of a such proton-electron coupling plays an important role
in passing a proton through the biological membrane in photosynthesis. The design of an electron-proton
hybrid system using the elements of one-dimensional metal chains, acceptor (or donor) molecules, and
interchain H-bonds are proposed [4]. A new molecular function is expected to be produced in this system,
if the motion of proton is closely correlated with the dynamics of the 1D electronic states. A similar effect
is observed in the halogen (X)-bridge mixed-valence transition-metal (M) complexes (M-X-complexes) [3].
The M-X-complexes [MA»X]Y2 (M = Pt, Pd or Ni) have a one-dimensional (1D) chain structure and adja-
cent chains are connected by hydrogen bonds. Here X stands for a bridging halogen ion (X = Cl, Br or
]), A for a ligand molecule (e.g. ethylenediamine, cyclohexenediamine), and Y for a counter anion (e.g.
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Y =Br~, ClO,). The location of the protons on N-H-Y induce additional electron charges on the ions M and
at some conditions they form a charge-ordered state (CDW) [3]. It is pointed out that the electron-proton
coupling is capable of controlling the CDW state [18].

Pseudospin-electron model was originally proposed to describe the correlated proton-electron charge
transfer in a single complex with hydrogen bond [1]. This model was later extended to the description of
the charge transfer in the above mentioned quasi-one-dimensional structures with hydrogen bonds. We
examined uniform phases [2]. In this work we investigate the phase transition from uniform phase into
charge-ordered phase in such systems. We study thermodynamic properties and the frequency depen-
dence of dynamical conductivity and its changes at the phase transitions.

2. Hamiltonian

The Hamiltonian of quasi-one-dimensional structures which contains chains with hydrogen bonds
are written down in the form [2]:

Her = Y.Y {le—nic(D)+g[nic (D) — niv1,6(D] S (D}
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Here, the summation along the chains (indices i, j) and the summation over the chains (indices I, 1 is
performed. Pseudospin operator S; describes the proton position in double potential well on the hydro-
gen bond. We suppose that the transfer along hydrogen bond is dominant: ¢ = #;(;) ;+1(5); Mic 1S Operator
of electron concentration at i lattice site, o is electron spin, u is chemical potential of electrons.

The Hamiltonian includes proton-electron interaction (parameter g), electron transfer (parameter f),
energy of proton tunneling (parameter (), asymmetry of the local anharmonic potential (parameter h).
The last term describes proton-proton interaction.

Pseudospin-electron interaction leads to the effective interaction between pseudospins (between pro-
tons in our case) and as it is shown in [19+21] it can cause the appearance of a modulated phase with
doubling of the initial lattice period and can lead to the corresponding charge modulation. The study of
this phenomenon is the aim of this paper. In a case of double modulation of the lattice period, the crystal
is divided into two sublattices. We introduce the following notations: 14 = <Si oh Na = <§ Nigo) (@=1,2

is the sublattice index). In the mean field approximation (MF) and after passing to k-representation the
Hamiltonian (@) has a form:

Hwmr = He + Hsp +U, (2)
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The electronic part of Hamiltonian (@) is diagonalized by unitary transformation

ak,1,0 = Ak,1,6 COSY + Ay 2,5 sing,
Ak2,0 = —0k,1,0 SINQ + A 2,5 COS P, (3)

—g(m —1n2) I

, sin2¢ = .
\/ &2 m —m2)% + 1} \/ &2 —m2)? + 13

COS2¢p =

Thus, we obtain:

Ho= ). (B~ Wikao 4)

k,a,0

Era=e+ (D% \/g2n —n2)?+12.

The spin part of Hamiltonian is diagonalized by unitary transformation:

ST = Sf(Dcosy+ S§~(l) siny,
S = =Si(D)siny+ S (Dcosy,
cosye = [h+Jng—g(na—ng)l/Aa,sinye=0Q/Aq.
In this case:
Hsp = _Zzﬂfagia(l), (5)
|l i,a

Ao = \/[h+]nﬁ—g(na—nﬁ)]2+(22.

