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The ground state and thermodynamics of distorted Ising-Hubbard chains are studied with on-site

Coulomb repulsion taken into account. A decoration-iteration transformation method is used to obtain

exact results for the free energy, entropy, specific heat, magnetization of the Ising and Hubbard

subsystems, and magnetic susceptibility. The effect of Coulomb repulsion on the ground state, field

and temperature dependences of the magnetization, magnetic susceptibility, and specific heat is stud-

ied for the case of a geometrically frustrated system. Strong repulsion leads to formation of an

additional high-temperature peak in the specific heat. Independently of any repulsion, the temperature

dependence of the specific heat can have two low-temperature peaks. VC 2011 American Institute of
Physics. [doi: 10.1063/1.3592221]

I. INTRODUCTION

One-dimensional models with a regular variation in the

interaction between spins and/or in the magnitude of the

spins are of interest in statistical mechanics because they can

be solved exactly and used to explain the physical properties

of complicated real systems. Many such exactly soluble one-

dimensional models with a certain type of structure corre-

sponding to a decorated primitive cell of a spin-1/2 Ising

chain of a group of spins in interstitial positions, are cur-

rently known. Decorated spins can be coupled to one another

by various interactions, but they are coupled to vertex (Ising)

spins only by an Ising interaction. Decoration-iteration trans-

formations are used to solve these models exactly.1,2 Exam-

ples of models of this type also include Ising chains, e.g.,

spin (1/2, S> 1/2),3 ferromagnetic-ferromagnetic-antiferro-

magnetic,4 and diamond,5 as well as Ising-Heisenberg

chains, where a Heisenberg interaction acts between deco-

rated spins, e.g., simple,6,7 diamond,8,9 sawtooth,10 tetrahe-

dral,11 and with triangular Heisenberg plaquettes.12 These

models make it possible to study interesting features of vari-

ous physical characteristics and effects: the magnetization

plateau at intermediate magnetizations,4–10,12 additional

low-temperature peaks in the specific heat,3,5–9,12 geometric

frustration,5,8–12 and the interaction between geometric frus-

tration and quantum fluctuations.8–12 Interest in these fea-

tures and effects is heightened by the fact that they are

observed in real systems.8,13,14

Recently a model has been proposed15 that consists of a

spin-1/2 Ising chain decorated with mobile electrons. This is

a distorted diamond Ising-Hubbard chain when on-site (con-

centric) Coulomb repulsion of the electrons is neglected. In

this chain, two mobile electrons make quantum jumps

between two interstitial positions located in opposite vertices

of a diamond. The lattice point spins and the electron spins

are coupled along the sides of a diamond by Ising interac-

tions. Quantum jumps of the electrons control the antiferro-

magnetic correlation between their spins.15 Thus, with an

antiferromagnetic Ising interaction, this chain represents a

geometrically frustrated spin system, analogous to an Ising-

Heisenberg diamond chain.8,9 The Ising-Hubbard chain can

be solved exactly by the decoration-iteration transformation

method.1,2 Note that if this were a distorted diamond Hub-

bard chain, an exact solution could be obtained by a much

more complicated procedure only for certain conditions on

the model parameters and at very low temperatures.16 The

properties of the ground state, magnetization processes, and

the temperature dependences of the magnetization, magnetic

susceptibility, and specific heat,15 as well as the magneto-

caloric effect17 have been studied for distorted diamond

Ising-Hubbard chains neglecting on-site Coulomb repulsion.

In particular, it has been shown that during magnetization at

zero temperature, the magnetization can have an intermedi-

ate plateau at a height of 1/3 of the saturation magnetization

and that the temperature dependence of the specific heat has

a principal and a low-temperature secondary maxima.15

This paper is a study of the properties of a distorted dia-

mond Ising-Hubbard chain15 with the on-site Coulomb repul-

sion of electrons taken into account. The decoration-iteration

transformation method is used to calculate the thermodynamic

characteristics exactly. The effect of repulsion on the ground

state, magnetization processes, temperature dependences of

the system magnetization, magnetization of the Ising and elec-

tronic subsystems, and the magnetic susceptibility and specific

heat are studied for the case of an antiferromagnetic Ising

interaction when the system is geometrically frustrated.

