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The thermodynamics of the Bose–Fermi–Hubbard model with direct interaction between neighbour

bosonic particles is considered in this work at finite temperature. The hard-core boson case is

considered and the pseudospin formalism is used. Charge susceptibility of the system is calculated

and the possibilities of the transitions to the charge density wave order, superfluid and supersolid

phases are analysed. We derive an analytic formula for the grand canonical potential and analyse the

thermodynamically stable states.

& 2011 Published by Elsevier B.V.
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1. Introduction

Bose–Fermi–Hubbard(BFH)-type models have been widely
used in condensed matter physics. An example of the real system
where this model can be applied is a crystal intercalated by ions
(for example, TiO2 crystals, intercalated by lithium, such systems
can be used as rechargeable high-energy-batteries [1]). The
pseudospin-electron model (which is similar to the BFH model
with hard-core bosons) of intercalation was formulated in our
previous works [2,3]. In such systems ions interact with electrons
and effective interaction between ions is formed. In this work we
also consider the direct interaction between ion (boson) particles
and investigate phase transitions at finite temperature.

BFH-type models can also be used to describe mixtures of
bosonic and fermionic atomic species in optical lattices [4–9]. By
varying the strength of the periodic potential created by the laser
beams it is possible to change the interatomic interactions.
During the last decade, such systems have been intensively
studied both theoretically and experimentally. Extended Bose–
Hubbard-type models include an additional interaction between
particles at different sites (long-range interaction), this interac-
tion exists in dipolar cold atoms or polar molecules. Such systems
have a long-range boson–boson interaction mediated by their
dipole moment, which can be approximated by a nearest neigh-
bour interaction. The possibility of using excited states of optical
lattices to generate nearest neighbour interaction between parti-
cles was discussed in Ref. [10]. In the Bose–Fermi–Hubbard model
the interaction between bosons is mediated by fermionic atoms in
a mixture of bosonic and fermionic atoms [9,11]. The additional
Elsevier B.V.

h, Physica B (2011), doi:10
interaction between bosonic particles leads to the appearance of a
supersolid phase, when a superfluid order parameter and crystal
order coexist. Interest in the supersolid phase has increased since
the observation of the supersolid-like behaviour in the low-
temperature He-experiments [12]. It should be noted that there
are rather few studies of the BFH model at finite temperature and
away from the half-filling case.
99
2. Model and results

The Hamiltonian of the model is

H¼�
X

ij

OijS
þ

i S�j þ
X

ij

JijS
z
i Sz

j þ
X

i

gSz
i ni

�
X

ij

tijc
þ

i cj�
X

i

mni�
X

i

hSz
i : ð1Þ

In this work we consider infinite on-site boson–boson interaction
and use the pseudospin formalism (Si

z
¼1/2 when there is a boson

in a site i and Si
z
¼�1/2 in the opposite case), c+

i and ci are fermion
creation and annihilation operators, respectively. The first and
second terms in Eq. (1) are responsible for nearest neighbour
boson hopping and boson–boson interaction, respectively; g-term
accounts for the boson–fermion interaction energy, we also take
into account the kinetic energy of the fermions with t denoting
the nearest neighbour tunnelling. The last two terms involve the
chemical potentials of the fermions and bosons, respectively,
these terms are used to change the filling of the corresponding
particles.

The Hamiltonian is decomposed into two parts [11]:

H¼H0þHint , ð2Þ
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where the unperturbed Hamiltonian H0 is obtained in the mean
field approximation (MFA)

gniS
z
i -g/niSSz

i þgni/Sz
i S�g/niS/Sz

i S

OijS
þ

i S�j -Oij/Sþi SS�j þOijS
þ

i /S�j S�Oij/Sþi S/S�j S

JijS
z
i Sz

j -Jij/Sz
i SSz

j þ JijS
z
i /Sz

jS�Jij/Sz
i S/Sz

j S: ð3Þ

The Hamiltonian H0 is diagonalised in the k-representation
using the unitary transformation in the pseudospin subspace

Sz
i ¼ s

z
i cosyþsx

i siny,

Sx
i ¼ s

x
i cosy�sz

i siny,

siny¼�
2O/SxS

l
, cosy¼

h�gn�2J/SzS
l

,

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh�gn�2J/SzSÞ2þð2O/SxSÞ2

q
,

O�Oq ¼ 0, J� Jq ¼ 0,

H0 ¼�
X

k

ðtkþm�g/SzSÞcþk ck�
X

i

lsi

�Ng/SzS/nSþNO/SxS2
�NJ/SzS2, ð4Þ

Hint ¼
X

i

gðSz
i�/SzSÞðni�/nSÞ�

X
ij

Oij½ðS
x
i�/SxSÞðSx

j�/SxSÞþSy
i Sy

j �

þ
X

ij

JijðS
z
i�/SzSÞðSz

j�/SxSÞ, ð5Þ

with N denoting the number of lattice sites.
To calculate the density–density correlator GijðtÞ ¼/TtSz