3. Thermodynamic properties

Using formulae @)-(G), we can write the equations for electron concentration n, and the average
mean of pseudospins 7, in sublattices:

1 1+cos2 -
e = g ¥ (0 exp f(Ea—n)]}
2 ka0
1-cos2¢p -1
+—— L+ exp [B(Erp - )]} ) ©
_ h+Jng—g(ne—np) Aa
T]a — 2/106 tanh (ZIC—T) . (7)

From all the possible solutions of equations (B)-(7) we choose the ones that correspond to the mini-
mum of grand canonical potential ® in regime of ¢ = const or minimum of free energy F = ® + uN in
regime n = const. In the MF-approximation:

o = —2kTXk:ln({1+exp (=B (Ex1— )]} {1 +exp[-B(Ek2 —,u)]})

2 ]

1
——kTNIn
2 2kT 2kT

1 1
+5N]771772—§Ng(7l1—n2) (m —n2). (8)

From the relations (6)-(7) we obtain the equations for 6n = n; —n, and 61 = n; —n2 , which can play a
role of the order parameter for a modulated phase. Using these equations we obtain the condition of the
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appearance of nonzero solutions for 6n and 07, and the equation for temperature of the second order
phase transition to the modulated phase.

2 [QZ 1
kT

il el P+ = 21_ 2
|7 (0% +— (h+Jn) (4 (0% )]
X

%l—%;f—:én({l+exp[ﬁ(£—ltkl —W))} T {1+ exp [Ble+lnd - )]} )| +1=0.
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Here:

N+ ny n1+12 | ( A ) 2,02
= ) = ) = —tanh|——], =/ Q2.
n 5 n 5 (o%) 2tan kT A (h+Jm=+

At certain conditions, the order of phase transition can change from the second to the first one. The
phase transition lines of the first and second order from the uniform phase to the phase with double
modulation are shown in figure [Tt (a) for different values of the chemical potential y, (b) for different
values of parameter J and for Q = 0 and Q = 0.05 eV cases. Transition point of the first kind defined by
numerical calculation as the point at which the requirement of minimum for thermodynamic potential
with changing the parameters of the model is transition from a homogeneous solution 71 = 12, 71 =12 to
the modulated with different from zero 67 and d7. The lines of phase transitions (PT) of the second order
are shown bold and the lines of the first order PT are thin. The splitting of the electron band at phase
transition is shown in figure[2] The temperature dependences of mean numbers of electrons of sublattice
ni, ny, and uniform phase ng also, along the phase transition line are shown in figure[3l The temperature
dependences of mean values of pseudospins 71, 772, ¢ are illustrated in figure[3las well. The temperature
dependences of §n(T) and 67(T) are illustrated in figure @l These results are obtained for the following
values of parameters: g =0.08 eV, t =0.05eV, J =0, u=0, Q=0 and Q = 0.05 eV. The results for J # 0,
1 # 0 are presented in figure[l Such a choice of the parameter values corresponds to the ones given in [1].
All energy characteristics (7, h, E, g, t, ], 1,Q2) are in eV units.
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Figure 1. The phase transition lines of the first and second order from the uniform phase to the phase with
double modulation: (a) for different values of the chemical potential u: 1, 2, 3,4 — 11 =0,0.05,0.08,0.12 eV
(Q =0, J =0), (b) for different values of parameter J: 1, 2, 3,4 — J =0,0.05,0.1,0.2 eV (2 =0.05 eV, u = 0).
Parameters T, h are in eV units.
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Figure 2. The splitting of the electron band: (a) along the phase transition line (b) for 4 = 0 in charge
ordered phase, Q =0, (u =0, J =0). Parameters E, T are in eV units.
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Figure 3. The temperature dependence of mean numbers of electrons of sublattice nj, np, and uniform
phase ng and temperature dependence of mean values of pseudospins 71, 172, 17¢ along the phase transi-
tion line, Q =0, (u=0, J =0).
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Figure 4. The temperature dependence of the values §n and dn along the phase transition line, 1 — Q = 0;
2—0Q=0.05eV,(u=0,J=0).
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4. Dynamic conductivity of quasi-one-dimensional structures
with hydrogen bonds

Calculation of the dynamic conductivity of the structure which possesses the chains with hydrogen
bonds was carried out according to Kubo formula [22]

o p
o) = ﬁfdtexp[i(wﬂs)t]fd/l(f(t—ih/l)f(O)), (10)
0 0

where fis the current density operator
i

j0) = —[H,d], 11)