II. MODEL HAMILTONIAN: EXACT CALCULATION
OF THERMODYNAMIC CHARACTERISTICS

Let us consider a distorted diamond Ising-Hubbard chain

in a magnetic field.15 The primitive cell of the chain (Fig. 1) is

defined by the nodes k and kþ1, which are occupied by Ising

spins. It contains two interstitial positions (k,1) and (k,2)

between which quantum jumps of two mobile electrons take

place. A Coulomb repulsion acts between two electrons in a

single position. The hamiltonian H of a chain consisting of N

primitive cells is given by the sum of the cell hamiltoniansHk:
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H ¼
XN

k¼1

Hk;

Hk ¼
X

r2f";#g
tðc†

k;1;rck;2;rþ c†
k;2;rck;1;rÞþ

X2

i¼1

Unk;i;"nk;i;#

þ lkðI1Sk;1þ I2Sk;2Þþ lkþ1ðI2Sk;1þ I1Sk;2Þ

� 1

2
hiðlk þ lkþ1Þ� heðSk;1þ Sk;2Þ; (1)

where c†
k;i;r and ck;i;r are the creation and annihilation opera-

tors for an electron with spin r 2 f"; #g at interstitial posi-

tion (k,i), i¼ 1,2; nk;i;r ¼ c†
k;i;rck;i;r is the operator for the

number of electrons with spin r at position (k,i); and

Sk;i ¼ ðnk;i;" � nk;i;#Þ=2 is the z-component of the operator

for the total spin of the electrons at position (k,i). The param-

eters t and U denote the jump integral and the on-site Cou-

lomb repulsion of the electrons. The spin variable mk denotes

the z-component of the spin-1/2 operator and describes the

state of the Ising spin at site k. The parameters I1 and I2

describe the Ising interactions along the sides of the diamond

between node and interstitial spins of the primitive cell, as

shown schematically in Fig. 1. The parameters hi and he

describe the effect of the magnetic field on the Ising and

electron spins, respectively.

We now find the partition function of this system,

Z ¼ Trexpð�bHÞ, where b ¼ 1=kBT, kB is the Boltzmann

constant, and T is the absolute temperature. The hamilto-

nians Hk commute with each other, so Z can be partially

factored:

Z ¼ Trflg
YN
k¼1

Trfk;1;k;2g expð�bHkÞ; (2)

where Trflg is the trace with respect to the Ising spins and

Trfk;1;k;2g is the trace with respect to the states of the two

electrons in cell k.

We now calculate the trace of the operator expð�bHkÞ
with respect to the electron states:

Zkðlk; lkþ1Þ ¼ Trfk;1;k;2g expð�bHkÞ:

To do this, we transform to a matrix representation of the

operators ck;i;r and ck;i;r in a basis constructed from the states

of the two electrons in the primitive cell:

"; "ij ¼ c†
k;1;"c

†
k;2;" 0ij ; #; #ij ¼ c†

k;1;#c
†
k;2;# 0ij ;

"; #ij ¼ c†
k;1;"c

†
k;2;# 0ij ;

#; "ij ¼ c†
k;1;#c

†
k;2;" 0ij ; "#; 0ij ¼ c†

k;1;"c
†
k;1;# 0ij ;

0; "#ij ¼ c†
k;2;"c

†
k;2;# 0ij ;

where the states are indicated as in Ref. 15. This yields

Hk ¼ h11 � ð�h11Þ �

h33 0 t t
0 �h33 t t
t t U 0

t t 0 U

0
BB@

1
CCA

� 1

2
hiðlk þ lkþ1Þ1;

where

h11 ¼
1

2
ðI1 þ I2Þðlk þ lkþ1Þ � he;

h33 ¼
1

2
ðI1 � I2Þðlk � lkþ1Þ;

and 1 is the unit matrix. The eigenvalues of the matrix Hk

are given by

E1ðlk;lkþ1Þ ¼
1

2
ðI1þ I2Þðlk þ lkþ1Þ � he�

hi

2
ðlk þ lkþ1Þ;

E2ðlk;lkþ1Þ ¼ �
1

2
ðI1þ I2Þðlk þ lkþ1Þ � he�

hi

2
ðlk þ lkþ1Þ;

E3ðlk;lkþ1Þ ¼ K1jlk � lkþ1j �
hi

2
ðlk þ lkþ1Þ;

E4ðlk;lkþ1Þ ¼
1

2
U�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2þ 16t2

p� �
jlk þ lkþ1j

þK2jlk � lkþ1j �
hi

2
ðlk þ lkþ1Þ;

E5ðlk;lkþ1Þ ¼
1

2
Uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2þ 16t2

p� �
jlk þ lkþ1j

þK3jlk � lkþ1j �
hi

2
ðlk þ lkþ1Þ;

E6ðlk;lkþ1Þ ¼ U� hi

2
ðlk þ lkþ1Þ; (3)

where Ki are the eigenvalues of the matrix,

L ¼

0
I1 � I2

2
0

I1 � I2

2
0 2t

0 2t U

0
BBBBB@

1
CCCCCA:

Finally, we obtain

Zkðlk; lkþ1Þ ¼
X6

i¼1

exp½�bEiðlk; lkþ1Þ�:

We now carry out a decoration-iteration transformation for

Zkðlk; lkþ1Þ:1,2,15

FIG. 1. Illustrating a fragment of a distorted diamond Ising-Hubbard chain.

