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Nanostructures in a binary mixture confined in slit-like pores
with walls decorated with tethered polymer brushes in the form of stripes:
Dissipative particle dynamics study
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Using dissipative particle dynamics, we investigate the behavior of a binary mixture, exhibiting
demixing in a bulk phase, confined in slit-like pores with walls modified by the stripes of teth-
ered brush of chains. Our main interest is to determine possible morphologies that can be formed
inside the pore, depending on the geometrical parameters characterizing the system (the size of the
pore and the width of the stripes). In order to describe the observed morphologies we calculate sev-
eral characteristics, as the density and local temperature profiles, the radii of gyration for the attached
polymers, and the minimum polymer-polymer distances in the direction parallel and perpendicular to
the pore walls. The summary of our findings is presented as a sketch of the diagram of morphologies.
© 2011 American Institute of Physics. [doi:10.1063/1.3592562]

I. INTRODUCTION

Surfaces modified with tethered polymer brushes have re-
ceived a considerable amount of attention over past decades.
This is because tethering of polymers offers a convenient way
to modify, in a controllable fashion, several physico-chemical
properties of surfaces,1–5 and because such materials find ap-
plications in many important technological fields, such as
wetting, adhesion, colloid stabilization, and biocompatibility,
etc. Moreover, chemically bonded polymers are used as sta-
tionary phases in chromatography.6–8

Theoretical studies of equilibrium properties of surfaces
with tethered brushes, as well as such surfaces in contact with
fluids, have been carried out employing different approaches,
including scaling theories,9–11 classical self-consistent field
methods,12–14 mean-field approaches,15, 16 density functional
theory,17–21 and computer simulations at both molecular,20–32

and mesoscopic levels. The latter have been mainly based
on the dissipative particle dynamics (DPD).33–45 DPD is a
mesoscopic simulation technique that uses beads which do
not represent actual molecules but rather groups of molecules,
or alternatively, they can be thought of as fluid packets.

One of the first DPD studies of polymer-coated surfaces
was carried out by Gibson et al.,34 who investigated the ad-
sorption of colloidal particles on a surface modified with
pinned polymers. The results were in a good agreement with
the theoretical predictions, namely, they indicated that the ad-
sorption of colloidal particles was smaller when the size of the
polymer relative to the colloidal particle and density of the
polymers increased. Moreover, the adsorption was reduced
when the polymer was well solvated. Malfreyt and Tildesley36

used DPD to simulate grafted polymer brushes in slit-like
pores with chains tethered at two walls. The tethered chains

a)Electronic mail: iln@icmp.lviv.ua.

were immersed in a good solvent. The obtained polymer den-
sity profiles showed a parabolic shape across the pore. The
diffusion along the pore axis was significantly greater for the
solvent particles in the middle of the slab than for those in
the polymer region since the solvent molecules were trapped
within the entangled polymer. Moreover, Goujon, Malfreyt,
and Tildesley37 extended DPD method to the grand canon-
ical ensemble to study the compression of grafted polymer
brushes in good solvent conditions.

Wijmans and Smit38 applied DPD to simulate constant
and oscillatory shear flow between two flat plates with teth-
ered chains. Pastorino et al.39 investigated a short-chain melt
between two brush-covered surfaces in equilibrium and un-
der shear. The polymers of both brush and melt were identi-
cal. They studied the interdigitation of the melt and the brush
and also considered the orientation of bond vectors on differ-
ent length scales, as well as radii of gyration, end-to-end vec-
tors of free and grafted chains, and in the case of nonequilib-
rium simulations, the velocity profiles. In the second work40

Pastorino et al. used the Gibbs criterion to localize the brush-
melt interface and analyzed its equilibrium fluctuations in
terms of a capillary wave Hamiltonian augmented by an elas-
tic term that accounts for the deformability of the brush. How-
ever, one should stress that the simulation method used in
Refs. 39 and 40 was different from standard DPD scheme.
For example, Pastorino et al. assumed that the interactions
between the polymer segments and polymer segments with
surfaces were of the Lennard-Jones type, and they performed
molecular dynamics simulations with DPD thermostat46–48 to
simulate at constant temperature and to account for hydrody-
namic interactions due to the conservation of total momen-
tum.