St

dis dipole momentum operator
d=(-e)Y. Y Ri(Dni(D+2z36Y. Y SZ(),
I i I i

that includes electronic and pseudospin (ionic) part. Here 6 is the distance between equilibrium positions
of a proton on the bond, § ~ 0.40 A. According to quantum-chemical calculations, the effective charge of
hydrogen z%ff is equal to zflff =~ 0.25e

j(t =enf jo)e e, (12)
In the molecular field approximation, the operator of current density is split into electronic and pro-

ton (pseudo-spin) parts
J=Je+Jsp- 13)

The following expressions are obtained for these composites:

. 2e — [0E, (k)
Je = _%kz" ao;Cz —(—=1)*2E4(k)F (k) “z,a“kra
, &
2e
o Y_F(k) [Er(k) - E2(K)) (@] yax,1 + ag , ax.2), a®
k
R 5
fp = 204IYY S0 "
|l i,a

Calculation of correlation functions in the expression with the use of the Wick’s theorem yields
the following expressions for a real part of conductivity:

O=0¢+0gp, (16)
where the electronic part has a form:
dme? 0E, (k) a ]2 ePlEatk)—p]
= —(-D)"2E4 (k) F(k)| ————— 6
e() Nanzﬁ,% o, V2B () s el @)
47162 ) eB[E2(k)—p] _ oB[E1(k)—p]
* Nah? Xk:F(k) [E2() = E1 (K] {1+ eflE1K-pu]L L] 4 eBlE2()-p]}
X 6(w+ % [Ex(k) —E1(/€)]) +6(w— % [Ez (k) —El(k)])] . 17
Here
_ t!
gL 8m-m)g

2 g2 —mp)’ + 12
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Figure 5. Frequency dependence of the electronic
part of conductance: 1 — before phase transition
(uniform phase), 2, 3 — after phase transition
(modulated structure) along the phase transition
line; 2 — 0 =0.05eV,3—Q=0;u=0,J=0.
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Figure 6. Frequency dependence of the elec-
tronic part of conductance with different values
of proton-proton interaction (parameter J), h =0,
p =0, T =0.03016 (350 K): J = 0;0.05;0.14; 1 —
Q=0;2—Q=0.05¢eV.

For the protonic part of conductivity we obtain:

1 1-e Pla

A—m [6((1)—/1(1/’1) +6(w+/1a/h)] (18)
a a

6 ff 2
Usp( w) = (ZHZISI Q)
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Frequency dependence of the electronic part of the dynamical conductivity along the phase transi-
tion line is shown in figure 5] curve 1 — before phase transition (uniform phase), curve 2, 3 — after

phase transition (modulated structure). At
the phase transition from uniform to modu-
lated structure, the conductivity o (0), when
w =0, is abruptly reduced by two to three or-
ders of magnitude at low temperatures and
with increasing temperature the value of the
jump decreases. Electronic conductivity has
one peak (at w = 0) in uniform phase, (one
electronic band is present). We observed the
splitting of the electron band in a modu-
lated phase, and electronic conductivity has
a broad maximum in the frequency region
w = $[Ez(k) — E1 (k)] as well as a peak in
w = 0. This broad maximum is placed in
the lower frequency regions for structures
with the high proton tunneling frequency
and stronger direct interaction between pro-
tons. The static conductivity o (0) in a mod-
ulated phase increases with temperature.
The dynamical conductivity oe(w) decreases
with increasing temperature and its maxi-
mum shifts to a lower frequency region and
vanishes at the critical temperature when
there is no modulation. In a homogeneous
phase, only one peak remains at w = 0. The
change of the frequency dependence of the
dynamical conductivity with the parameters
J and p is shown in figure [6] and figure [7]
(here we consider the case & = 0). Maximum
of the dynamical conductivity decreases and
shifts to lower frequency region with an in-
crease of J and p. Critical values of these pa-
rameters exist (see figure [[) when the mod-
ulated phase vanishes and there remains
only a peak at w = 0. The temperature de-
pendence of electronic conductivity o¢(0) is
shown in figure[8] This part of the conductiv-
ity is higher for systems with larger proton
tunneling frequency and it increases with an
increase of the parameters J. Conductivity
value is presented in relative units.