The node spins lk; lkþ1 and the z-components Sk;1; Sk;2 of the total spins cre-

ated by two mobile electrons at interstitial positions.
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Zkðlk; lkþ1Þ ¼ A exp½bRlklkþ1 þ bh0ðlk þ lkþ1Þ=2�

where the parameters A, R, and h0 are defined by

A ¼ Zk
1

2
;
1

2

� �
Zk �

1

2
;� 1

2

� �
Z2

k

1

2
;� 1

2

� �� �1
4

;

bR ¼ ln Zk
1

2
;
1

2

� �
Zk �

1

2
;� 1

2

� �
Z�2

k

1

2
;� 1

2

� �� �
;

bh0 ¼ ln Zk
1

2
;
1

2

� �
Z�1

k � 1

2
;� 1

2

� �� �
:

With this transformation, calculating the partition function of

the Ising-Hubbard chain (2) reduces to calculating the partition

function of an Ising chain with an interaction R and magnetic

field h0. Using the standard result for the partition function of

an Ising chain,18 we obtain the partition function (2) in the form

Z ¼ ANðkN
1 þ kN

2 Þ;

where

k1;2 ¼ exp
bR

4

� �
ch

bh0

2

� �

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

bR

2

� �
sh2 bh0

2

� �
þ exp �bR

2

� �s
:

In the thermodynamic limit, the free energy per primitive

cell is given by

f ¼ � 1

b
ln A� 1

b
ln k1:

From the free energy we calculate the energy s and the spe-

cific heat c:

s ¼ kBb2 @f

@b

� �
hi;he

; c ¼ �b
@s

@b

� �
hi;he

:

Calculating the magnetization mi ¼ 1
2

lk þ lkþ1

	 

and corre-

lation function qiiðnÞ ¼ lklkþn

	 

of the Ising spins of an

Ising-Hubbard chain reduces to calculating these same char-

acteristics for an Ising chain with an interaction R and mag-

netic field h0. Thus, for mi and qiiðnÞ, we use the standard

results.18 The magnetization of the electronic subsystem

me ¼ 1
2

Sk;1 þ Sk;2

	 

is obtained by differentiating the parti-

tion function Z with respect to he.
19 Thus, calculating the

magnetization me reduces to differentiating the parameters

of the decoration-iteration transformation with respect to he:

me ¼
1

2b
1

A

@A

@he
þ qiið1Þ

@ðbRÞ
@he

þ mi
@ðbh0Þ
@he

� �
:

Given the magnetizations of the subsystems, we now deter-

mine the total magnetization,

m ¼ ðmi þ 2meÞ=3:

Note that in the magnetization (m) processes, mi and me will

have the same saturation value mS¼ 1/2. The magnetic sus-

ceptibility in a magnetic field h has the following structure:

v ¼ dm

dh

¼ 1

3

@mi

@hi

dhi

dh
þ @mi

@he

dhe

dh

� �
þ 2

3

@me

@hi

dhi

dh
þ @me

@he

dhe

dh

� �
:

With this we conclude our examination of the basic points

concerning an exact calculation of the thermodynamic char-

acteristics of an Ising-Hubbard chain.

III. RESULTS AND DISCUSSION

In the above analytic expressions, the Ising interaction can

be ferromagnetic or antiferromagnetic. Let us examine the

properties of a chain for the case of an antiferromagnetic Ising

interaction (I1; I2 � 0) when the system is geometrically frus-

trated. With loss of generality, we take I1 � I2 and introduce

the difference between the Ising interactions, DI ¼ I1 � I2, as

in Ref. 15. We consider a magnetic field that is the same for

the Ising and electronic spins, i.e., h ¼ hi ¼ he. In order to

reduce the number of free parameters in the model, we proceed

(as in Ref. 15) to the dimensionless parameters

~t ¼ t

I1

; ~U ¼ U

I1

; ~h ¼ h

I1

; D~I ¼ DI

I1

;

where I1 6¼ 0. The parameter D~I has a physical significance

in the region 0 � D~I � 1 and characterizes the possible

degree of asymmetry of the Ising interactions for the

assumed distortion of the diamond.