Li et al.43 applied DPD to investigate the surface struc-
tures of tethered rod-coil polymers. When immersed in a se-
lective solvent for the coil blocks, rod blocks tend to form
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aggregates. Linear and Y-shaped polymers exhibited similar
aggregative behavior, but comb-like brushes were found to
possess more diverse aggregative manners compared to linear
brushes. Surface structures with aggregates taking the forms
of cones, cylinders, or layers of spheres were found. The be-
havior of grafted binary polymer brushes with compatible
components in the cases of different chain lengths was inves-
tigated by Xue et al.45 They observed layered structures par-
allel to the surface indicating “phase separation”: short chains
were suppressed in the layer adjacent to the surface, whereas
longer chains were much stretched. By slightly changing the
solvent selectivity to prefer the short chains, a reversion of the
layered structure was found.

The emergence of several novel techniques in material
science49 has permitted the fabrication of solid substrates with
stable, precisely characterized, surface structures on length
scales ranging from microns to nanometres.49 The poten-
tial importance of structured substrates is connected with a
possibility in the manipulation of fluids at very short length
scales. Recent advances in nanotechnology have also permit-
ted development of methods for obtaining functional poly-
meric films on solid surfaces exhibiting quite complex topo-
graphic nanostructures.50 Indeed, the fabrication of structured
polymer layers on solids is one of the major challenges in
micro- and nanotechnology.

The potential importance of systems involving structured
brushes in the manipulation of fluids at very short length
scales has spurred parallel theoretical and simulational stud-
ies. A prototypical case consists of a solvent in contact with
a surface, or confined between two identical plane-parallel
substrates, decorated with stripes of tethered chains that
alternate periodically in one direction (say, X ) and are infinite
in the other transverse direction (Y ). Theoretical studies
of such systems involve Monte Carlo (for both lattice and
off-lattice models) and molecular dynamics,51 self-consistent
field methods,52 and DPD simulations.41, 43 These studies
indicated that heterogeneity of tethered layers has a great
impact on the structure of the confined fluid and thermody-
namic and dynamic properties of the systems. In particular,
Patra and Linse41 used DPD to examine the limit at which
small-scale nanopatterned polymer brushes demonstrate the
behavior similar to homogeneously grafted brushes. They
also proposed scaling relations for the brush height and brush
width for different geometries of the system. Petrus et al.43

considered the case of symmetric diblock copolymers con-
fined between planar surfaces with and without nanopatterns.
The nanopatterned surface was mimicked by alternating
portions of the surface that interacted differently with the
different beads constituting the diblock copolymers. They in-
vestigated the formation of diblock copolymer nanostructures
confined between planar, nonmodified surfaces and observed
both perpendicular and parallel lamellar phases with different
numbers of lamellae. In the case of nanopatterned slits, they
observed novel nanostructures and attempted to rationalize
the diblock copolymer self-assembly on the basis of the
behavior that was observed without nanopatterns.

In adsorption and in chromatographic experiments the
fluid in contact with a modified surface is usually a multicom-
ponent one. Therefore, it is of interest to investigate how the

structure of the system involving a two-component solution is
influenced by the brush tethered to a nanopatterned surfaces.
In this work, we use DPD method to explore spontaneous
formation of nanostructured morphologies in the case of a
two-component fluid confined in slit-like pores. The two iden-
tical pore walls are decorated by stripes of tethered chains.
We are interested whether the structure imposed by patterned
tethered brush is propagated into the pore interior. We also
study the mutual influence of the brush and confined binary
mixture, on their respective structures, depending on the
pore and stripes geometry. To our best knowledge no similar
research has been undertaken so far. We also present sketch
phase diagram for the observed morphologies depending on
the system geometry. However, we make no attempt to locate
precise phase boundaries separating the different nanostruc-
tures, but we rather focus on quantification of various effects
of self-assembly including local density and temperature
profiles and introducing appropriate characteristics. The
paper is organized as follows. In Sec. II we concentrate on the
description of the model and simulation method emphasizing
the way how the surface interactions are introduced. In
Sec. III we analyze different morphologies and build the
sketch phase diagram for them. Section IV is devoted to
the description and discussion of the microstructure of mor-
phologies including a number of quantitative characteristics.
The summary of the results is presented in Sec. V.

II. MODEL AND SIMULATION METHOD

To model the behavior of one- and two-component fluids
in a pore with patterned walls, modified with tethered chains,
we consider simulation box of dimensions Lx , L y, and Lz .
The periodic boundary conditions are applied along X and Y
axes and two impenetrable walls are introduced in Z direc-
tion, namely, at z = 0 and at z = Lz ≡ d, where d is the pore
size. Each wall is divided into stripes of equal width, w , alter-
nating those with and without polymers attached, see Fig. 1
(top frame). The stripes are placed “in-phase” at both walls.
The system is homogeneous along the Y axis. The rest of the
pore interior is filled by single beads, representing the fluid
components.