i ðtÞ
Sz

j ð0ÞS, we perform an expansion in powers of Hint

/TtSz
i ðtÞS

z
j ð0ÞS¼

/TtSz
i ðtÞS

z
j ð0ÞsðbÞS0

/sðbÞS0
,

expð�bHÞ ¼ expð�bH0ÞsðbÞ,

sðbÞ ¼ Ttexp �

Z b

0
HintðtÞ dt

" #
, ð6Þ

the averaging / . . .S0 is performed over the distribution with H0,
where Tt is the imaginary time ordering operator and b¼ 1=T is
the inverse temperature. To calculate the average values of the
Tt-products, we utilize the diagram technique and Wick’s theorem
for both the spin and fermi operators [13]. To calculate the mean
value of the products of the sz operators we perform a semi-
invariant expansion, for example, /Ttsz

l ðtÞs
z
mð0ÞS0 ¼/szS2þMlm,

where MðonÞ ¼ bdon ,0ð
1
4�/s

zS2
Þ is the semi-invariant in the

frequency representation (on is a bosonic Matsubara frequency),
and /szS¼ 1

2tanhðbl=2Þ is the average value of the pseudospin.
At the summation of diagrams we restrict ourselves in the

spirit of the random phase approximation (RPA) to the diagrams
having a structure of multi-loop chains (fore more details, see
Ref. [11]). The junctions between boson (pseudospin) Green’s
functions /Ttsþl ðtÞs

�
mð0ÞS0 ¼�2/szSKlmðtÞ (where KðonÞ ¼

1=ðion�lÞ) and semi-invariants are realised by the boson tunnel-
ling Oq, direct boson interaction Jq and the fermionic loop
PqðonÞ ¼ ð1=NÞ

P
kðnðtkÞ�nðtkþqÞÞ=ðionþtk�tkþqÞ.

The Dyson equation for Green’s function Gab
lm ¼�

1
2/Ttsal ðtÞ

sb
mð0ÞS can be written in the following form:

Gab
q ðonÞ ¼ Gab

ð0ÞqðonÞDab
þGad
ð0ÞqðonÞSdg

q ðonÞG
gb
q ðonÞ, ð7Þ

where Sab
q ðonÞ ¼Pab

q ðonÞþOab
q is a self-energy part and Dab

¼ 0
or 1 depending on the values of a,b (a,b¼ þ ,�,z). The matrix
elements Pab

q ðonÞ and Oab
q are similar to the ones obtained in
Please cite this article as: T.S. Mysakovych, Physica B (2011), doi:10
Ref. [11] with the substitution g2Pq-g2Pqþ2Jq. For example,

P�þq ðonÞ ¼Pþ�q ðonÞ ¼Pþ þq ðonÞ

¼P��q ðonÞ ¼ ðg
2PqðonÞþ2JqÞ

sin2y
2

Oþ þq ¼O��q ¼�Oqðcos2y�1Þ: ð8Þ

In a similar fashion, we can derive expressions for other matrix
elements. The matrix equations (7) form three independent sets of
equations of the third order which can be separately solved. After
some tedious algebra we can derive the expression for the density–
density correlator GqðonÞ which is similar to that obtained in
Ref. [11] when we perform the above-mentioned substitution.

As reported in Ref. [11], the diagrammatic method allows us to
derive the terms proportional to don ,0 which are important and
should be considered in the static limit o-0. The equation of
motion method for two-time Zubarev Green’s functions and
decoupling procedure does not allow us to reveal these terms.
This is due to the nonergodicity of the considered model.

In the following we consider a three-dimensional case (with a
lattice constant a¼1), and in our calculations we choose a half width
of the fermionic band W to be our energy scale (�WotkoW). At
finite temperature we can consider the transition from the uniform
nonsuperfluid normal phase (NR) (at low temperature this is a Mott
insulating phase) to the charge density wave (CDW) phase for small
values of the bosonic hopping parameter Oo2T, this inequality is
also valid in the considered here case Jqa0 [11].

Lines of the instability with respect to the transition into the
charge-ordered phase with different values of the modulation
wave vectors q¼ ðq,q,qÞ can be obtained using the condition of
divergence of the static density–density correlator Gqðo¼ 0Þ. At
half fermionic filling nf¼1/2 the chess-board phase with the wave
vector q¼ ðp,p,pÞ has the highest temperature of the instability.
In Fig. 1, we show lines of the instability at the fixed non-half
fermionic filling nf a1=2 for two cases: (a) the case of a non-
superfluid phase (Fig. 1(a)) and (b) the case of a superfluid (SF)
phase (Fig. 1(b)). As it was shown in Ref. [11] in the regime of the
fixed fermionic chemical potential, the highest temperature of the
instability with respect to the transition into the incommensurate
modulated phase with qa ðp,p,pÞ is obtained at non-half bosonic
filling. Here, we consider the case of the fixed fermionic concen-
tration and the highest temperature of the instability is reached at
half bosonic filling nB¼Sz+1/2¼1/2, see Fig. 1(a). We did not
reveal the existence of the supersolid (SS) phase with incommen-
surate wave vector of modulation qaðp,p,pÞ and the supersolid
phase with modulation wave vector q¼ ðp,p,pÞ has the highest
temperature of the instability, see Fig. 1(b). The appearance of the
incommensurate modulated phase is connected with the compe-
tition between the effective boson interaction via fermions and
the direct boson–boson interaction (it is known that the repulsive
direct interaction between bosons leads to the modulated phase
with the wave vector of modulation q¼ ðp,p,pÞ only). The
presence of the supersolid phase is due to the effective interaction
between bosons mediated by fermions and the direct interaction
between nearest neighbour hard-core bosons does not lead to the
appearance of the supersolid phase.