We first consider the properties of the ground state of the

system. The ground state corresponds to a minimum energy

of a primitive cell (3) for all the possible values of mk and

mkþ1. The energies (3) in dimensionless form ~Eiðlk; lkþ1Þ
¼ Eiðlk; lkþ1Þ=I1 are functions of the four model parameters:
~t; ~U;D~I; ~h. Depending on these parameters, the ground state

can be one of four states, such as those without Coulomb

repulsion,15 specifically: a saturated paramagnetic state

(SPA), a ferrimagnetic state (FRI), an unsaturated paramag-

netic state (UPA), and a node antiferromagnetic state (NAF).

The dimensionless energies of the states per primitive cell are

~ESPA ¼
1

2
ð2� D~I � 3~hÞ;

~EFRI ¼
1

2
ð�2þ D~I � ~hÞ;

~EUPA ¼
1

2
ð ~U �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~U2 þ 16~t 2

p
� ~hÞ;

~ENAF ¼ minf~Ki; i ¼ 1; 2; 3g;

where ~Ki are the eigenvalues of the matrix ~L ¼ L=I1. These

states correspond to the following wave functions:

jSPAi ¼
YN
k¼1

þj ikj"; "ik;1;k;2;

jFRIi ¼
YN
k¼1

�j ikj"; "ik;1;k;2;

jUPAi ¼
YN
k¼1

þj ik½WUPA�k;1;k;2;

jNAFi ¼
YN
k¼1

jð�Þn¼
k
kþ1f >k Wð�Þ

n

NAF

h i
k;1;k;2

;
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where the functions 6j ik describe the states of the Ising

spins lk: þj i ¼ "j i and �j i ¼ #j i. To write down the wave

functions for the doubly degenerate state NAF, we use the

expression ð�Þn¼
k
kþ1f , where ð�Þn denotes the sign of the

number ð�1Þn. The remaining notation is

WUPA ¼ AUPAðj"; #i þ j#; "iÞ þ BUPAðj"#; 0i þ j0; "#iÞ;

WþNAF ¼ AþNAFj"; #i þ A�NAFj#; "i þ BNAFðj"#; 0i þ j0; "#iÞ;

where

AUPA ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

~Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~U2 þ 16~t 2

p
s

;

BUPA ¼ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

~Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~U2 þ 16~t2

p
s

;

A6
NAF ¼

~ENAF6 1
2
D~I

� �
ð ~ENAF � ~UÞffiffiffiffiffiffiffiffiffiffiffiffiffi

2UNAF

p ; BNAF ¼
2~t ~ENAFffiffiffiffiffiffiffiffiffiffiffiffiffi
2UNAF

p ;

UNAF ¼ ~E 2
NAF þ

1

4
D~I 2

� �
ð ~ENAF � ~UÞ2 þ 4~t 2 ~E 2

NAF:

We now consider the phase diagram of the ground state in

the ðD~I; ~hÞ plane. Its form is determined by the parameters ~t
and ~U. Depending on these parameters, three typical phase

diagrams similar to those without repulsion can be realized

(Fig. 2).15 The first such phase diagram (Fig. 2(a)) exists for

~t � 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 ~U

p
:

In zero field the FRI and NAF states coexist when

D~I ¼ D~IF:N, which is given by

D~IF:N � 2� 2 ~ENAF ¼ 0:

The second typical phase diagram (Fig. 2(b)) exists for

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 ~U

p
< ~t <

1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~U

p
:

The FRI and UPA states coexist on the line D~I ¼ D~IFjU,

where

D~IFjU ¼ ~U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~U2 þ 16~t 2

p
þ 2:

The third typical phase diagram (Fig. 2(c)) exists for

1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~U

p
� ~t:

If we set ~U ¼ 0 in the above expressions characterizing the

phase diagram, then they coincide with the corresponding

expressions in Ref. 15.

A qualitative discussion of the phase diagrams for the

ground state in Fig. 2 can be found in Ref. 15. Here we sup-

plement that with a discussion of some interesting properties

of the ground state that show up under certain conditions.