FIG. 1. Geometry of the pore with “in-phase” stripes of polymer chains on
both surfaces; the pore size is d and the stripes width is w (top frame). Illus-
tration of chain-chain minimum distances rmin for adjacent stripes along X
axis and for opposite stripes along Z axis (bottom frame).
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We use the DPD approach, as discussed by Groot
and Warren,53 which has been extended to the case of the
presence of an impenetrable surface and grafted polymer
chains. Polymer chains are formed out of beads linked via
harmonic bonds, the bonding force is

FB
i j = −kri j r̂i j , (1)

where ri j = |ri j |, ri j = ri − r j is the vector connecting the
centers of i th and j th beads, r̂i j = ri j/ri j and k is the spring
constant. Both polymer and solvent beads are subject to three
non-bonded pairwise forces53

Fi j = FC
i j + FD

i j + FR
i j , (2)

namely, the conservative FC
i j , dissipative FD

i j, and random FR
i j

forces,53

FC
i j =

{
a(1 − ri j )r̂i j , ri j < 1,

0, ri j ≥ 1,
(3)

FD
i j = −γ wD(ri j )(r̂i j · vi j )r̂i j , (4)

FR
i j = σwR(ri j )θi j�t−1/2r̂i j . (5)

Here vi j = vi − v j , vi and v j are the velocities of
the beads, θi j is Gaussian random variable, 〈θi j (t)〉 = 0,
〈θi j (t)θkl(t ′)〉 = (δikδil + δilδ jk)δ(t − t ′). According to Es-
pañol and Warren,47 the dissipative and random force am-
plitudes are interrelated, wD(ri j ) = (wR(ri j ))2 and σ 2 = 2γ ,
to satisfy the requirement of detailed balance. The frequently
used analytical form for wD(ri j ) is

wD(ri j ) = (wR(ri j ))
2 =

{
(1 − ri j )2, ri j < 1,

0, ri j ≥ 1.
(6)

In all equations we used pretty standard parameters assum-
ing the length, mass, time, and energy (expressed via kBT ∗)
units equal to unity. The bulk number density of beads is
ρ = 3, the friction parameter is γ = 4.5, the bond spring con-
stant is k = 4. The parameter a in the conservative force de-
fines maximum repulsion between two beads, which occurs
at a complete overlap, ri j = 0. It is an effective one and de-
pends on density and temperature. We consider two types of
beads, A and B. In our simulations we use the following val-
ues, aAA = aB B = 25 for the beads of the same sort53 and
aAB = 40 for unlike beads. The latter value reflects poor mis-
cibility of A and B beads and can be related to the Flory-
Huggins parameter.53 Similar values have been used in a num-
ber of previous studies, e.g., in a study of scaling properties
of polymer chain54 and of the phase behavior of branched
copolymers.55

As it was stated by Visser et al.,56 the mesoscopic mod-
elling of confined systems imposes the following require-
ments for a wall: (1) impenetrability; no particles are allowed
to cross the wall, (2) the wall should not artificially affect the
fluid properties in the system, and, if the flows are studied,
then (3) no-slip; the wall should impose the correct velocity.
Since we are interested in static equilibrium properties only,
the requirement (3) is less important in this particular study.
To account for the existence of an impenetrable wall, one can
use several approaches. For instance, one can consider layers
of frozen particles residing on each surface.37, 56, 57 However,

it was also found that such approach does not guarantee that
the conditions (1) and (2) are satisfied. In particular, a lattice
structure of the wall made of layers of frozen particles was
found to have an impact on the structure of the adjacent re-
gions of fluid.57

To avoid this shortcoming we prefer to use the structure-
less surface potential, the details are given below. Another
shortcoming of the frozen beads wall model is that such a
wall could be occasionally crossed by some beads, therefore,
later the idea of reflecting the particles off the wall was in-
troduced to assure the wall impenetrability.58 We also ex-
ploit this idea but supplement it by additional conservation
conditions.

To assure wall impenetrability and to construct a struc-
tureless wall we employ the following method. If the i th bead
with coordinates ri = {xi , yi , zi } approaches the surface, e.g.,
the plane z = 0, it starts to interact with an “imaginary” bead
that has the coordinates r j = {xi , yi , 0}, located on the z = 0
surface (similarly for the z = d surface). This interaction has
all three contributions given by Eqs. (3)–(5), similarly to the
interaction between any two “real” beads in the system. The
repulsion of the surface can be tuned by adjusting the param-
eter of conservative force aS . In this study, we choose it to
be equal to aAA and aB B , namely aS = 25, therefore the sur-
face is equally “good” for both sorts of beads A and B. The
condition of total momentum conservation for the bead-wall
interaction is applied by the following procedure. The force
acquired by each wall due to the interaction with approach-
ing beads is accumulated during the evaluation of forces and
is then evenly distributed over all beads inside the simula-
tion box. The effective surface, therefore, is structureless and,
thus, it does not introduce any artificial perturbation of the
fluid structure near the wall (requirement (2)).