Now our focus is on the chess-board phase. We consider two
sublattices: /niaS¼ na, /Sz

iaS¼/Sz
aS, /Sx

iaS¼/Sx
aS, here a¼ 1,2

is a sublattice index and i is an elementary cell index. Using the
Hamiltonian H0, we can obtain the equations for averages /nS,
/SzS, /SxS

na ¼
1

N

X
k

1þcosð2fÞ
2

eðlka�mÞ=Tþ1
� ��1

þ
X

k

1�cosð2fÞ
2

eðlkb�mÞ=Tþ1
� ��1

, ð9Þ
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Fig. 2. (a) Phase transition lines of the second (solid line) and first (dashed line) order for W¼1, g¼�0.4, m¼ 0, O¼ 0, J¼0.4. (b) Bosonic and fermionic concentrations as

functions of the bosonic chemical potential for T¼0.05.
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Fig. 1. Lines of divergence of the static density–density correlator for W¼1, g¼�0.4, J¼0.05, nf¼0.3, O¼ 0 (a, nonsuperfluid phase) and nf¼0.45, O¼ 0:2 (b, superfluid

phase).
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g
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g
/Sz

1S�/Sz
2S

2

� �2

þt2
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~la ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgna�hþ2J/Sz

bSÞ
2
þ 2O/Sx

bS
� �2

r
, aab: ð12Þ

Next we derive an analytic formula for the grand canonical
potential to find thermodynamically stable states:

F
N

2

¼�
T

N

X
k

ln 1þeðm�lk1Þ=T
� �

1þeðm�lk2Þ=T
� �h i

�Tln 4cosh
b ~l1

2

 !
cosh

b ~l2

2

 !" #

�g n1/Sz
1Sþn2/Sz

2S
� �

þ2O/Sx
1S/Sx

2S�2J/Sz
1S/Sz

2S: ð13Þ
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As it was shown in Ref. [11], our scheme for the calculation of
the density–density correlator in the RPA and the corresponding
averages /nS, /SzS, and /SxS in the MFA is a self-consistent
scheme. The phase transition lines are shown in Fig. 2. The phase
transition from the normal uniform nonsuperfluid to CDW phase
can be of the second or first order (the above-mentioned lines of
the instability shown in Fig. 1 allow us to investigate the phase
transitions of the second order only). From Fig. 2, we observe that
there exists a possibility of the first-order phase transition
between two CDW phases (we identify two CDW phases denoted
by CDW1 and CDW2 which differ by the average values of the
fermionic and bosonic concentrations).

In Fig. 3, we show the phase diagrams in the plane (h�O). The
presence of the direct boson–boson interaction leads to the shift
of the supersolid phase into the region with the higher values of
the bosonic hopping parameter. With increasing temperature, the
regions of the existence of the CDW and supersolid phases are
possible for smaller parameter space and the first-order phase
transition transforms into the second one.

The existence of the first-order phase transition leads to phase
separation in the regime of the fixed concentrations. It is illu-
strated in Fig. 4. In the regime of the fixed value of the fermionic
concentration the system can separate into the uniform and CDW
phases (CDW+NR) or into two CDW phases (CDW+CDW), the
phase separation takes place at the intermediate values of the
.1016/j.physb.2011.02.042
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fermionic concentration, at high or low fermionic concentration
the system is in the uniform or CDW phases. It should be noted
that when the direct boson interaction is not taken into account
the phase transition of the first order between two uniform
phases and phase separation into two uniform phases with
different concentrations is possible [3].
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3. Conclusions

The phase transitions in the Bose–Fermi–Hubbard model with
direct interaction between bosons have been considered in this
work at finite temperature. Examples of the real systems where
this model can be applied are intercalated by ions crystals and
atoms in optical lattices. The density–density correlator has been
calculated in the random phase approximation. The thermodyna-
mical properties of the model are defined by the effective
interaction between bosons via fermions and the direct boson–
boson interaction. At finite temperature and small values of the
bosonic hopping parameter the system can undergoes the phase
transition from the uniform nonsuperfluid phase to the chess-
board phase. At certain values of the bosonic hopping parameter
the phase transition from the superfluid phase to the supersolid
phase with a doubly modulated lattice period takes place at the
decrease of the temperature. In the regime of the fixed concen-
tration the phase separation into modulated and uniform phases
takes place. Phase separation into two phases with different
concentrations is important for the intercalated by ion crystals
because the chemical potential is constant at the change of the
concentrations and this peculiarity is used when constructing
batteries.
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