We begin with the line on which the FRI and SPA states

coexist. The node antiferromagnetic state NAFþ also exists

on this line, with an energy ~ENAFþ ¼ �~h and wave function

jNAFþi ¼
YN
k¼1

jð�Þn¼


k
kþ1ikj";"ik;1;k;2

FIG. 2. Phase diagram of the (D~I; ~h) ground state. There are three possible

typical diagrams. Each diagram shows the curves along which states coexist

for several sets of values of ~U and ~t. The results for ~U ¼ 0 are the same as

in Ref. 15.

FIG. 3. A diagram indicating the influence of jumps and repulsion (~t; ~U) in

the form of a phase diagram for the (D~I; ~h) ground state; (a), (b), and (c)

denote the regions in which the types of (D~I; ~h) phase diagrams shown in

Fig. 2 exist. The regions are covered by “equi-diagram” contours: thin

smooth (a), dashed (b), and dotted (c). The boundaries between the regions

are indicated by thick, smooth “equi-diagram” curves.
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The behavior of the Ising subsystem is described by these

characteristics:

bR ¼ bh0 ¼ 0; mi ¼ 0; qiiðnÞ ¼ 0: (4)

This indicates that the Ising spins are effectively free, i.e.,

they can be in one of two states with equal probability: "j i
and #j i. Here the interstitial electron pairs are in a j"; "i
state. Geometrically frustrated Ising-Heisenberg states are

known to have a monomer-dimer type ground state, in which

the Ising spins are effectively free, while the pairs of intersti-

tial Heisenberg spins are in a certain intricate state, known

as frustrated states (FRU).8–10 Using this terminology, we

refer to this ground state as a frustrated ferromagnetic state,

FRUþ:

jFRUþi ¼
YN
k¼1

6j ikj"; "ik;1;k;2:

The FRUþ state differs from the frustrated states if Ising-

Heisenberg states described in Refs. 8–10 in that all of the

spins in its primitive cell are semiclassically ordered. This

occurs because of the influence of the strong magnetic field.

The effective freedom of the Ising spin determines the mac-

roscopic degeneracy of the FRUþ state, which gives a resid-

ual entropy sres ¼ kB ln 2.

At the point (D~IFjU; 2� D~IFjU), i.e., the end of the line on

which the FRI and SPA states coexists (Fig. 2(b)), the state of

the system differs from FRUþ. At this point the state of the

Ising subsystem is described by the following parameters:

bR¼ bh0 ¼ ln 2; mi ¼
msffiffiffi

5
p ; qiiðnÞ ¼

1

20
þ 1

5

3�
ffiffiffi
5
p

3þ
ffiffiffi
5
p

 !n

:

Thus, the Ising spins are no longer free. This state of the

Ising spins with R ¼ h0 ¼ 0 shows up in the form of a linear

component in the temperature dependences of the parame-

ters R and h0 which affects the formation of the Ising spin

state in the limit T ! 0. This ground state has a residual en-

tropy sres ¼ kg ln½ð3þ
ffiffiffi
5
p
Þ=2� that is greater than for the

FRUþ state.

We now consider the properties of the ground state at

the point (D~IF:N; 0). In this state the Ising spins behave

freely, in accordance with Eqs. (4), while the state of the in-

terstitial electron pairs is determined by the states of the

neighboring Ising spins and can, with equal probabilities,

be one of four states: "; "ij , #; #ij , W�NAF, and WþNAF. This

ground state is macroscopically degenerate: sres ¼ kg ln 2. In

many regards, this state is similar to the frustrated states

from Refs. 8–10 and the FRUþ state. However, unlike these

states, it is not a monomer-dimer type state. The ground

state has essentially the same properties as those at the

point (D~IF:N; 0), at the point where the FRI, UPA, and NAF

states coexist (D~IFjU; ~hFjNjU), where ~hFjNjU ¼ D~IFjU � 2

�2ENAF.

The free behavior of the Ising spins at the points

(D~IF:N; 0) and (D~IFjU; ~hFjNjU) vanishes when they coincide,

which can only happen at the point (0,0) when
~t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~U

p
=2 (Fig. 2(c)). In this case, the Ising subsystem

has the following properties:

FIG. 4. The total magnetization as a

function of (a) magnetic field for dif-

ferent temperatures and (b) tempera-

ture for different magnetic fields (b)

in the case where the FRI state is the

zero field ground state. The smooth

curves show the results for ~U ¼ 0

and ~t ¼ 0:375, which coincide with

the corresponding results from Ref.

15. The dashed curves are the results

for ~U ¼ 55=12 and ~t ¼ 1:0.