Each polymer chain is grafted by one of its ends to a
grafting point. The grafting points are fixed on each wall and
are distributed randomly inside the stripes with certain graft-
ing density ρg . This value cannot be too high, as, in this case,
confined fluid will insufficiently influence the brush behavior.
It also cannot be too small because, in this case, the brush
will reduce into a set of almost independent diluted polymer
chains. We found reasonable value to be ρg = ρ/3 = 1 by
performing auxiliary simulations. Grafting potential is intro-
duced in a similar spirit to the bonding potential of polymer
beads (1). The spring constant for grafting potential is set to
the same value, kg = k = 4.

The proposed approach to account for the surface poten-
tial yields the following integrator. We start from the positions
ri (t), velocities vi (t), and reduced forces fi (t) = Fi (t)/mi at
time t and perform the following sequence of steps:

for i = 1, N
vi (t + �t

2 ) = vi (t) + fi (t)�t
2 ,

ri (t + �t) = ri (t) + vi (t + �t
2 )�t ,

apply PBC in X , Y
if (zi (t + �t) < 0) { (check for crossing z = 0)

vz
i (t + �t

2 ) = vz
i

(
t + �t

2

) − 2zi (t + �t)/�t ,
pz

S = pz
S + mi [2zi (t + �t)/�t],

zi (t + �t) = −zi (t + �t),
else if (zi (t + �t) > d) { (check for crossing z = d)
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vz
i

(
t + �t

2

) = vz
i

(
t + �t

2

) − 2(zi (t + �t) − d)/�t,
pz

S = pz
S + mi [2(zi (t + �t) − d)/�t],

zi (t + �t) = 2d − zi (t + �t).
}
v′

i (t + �t) = vi (t + �t
2 ) + 0.3 fi (t)�t

2
(estimate for vi (t + �t)),

}
pS = (0, 0, pz

S) (wall momentum vector)
calculate fi (t + �t) based on ri (t + �t), v′

i (t + �t)
for i = 1, N

vi (t + �t) = vi (t + �t
2 ) + fi (t + �t)�t

2 + 1
N pS/mi ,

calculate kinetic energy, temperature, and pressure at t + �t .

This integrator is an extension of modified velocity-Verlet al-
gorithm of Groot and Warren53 for the presence of a surface.
In particular, the beads are reflected off the wall if they cross
the simulation box boundaries at z = 0 or z = d. The mo-
mentum transferred to the wall, pS = (0, 0, pz

S), is collected
at each reflection event and is redistributed evenly among the
beads when vi (t + �t) is evaluated. This procedure, along-
side with the way the bead-wall interactions are treated (see
above), ensures conservation of each component of the total
momentum with the accuracy of at least 10−8. The range of
system sizes is from N = 64 000 up to 3.24 × 106 depending
on the pore geometry. The simulations have been performed
in N V T ensemble with the timestep of �t = 0.04.

Morphologies are visualised via density grid. Simulation
box is splited into a grid of cubic cells with linear dimension
of 0.75−2.0 depending on the box size. Local densities for
A beads ρA(x, y, z) and for B beads ρB(x, y, z) are evaluated
inside each cell where the cell coordinates are (x, y, z). These
are averaged over the coordinates files for which the morphol-
ogy stabilizes itself (typically, the last (2 − 5) × 104 simula-
tion steps). Density difference, ρAB(x, y, z) = ρA(x, y, z) −
ρB(x, y, z) is colour coded with bluish tint for positive
(mostly A beads) and reddish tint for negative (mostly B
beads) values. The interface regions ρAB(x, y, z) ∼ 0 are dis-
played in gray. Most morphologies are best seen in 3D rep-
resentation for which purpose we space-fill bluish and gray
cells only and show reddish cells as dots.

For the morphologies that are translationally invariant
along the Y axis the data have been averaged along this di-
rection. If a given morphology is additionally translationally
invariant in other direction (e.g., X ), then the densities have
been also averaged in that direction to enable plotting the 2D
density profiles. The kinetic energy and hence the local tem-
perature, kB T , has been evaluated in each cell for each sort
of beads using the same symmetry considerations as for the
local densities.