Proton dynamic conductivity has peaks
at frequencies w; = % corresponding to pro-
tons energies A; on hydrogen bonds. One
peak (Ag) exists in case of homogeneous
phase and two peaks (11, A») are present for
the case of a modulated structure. The de-
pendence of the energy A; on temperature
and asymmetry field # along the phase tran-
sition line is shown in figure [0
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Figure 7. Frequency dependence of the electronic part of
conductance with different values of chemical potential
W h=0,]J=0,T=0.03016 (350 K): 1 = 0.05;0.07;0.078;
1—Q=0;2—Q=0.05eV.
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Figure 8. Temperature dependence of the electronic part of conductance of the modulated structure
0e(0); u=0h=0;1,2—J=0;3—J=0.054—7=012,1—Q=0;2,3,4—Q=0.05eV.
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Figure 9. The dependence of the peak-frequencies of the proton dynamical conductivity on temperature
and longitudinal field along the phase transition line; A; = fiw;; 1= 0; J = 0; (@) — Q = 0; (b) — Q = 0.05 eV.
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5. Conclusions

The possibility of the first or the second order transitions from uniform phase into phase with doubled
lattice period in the quasi-one-dimensional structures with hydrogen bonds is studied in the framework
of the proposed pseudospin-electron model. It was shown that pseudospin-electron (proton-electron) in-
teraction may cause the appearance of charge ordered phase in the structures with hydrogen bonds. The
electron spectrum is calculated. The dependences of the splitting of the electron spectrum on temperature
and asymmetry field are investigated. The dependences of the electron concentration and mean number
of protons at the site on temperature and asymmetry field were obtained. It was shown that abrupt
changes of these characteristics at the first-order transitions are smaller for the structures with high pro-
ton tunneling frequency and stronger direct interaction between protons. The phase transition lines from
uniform phase into charge ordered phase are determined. The dependences of the dynamical conductiv-
ity on temperature and external field and its changes at the phase transitions are obtained. At the phase
transition from uniform to modulated structure the static conductivity o (0) is abruptly reduced by two
to three orders of magnitude at low temperatures and with increasing temperature the value of the jump
decreases. Electronic conductivity has one peak at w = 0 in a uniform phase. In modulated phase, the dy-
namical electronic conductivity has a broad maximum as well as a peak at w = 0. This broad maximum
is placed at lower frequencies for the structures with high proton tunneling frequency and stronger di-
rect interaction between protons. It was shown that the frequency dependence of the proton dynamical
conductivity has one peak in a uniform phase and two peaks in the charge modulated phase. The model
can be applied to a description of quasi-one-dimensional structures, the so-called halogen-bridge mixed-
valence transition-metal complexes [3] in which there are charge modulated states.
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Phase transitions and dynamical properties

da3oBi nepexoAn i ANHaMIiUYHi BNaCTUBOCTI
KBa3ioAHOBUMIiPHUX CTPYKTYpP 3 BOAHEBNMMU 3B'A3KaMMN

P.A. Cteuis

IHCTUTYT di3nkm KoHAeHcoBaHMX cuctem HAH YkpaiHu, Byn. CBeHUiubkoro, 1, 79011 JlbBis

Ha ocHoBI NnceBAOCNIH-eNeKTPOHHOT MOAeNi A0CNiIAXKEHO YaCTOTHY 3aN1eXHICTb AMHaMIYHOI NPOBIAHOCTI KBa3io-
AHOBUMIPHWX CUCTEM 3 BOAHEBVMM 3B'A3KaMu. B Mojeni BpaxoBaHO MPOTOH-e1eKTPOHHY B3aEMO/it0, 30BHILLHE
MO3/0BXHE Noe h, TYHeNtOBaHHSA NPOTOHIB, eNeKTPOHHE NepeHeceHHs | MPSMY NPOTOH-MPOTOHHY B3aEMOZI0.
OTprIMaHO 3aieXHICTb e/1eKTPOHHOI KOHLLeHTpaLlii i cepeAHbOI 3aceneHoCTi MPOTOHHUX NO3WLiA Bij Temnepa-
Typw i nons h. OTprMaHo niHito Ga3oBrXx Nepexoais 3 ogHopiAHOI Gasm Ao da3u 3 MogynsLieto 3apsgy. Jocni-
[PKEHO 3anexHicTb AMHaMiYHOT NPoBIAHOCTI Big nons h i Temnepatypu Ta i 3MiHW Npn $pasoBUX NepexoAax.

KntouoBi cnoBa: riceB40criH-e/1€KTPOHHA MOA€e/b, POTOH-e/1eKTPOHHA B3aEMOZIS, BOAHEBUIT 38'A30K,
MPOBIAHICTL
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