FIG. 5. The total magnetization as a

function of (a) magnetic field for dif-

ferent temperatures and (b) tempera-

ture for different magnetic fields (b)

in the case where the NAF state is

the zero field ground state. The

smooth curves show the results for
~U ¼ 0 and ~t ¼ 0:375, which coin-

cide with the corresponding results

from Ref. 15. The dashed curves are

the results for ~U ¼ 55=12 and
~t ¼ 1:0.
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bR ¼ 2 ln 2; bh0 ¼ 0; mi ¼ 0; qiiðnÞ ¼
1

4

1

3n
:

The existence of a ferromagnetic correlation between

the Ising spins in this state because of the linear component

in the temperature dependence of the parameter R. This state

has a residual entropy of sres ¼ kg ln 3.

When ~t >
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~U

p
=2, the state FRU is frustrated at the

point (0,0), where

jFRUi ¼
YN
k¼1

j6ik½WUPA�k;1;k;2:

In this state a pair of interstitial electrons lies in a com-

plicated state similarly to a pair of Heisenberg spins in frus-

trated Ising-Heisenberg states.8–10 The residual entropy

equals kBln2.

Now we examine the effect of the Coulomb repulsion ~U
on the phase diagram (D~I; ~h). The repulsion ~U affects it, as

do the jumps ~t, through a change in the energies EUPA and

ENAF. If a change in ~U is accompanied by a change in ~t while

maintaining a fixed energy EUPA, then the readjustment of

the phase diagram (D~I; ~h) will be much simpler. In particu-

lar, the line on which the FRI and UPA ground states coex-

ists does not change its position D~IFjN. Assigning an energy
~EUPA in this regime to the point (~t ¼ ~t�; ~U ¼ 0), where ~t� is

the jump integral in the theory without repulsion, we obtain

the condition for the variation in ~U:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~U2 þ 16~t 2

p
� ~U ¼ 4~t�: (5)

The effect of ~U in the regime (5) on the phase diagram

(D~I; ~h) is shown in Fig. 2, where in each of the three cases

(a, b, and c) the sets of parameters ~U and ~t satisfy condition

(5) with a certain ~t�. Under this influence, the typical form of

the phase diagram specified by the parameter ~t� does not

change, and the lines on which the NAF state coexists with

the FRI and UPA states only shift slightly. In this sense, the

diagrams for all pairs of ~U and ~t, which corresponding to a

single ~t according to Eq. (5), are equivalent to one another.

Using this fact, we construct a (~t; ~U) diagram that reflects the

effect of repulsion and jumps on the (D~I; ~h) phase diagram.

The (~t; ~U) diagram is shown in Fig. 3. It is covered with

"equi-diagram" contours (5). In this diagram it is easy to see

that increasing ~U for fixed ~t changes the phase diagram simi-

larly to a reduction in ~t for fixed ~U. This means that the

effect of repulsion on the ground state essentially involves a

weakening of the effect of the jump intensity.

We now examine the influence of repulsion on the field

and temperature dependences of the thermodynamic charac-

teristics. For this purpose, we consider the change in the

thermodynamic characteristics with changing repulsion in

the regime (5) in comparison to the results of Ref. 15. We

consider the sets of values of ~U and ~t for which the ground

state phase diagram is shown in Fig. 2(b). We begin with the

magnetization process at low temperatures. The influence of

repulsion depends on which state, FRI or NAF, is the ground

state in zero field. In the case of an FRI ground state, the

effect of repulsion can hardly be seen (Fig. 4(a)), while for

an NAF ground state it shows up strongly (Fig. 5(a)). This is

because the increased repulsion leads to a rise in the critical

field at which the zero magnetization plateau transforms to a

plateau at 1/3 the saturation magnetization (Fig. 5(a)). As a

result, the magnetization curve at a temperature of 0.05 for
~U ¼ 55=12, as opposed to ~U ¼ 0,15 manifests spreading of

the zero magnetization plateau (Fig. 5(a)). The increased

field interval with zero magnetization is also reflected in the

behavior of the low-temperature magnetization curves at the

corresponding magnetic fields (Fig. 5(b)).

Regardless of which ground state occurs in zero field, an

increase in the repulsion shifts the high-temperature total

magnetization upward (Figs. 4(b) and 5(b)). In order to under-

stand the mechanism for this shift, we examine the

FIG. 6. The magnetizations of the

Ising (a) and electronic (b) subsys-

tems as functions of temperature for

different magnetic fields. These

magnetizations form the total mag-

netization in Fig. 4(b). The smooth

curves show the results for ~U ¼ 0

and ~t ¼ 0:375. The dashed curves

show the results for ~U ¼ 55=12 and
~t ¼ 1:0.