III. DIAGRAM OF MORPHOLOGIES

We consider a wide range of pore sizes d ∈ [13.333, 50]
and stripe widths w ∈ [4, 140]. In majority of cases the num-
ber of stripes is Nstr = 4, except for the cases of d = 30,
w = 90 and of d = 50 (for all values of w), where Nstr = 3
due to much increased system size. The dimensions of the box
are: Lx = 2Nstrw , L y = 50 (in most cases except the largest
values of d and w , where it is L y = 40) and Lz = d. The

polymer beads are of type A, whereas the interior of the pore
is filled by a binary mixture of beads A and B. In all cases the
mixture of all beads is symmetric in the sense that the total
numbers of beads A and B are the same

N p
A + N s

A = N s
B, (7)

where the superscript p or s denotes polymer or solvent, re-
spectively, while the subscript indicates the bead sort, A or B.
For fixed bulk, ρ = 3, and grafting, ρg = 1 densities, poly-
mer length L = 20, and stripes geometry one can calculate
the minimum pore size dmin, at which no solvent beads of sort
A are present, namely,

N p
A = 1

2
Ntot, 2ρg

Lx

2
L y L = 1

2
ρLx L ydmin,

dmin = 2
ρg

ρ
L ≈ 13.333. (8)

In this case one has a patterned polymer brush in a bad solvent
and the ratio of the beads N p

A : N s
A : N s

B is 1 : 0 : 1.
For this specific pore size, d = 13.333, we consider the

systems with the stripe widths ranging from w = 4 to w = 30.
Two distinct morphologies have been observed. For narrow
stripes, w < 5, the lamellar structure has been found to be sta-
ble. In this case, the polymer brushes cover both pore walls.
Instantaneously, the solvent B is demixed and forms a wide
layer at the pore center (see Fig. 2, top frame, on the left). For
w ≥ 5.3 pillar morphology develops: the opposite stripes of
brushes merge across the pore. This structure does not change
with further increase of w (see Fig. 2, bottom frame). In a
narrow interval of stripe widths, w ∈ [5, 5.2] one observes
“a mixture” of lamellar and pillar morphologies (Fig. 2, top
frame, on the right).

This sequence of morphologies can be explained by the
competition of various contributions to the free energy. These
are, the free energy of demixing, Fdem, and the conforma-
tional free energy of polymer chains, Fconf. The first one can
be estimated from the interfacial tension between A-rich and
B-rich regions. Assuming it to be constant, Fdem is propor-
tional to the surface area A between A-rich and B-rich re-
gions. This area is equal to Alam = 2Lx L y = 4Nstrw L y for
lamellar and Apil = 2Nstr L y Lz = 2Nstr L yd for pillar mor-
phology. Both areas (and thus Fdem) coincide at w = d/2
≈ 6.67. The transition, however, occurs at smaller values of
w lp ∈ [5, 5.2], where the mixture of both morphologies is

FIG. 2. Colour-coded density grid (for details, see the text) ρAB (x, y, z) for
morphologies: lamellar (w = 4, top frame, on the left), mixed (w = 5.1,
top frame on the right), and pillar (w = 10, bottom frame). In all cases
d = 13.333.
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FIG. 3. Additional morphologies observed in pores of the size d = 20: a
modulated lamellar (w = 9, top frame) and separated droplets (w = 13, bot-
tom frame).

observed (see, Fig. 2, top frame on the right). To explain
this, the Fconf should be taken into account. It depends on
average conformation of polymer chains and is addressed in
Sec IV. Moreover, a more precise evaluation of Fdem requires
also taking into account the effect of the interface curvature
on the interfacial tension.

For the pore size of d = 20 the system contains A and
B beads at the following ratio N p

A : N s
A : N s

B = 2 : 1 : 3. For
w < 8 we observe lamellar morphology, similar to that found
for d = 13.333 and w < 5. In this case the beads of solvent
A are mixed well with the polymer beads in the polymer-
rich layers that cover both surfaces. With an increase of w
new morphologies are observed. The first one is spatially
modulated lamellar structure with sinusoidally shaped layers
formed by the beads of type A. It occurs for w ∈ [8, 9] (see
Fig. 3, top frame). The second one is the separated droplets
morphology that takes place for w ∈ [12, 18] (see Fig. 3, bot-
tom frame).

For wider stripes, w ∈ [20, 30] a pillar morphology is
found. Its structure looks similar to that observed for the pore
size of d = 13.333 (cf. Fig. 2, bottom frame). However, for
still wider stripes, w > 30, one observes reentrant droplets
morphology that has been already found for 8 < w < 12. Sol-
vent A beads do not diffuse from the polymer-free regions into
the gaps between the droplets to promote formation of pil-
lars. More details on the crossover between pillar and droplets
morphologies is given in Sec. IV.