FIG. 7. Zero field magnetic susceptibility times the temperature as a func-

tion of temperature. The smooth curves show the results for ~U ¼ 0 and
~t ¼ 0:375, which coincide with the corresponding results from Ref. 15. The

dashed curves show the results for ~U ¼ 55=12 and ~t ¼ 1:0.
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temperature dependences of the magnetizations of the Ising

and electronic subsystems (Fig. 6). It turns out that, with

increasing repulsion, the high-temperature magnetization

curves for these subsystems shift in opposite directions: the

curve for the Ising subsystem shifts downward (Fig. 6(a)) and

that for the electronic subsystem shifts upward (Fig. 6(b)).

Since the electronic subsystem is twice the size of the Ising

subsystem, it determines the direction of the shift in the total

magnetization. An analysis of the numerical results showed

that this decrease in the high-temperature magnetization of the

Ising spins is related to a drop in the effective magnetic field

h0. The increase in the high-temperature magnetization of the

electronic subsystem, on the other hand, can be explained by

an increase in at least two of the high energies in the spectrum

of the hamiltonian Hk (3), which correspond to zero magnet-

ization of an interstitial electron pair, specifically, E5 and E6.

If the asymmetry D~I of the Ising interactions lies within

a certain neighborhood of the critical point D~IF:N or in the

region of an NAF ground state, then the low-temperature

magnetic susceptibility curves multiplied by the temperature

(vkBT) undergo significant changes in zero field under the

influence of repulsion (Fig. 7). These changes may be related

to a drop in the energy of the NAF ground state with increas-

ing repulsion, similar to the change in the magnetization

curves. The high-temperature vkBT curves shift to higher

values with increasing repulsion.

We now consider the effect of repulsion on the tempera-

ture dependence of the specific heat in zero field. Two peaks

have been found in this dependence when ~U ¼ 0:15 a main

peak and a secondary peak nearer to zero temperature (Fig. 8),

whose appearance has been attributed to thermal excitation

is responsible for transitions between the FRI and NAF

states. When ~U ¼ 55=12, as opposed to ~U ¼ 0, the high-

temperature dependence of the specific heat in Fig. 8 has a

principal maximum of perceptibly lower height and, addi-

tionally, a very broad, low maximum at a considerably

higher temperature than that of the main peak. This addi-

tional peak appears only with strong repulsion. When
~U ¼ 7=12 it has not yet shown up, and the main peak is just

readjusted, as it decreases, broadens, and shifts slightly to

higher temperatures. All of this indicates that the principal

maximum is related not only to the thermal excitations

which destroy the dimer-like antiferromagnetic correlations

between the Ising and electronic spins caused by the strong-

est Ising interaction I1,15 but also to the thermal excitations

which destroy the antiferromagnetic correlations between

the spins of an interstitial electron pair and overcome the sin-

gle-position Coulomb repulsion of the electrons. With

changing repulsion, the low-temperature part of the specific

heat, which includes the secondary maximum, is essentially

unchanged when D~I lies in the region of the FRI ground state

(Fig. 8(a)), but changes significantly when D~I lies within the

region of the NAF ground state (Fig. 8(b)).

Besides having a structure with a single secondary peak

(Fig. 8), the low-temperature specific heat in zero field can have

a structure with two secondary peaks (Fig. 9). The additional

peak in the specific heat nearest to zero temperature (Fig. 9) is

not related to repulsion, as it also exists for ~U ¼ 0. This

FIG. 8. Zero field specific heat as a function of temperature for two cases: FRI as ground state (a) and NAF as ground state (b). The smooth curves show the

results for ~U ¼ 0 and ~t ¼ 0:375, which coincide with the corresponding results from Ref. 15. The dashed curves show the results for ~U ¼ 55=12 and ~t ¼ 1:0.
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maximum shows up when the parameter D~I lies within a fairly

small neighborhood of the critical point D~IF:N. If this region is

crossed from the FRI ground state, then the secondary maxi-

mum in the specific heat splits into two peaks. On closer

approach to the critical point D~IF:N, the maximum correspond-

ing to the lower temperature rapidly approaches zero tempera-

ture and vanishes at the critical point (Fig. 9(a)). Beyond the

critical point in the NAF state it again shows up near zero tem-

perature. With increasing distance from the critical point it

rapidly approaches the other low-temperature peak and merges

with it (Fig. 9(b)). This implies that the maximum which van-

ishes at the critical point D~IF:N is related precisely to thermal

excitations which are responsible for transitions between the

FRI and NAF states. On the other hand, the low-temperature

peak which does not vanish at the critical point D~IF:N is related

to excitations which are responsible for transitions between the

FRI and UPA states and the NAF and UPA states.