For d = 20 and w > 50 the increasing amount of sol-
vent A beads and the enlarging polymer-free regions enable
a spontaneous formation of domains of solvent A beads in
polymer-free regions. To study this process in detail we per-
formed simulations at wide range of stripe widths, namely,
for w = 80, 90, 100, 120, and 140. In all cases from one to
three cylindrical domains of solvent A beads were formed in
polymer-free regions. Cylinders span across the pore.

The kinetics of their formation is similar in all cases
mentioned above and is illustrated by snapshots of one sin-
gle polymer-free region for the case of d = 20 and w = 100
in Fig. 4. At first stages (at times t ≈ 100–200) solvent A
beads nucleate into droplets. Many of them are of semispher-
ical shape and are attached to one surface of the pore. This
is explained by the surface potential applied, which uses the
concept of a single repulsive surface particle and does not em-
ploy an integration over the surface particles (see, Sec. II).
Therefore, for aS = aAA = aB B , the surface potential is less

FIG. 4. Nucleation kinetics of solvent A domains in polymer-free stripes
for d = 20, w = 100. Mixture of semidroplets and cylinders (topmost frame,
time t = 2000); merge of semidroplets and cylinders (second from the top,
t = 2600); merge of two cylinders (third from the top, t = 3000); final single
cylinder domain (bottom frame, t = 3600).

repulsive than it would be for a wall of beads. This causes nu-
cleation of beads A into semispheres on the surfaces easier. At
later stage, t ≈ 1000–2000 some droplets merge into cylin-
ders spanning across the pore (see the second frame from the
top in Fig. 4). Other droplets merge gradually with the near-
est cylindrical domains, as shown in the same figure. Some
droplets diffuse into gaps between droplets at opposite sur-
faces partly filling the latter. We found that when simulations
last longer than t = 8000, no droplets can persist. The num-
ber of cylindrical domains vary from one to three and depends
on random factors during nucleation. Merging two neighbor-
ing cylindrical domains into a single one is shown in Fig. 4
(two bottommost frames). Slow diffusion of cylinders hinders
their ability to merge, or, at least, their merging would require
simulation runs much longer than employed in this study. The
fraction of A beads f A in polymer-free regions ranges from
f A ≈ 0.12 for w = 80 to f A ≈ 0.25 at w = 120 − 140. One
may try to link these values to the typical fractions at which
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FIG. 5. Spontaneous formation of cuboidal domains of solvent A beads in
polymer-free stripes, d = 30 and w = 90.

a minor component forms cylindrical domains in the case of
diblock copolymer systems.55

Let us consider now larger pore of the size of d
= 30. In this case the proportions of beads are: N p

A : N s
A : N s

B
= 1 : 1.25 : 2.25 and the sequence of morphologies is simi-
lar as in the case of d = 20. One observes lamellar morphol-
ogy for w ≤ 10, modulated lamellar morphology at w ≈ 15
and separate droplets morphology for w ∈ [25, 40]. No pillar
morphology has been found, though, as for w ≥ 50, the bulk-
like phase separation is brought into play, similarly, as in the
case of d = 20 and w > 30. For w = 60 and w = 70 some
domains of solvent A remain separated while others diffuse
into gaps between droplets at opposite surfaces. An interest-
ing effect found is that at w = 90 stand-alone cuboidal do-
mains of solvent beads A are formed right in the center of
each polymer-free region (see, Fig. 5). The fraction of A that
beads f A in these regions is f A ≈ 0.3, which may be the fac-
tor deciding about the cuboidal domain shape. The situation
in Fig. 5 contrasts with the already discussed case of one to
three cylindrical domains formed inside the pore of the size
of d = 20.

With further increase of the pore size to d = 50 (the pro-
portions of beads are now N p

A : N s
A : N s

B = 1 : 2.75 : 3.75)
the self-assembly of the system is dominated by bulk effects.
One observes the formation of separate droplets and of lamel-
lar and pillar fragments. Typical case of d = 50 and w = 30
is shown in Fig. 6.

The intervals of stability for the morphologies for var-
ious pore sizes, d, and stripe widths, w , can be summa-
rized into a sketchy diagram, shown in Fig. 7. Lamellar
and pillar morphologies appear along respective axes. The
breadth of appropriate regions is of the order of chain length,
L = 20. At larger, but still moderate values of d and w the
droplets morphology is found (dashed area in Fig. 7 marked as
“DROPLETS”). For larger values of d and w additional num-
ber of solvent beads A are available. As far as the droplets
are already saturated with solvent A beads, these additional
A beads cannot enter the interior of droplets. Therefore, they
self-assemble into bulk structures inside the polymer-free re-
gions (cross-dashed area in Fig. 7 marked as “DROPLETS
+ BULK”).