IV. CONCLUSION

The thermodynamic characteristics of distorted diamond

Ising-Hubbard chains (free energy, entropy, specific heat,

magnetization of the Ising and electronic subsystems, and

magnetic susceptibility), including on-site Coulomb repul-

sion, have been calculated using a decoration-iteration trans-

formation method. The effect of Coulomb repulsion on the

ground state has been studied for the case of an antiferro-

magnetic Ising interaction where the system is geometrically

frustrated and, in the regime of Eq. (5), on the thermodynam-

ics: the field and temperature dependences of the magnetiza-

tion, and the magnetic susceptibility and specific heat as

functions of temperature.

The same four ground states (SPA, FRI, UPA, NAF) and

the same three typical phase diagrams for the ground state

(D~I; ~h) as systems without Coulomb repulsion15 are realized

in systems with Coulomb repulsion. A change in the repul-

sion, which is accompanied by changes in the jump intensity

such that the energy of the UPA state is unchanged, does not

change the type of the ground state phase diagram, but only

shifts the boundary curves for the NAF ground state region.

The effect of repulsion and jumps on the form of the (D~I; ~h)

phase diagram shows up in the (~t; ~U) diagram. Thus, we

have obtained a complete description of the properties of the

ground state as functions of the model parameters. We have

found that increasing Coulomb repulsion effectively weak-

ens the influence of the rate of jumps into the ground state.

We have studied the properties of the ground state along

several critical curves and at critical points in the (D~I; ~h)

phase diagrams. On the curve where the FRI and SPA states

coexist and for ~t >
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~U

p
=2 at the point (0,0), a frustrated

state is realized. At the point (D~IFjU; 2� D~IFjU), where the

curve on which the FRI and SPA states coexist comes to an

end, the ground state differs from the frustrated stage owing

to the presence of a linear component in the temperature

dependences of R and h0 that determines the ground state of

the Ising subsystem when R ¼ h0 ¼ 0. This state has a resid-

ual entropy sres ¼ kB ln½ð3þ
ffiffiffi
5
p
Þ=2� that is greater than that

of the frustrated state. At the points (D~IF:N; 0) and

(D~IFjUj; ~hFjNjU) the Ising states are effectively free, while the

interstitial state of an electron pair is uniquely determined by

the states of the neighboring Ising spins. When these points

coincide at the point (0,0), the Ising spins are no longer

effectively free. In addition, this ground state has the highest

residual entropy, sres ¼ kB ln 3.

The influence of Coulomb repulsion on the low-temper-

ature magnetization process and on the low-temperature

magnetization and magnetic susceptibility curves is percepti-

ble near the boundary of the NAF ground state because it is

shifted. The high-temperature magnetization curves of the

subsystems shift in opposite ways with increasing Coulomb

repulsion: the electronic subsystem toward higher magnet-

ization and the Ising subsystem, toward lower magnetization.

Here the high-temperature curve for the total magnetization

shifts toward higher values. The high-temperature magnetic

susceptibility curve is shifted similarly. Increasing Coulomb

repulsion lowers the height of the principal maximum in the

specific heat, and when the Ising interactions from the region

of the NAF ground state are asymmetric, a secondary peak

in the specific heat reposition itself. The strong repulsion

controls the additional peak in the specific heat, which lies

considerably above the temperature of the principal

maximum.

It has been found that, regardless of the existence of

Coulomb repulsion, when the asymmetries of the Ising inter-

actions fall within a sufficiently small neighborhood of the

critical point D~IF;N, the specific heat in zero field has two

low-temperature peaks. The closest peak to zero temperature

vanishes at the critical point D~IF;N; that is, it is related to

thermal excitations which are responsible for transitions

between the FRI and NAF states.

The author thanks O. V. Derzhko and V. M. Verkholyak

for a discussion and useful comments.

FIG. 9. Zero field specific heat as a

function of temperature for ~t ¼ 1:2
and ~U ¼ 55=12 with different D~I
within a small neighborhood of the

critical point D~IF:N. Shown here is the

approach of D~I from the region of an

FRI ground state to the critical point

D~IF:N (a) and the separation of D~I
from the critical point D~IF:N into the

depth of an NAF ground state (b).
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6J. Strečka and M. Jaščur, J. Phys.: Condens. Matter 15, 4519 (2003).
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