At the end of this section we discuss how the case of
stripes built of chains composed of L = 20 beads consid-

FIG. 6. Domination of bulk effects for d = 50. Fragments of various mor-
phologies are shown for a typical case of w = 30.

FIG. 7. Sketch for the diagram of morphologies depending on pore sizes d
and on stripes widths w .

ered so far compares with the case of “atomic” stripes with
L = 1. Our simulations have been carried out for the same set
of pore sizes as for L = 20 and for a range of stripe widths
w ∈ [5, 90]. The total number of grafted beads (denoted as
N p

A for the sake of compatibility) is now much smaller as
compared with the number of solvent beads, N s

A and N s
B . The

ratios of particular beads range from N p
A : N s

A : N s
B = 1 : 19 :

20 for d = 13.333 to N p
A : N s

A : N s
B = 1 : 74 : 75 for d = 50.

Therefore, the confined binary mixture of solvent A and sol-
vent B beads can be considered as almost exactly symmetric
mixture.

The main outcome of our simulations for L = 1 can be
summarized in a rather brief statement. For w � d, the binary
mixture of A and B solvent beads does not “see” the fine struc-
ture of the stripes and separate similarly as in the bulk case.
A-rich and B-rich regions of random shape are formed.59 For
instance, for d = 13.333, two large domains, either cuboidal
(for w = 4) or cylindrical (for w = 6) in shape develop (see,
Fig. 8, top frame). When w becomes compatible with the
pore size d, then the phase separation of the species be-
gins to be driven by the stripes geometry. Indeed, for d = 20
and w = 20 (Fig. 8, middle frame) usual pillar morphology
is formed. Obviously, for different ratio N p

A : N s
A : N s

B the
observed morphology can be different. For the values of w
significantly larger than the pore size, d, the bulk-like type
phase separation between solvent species is observed again,

FIG. 8. Microphase separation of A and B beads for L = 1 stripes at various
w . Top frame – bulk-like effects at w � d, the cases of cuboidal (d = 13.333,
w = 4, on the left) and cylindrical (d = 13.333, w = 6, on the right) domains
are shown. Middle frame – stripe-driven formation of pillar morphology at
w ∼ d (the case d = 20, w = 20 is shown). Bottom frame – reentrant bulk-
like microphase separation at d = 50 and w = 90.
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TABLE I. Morphologies observed for d = 13.333 and for different stripes widths w and metric properties of
polymer chains defined by Eqs. (11)–(14). Estimated standard deviation for Gαα does not exceed 1%.

w Gxx G yy Gzz σ 2
1 σ 2

2 σ 2
3 Rg Rh Morphology

4.0 1.20 1.09 0.63 2.19 0.54 0.20 1.71 1.59 Lamellar
5.0 1.34 1.06 0.75 2.38 0.56 0.20 1.77 1.62 Mixed
5.1 0.99 1.04 1.63 2.90 0.56 0.19 1.91 1.68 Mixed
5.2 1.19 1.04 1.22 2.69 0.56 0.20 1.86 1.65 Mixed
5.3 0.73 1.04 2.31 3.33 0.56 0.19 2.02 1.73 Pillar
10.0 0.88 1.03 2.55 3.67 0.58 0.20 2.11 1.78 Pillar
30.0 0.99 1.03 2.65 3.88 0.60 0.20 2.16 1.81 Pillar

as in the case of d = 50 and w = 90 (see Fig. 8, bottom
frame). Similarly, as in the case of w � d the typical domain
size is incommensurate with the characteristic lengthscale w
and, as the result, the bulk effects are prevailing. The case of
“atomic” stripes can be related to the upper right corner of the
diagram depicted in Fig. 7.

IV. MICROSTRUCTURE OF MORPHOLOGIES

Let us concentrate now on the microstructure of the mor-
phologies that have been classified in Sec. III. Anisotropy in
spatial distribution of the beads of each kth polymer chain can
be characterized by the components of the gyration tensor, de-
fined in a standard way

G[k]
αβ = 1

N

N∑
i=1

(
r [k]

i,α − R[k]
α

)(
r [k]

i,β − R[k]
β

)
. (9)

Here α, β denote Cartesian axes, r [k]
i,β are the positions of in-

dividual monomers, and R[k] is the center of mass position
of the kth chain. The trace of this tensor is equal to squared
radius of gyration, (R[k]

g )2, and its eigenvalues are (σ [k]
α )2,

where σ [k]
α are semiaxes of the equivalent ellipsoid for the

kth molecule. The inverse hydrodynamical radius R[k]
h can be

evaluated from the following relation:

1

R[k]
h

= 1

N 2

∑
i 
= j

1

r [k]
i j

, (10)

where ri j is the distance between i th and j th bead belonging
to kth chain. The quantities G[k]

αβ , (σ [k]
α )2, (R[k]

g )2, and 1/R[k]
h

are averaged over polymer chains and over the time trajectory
in equilibrium morphology of the system. The final metric
properties are computed in the following way:

Rg =
√〈(

R[k]
g

)2〉
k,t

, (11)

1

Rh
= 〈

1/R[k]
h

〉
k,t

, (12)

Gαβ = 〈
G[k]

αβ

〉
k,t , (13)

σ 2
α = 〈(

σ [k]
α

)2〉
k,t

. (14)

We employed the following ordering for σα , σ1 > σ2 > σ3.
These properties obtained for the pore sizes d = 13.333 and
d = 20 are given in Tables I and II, respectively.

Let us point out some general observations first. The G yy

component of the gyration tensor is almost constant for all the
morphologies listed in Tables I and II which can be attributed
to the uniformity of the system along the Y axis. The smallest
squared semiaxis of the equivalent ellipsoid, σ 2

3 , and, to large
extend, the medium one, σ 2

2 , are also found to be almost con-
stant. The characteristic ratio σ 2

2 /σ 2
3 ranges from 2.7 to 3.1

which is quite close to 2.5, i.e., to the ratio for the case of
an ideal chain.60 This indicates that the average chain confor-
mation in the plain perpendicular to its longest axis is almost
Gaussian.

The principal metric peculiarity in the lamellar morphol-
ogy observed for d = 13.333 is the oblate shape of polymer

TABLE II. Morphologies observed for d = 20 and for different stripes widths w and metric properties of poly-
mer chains defined by Eqs. (11)–(14). Estimated standard deviation for Gαα does not exceed 1%.

w Gxx G yy Gzz σ 2
1 σ 2

2 σ 2
3 Rg Rh Morphology

5.0 1.29 1.09 1.19 2.74 0.62 0.21 1.89 1.70 Lamellar
7.0 1.50 1.09 1.21 2.97 0.62 0.21 1.95 1.73 Lamellar
8.0 1.57 1.08 1.22 3.04 0.63 0.21 1.97 1.75 Mod.lam.
9.0 1.68 1.06 1.28 3.19 0.63 0.21 2.00 1.76 Mod.lam.
10.0 1.53 1.05 1.52 3.27 0.63 0.21 2.03 1.77 Trans.
12.0 1.11 1.07 2.18 3.52 0.63 0.21 2.09 1.80 Droplets
18.0 1.14 1.06 2.72 4.09 0.63 0.20 2.22 1.85 Droplets
20.0 1.06 1.04 3.22 4.49 0.62 0.20 2.31 1.88 Pillars
30.0 1.02 1.03 3.97 5.21 0.61 0.20 12.45 1.93 Pillars
50.0 1.04 1.02 4.00 5.24 0.62 0.20 2.46 1.94 Pillars + cyl.
90.0 1.05 1.03 3.42 4.67 0.62 0.20 2.34 1.90 Dropl. + cyl.
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chains. Indeed, Gzz is approximately half of Gxx or G yy val-
ues (see Table I). Moreover, the values of Gxx or G yy are sim-
ilar what indicates that the system in lamellar morphology is
at least partially uniform along the X direction. Therefore,
the formation of an uniform layer near the surface occurs by
bending chains along the X axis to fill-in the polymer-free
stripes. This effect is well detectable even when one averages
over all the chains of each stripe (as we did in this study),
and is expected to be more pronounced if only the boundary
chains of each stripe are selected. One should mention that
the preservation of the lamellar (or modulated lamellar) mor-
phology with the increase of w requires more stretch of the
chains along the X direction, this is clearly indicated by the
larger values of Gxx at w = 7 − 9 as compared to the case of
w = 5 for the pore size d = 20 (Table II).

In the pillar morphology the situation is reversed. Gzz is
about 2.5 times larger than either Gxx or G yy indicating that
the chains are stretched across the pore. Their shape is pro-
nouncedly prolate as follows from the values of the largest
semiaxes σ1. The characteristic ratio σ 2

1 /σ 2
3 increases from

about 11 for lamellar morphology (w = 4) to 17.5 for early
pillar morphology (w = 5.3) up to 19.4 for well developed
pillar morphology (w = 30). This indicates essential depar-
ture from the regime of Gaussian chain for which this ratio is
∼ 11.8.60 It is evident that these conformational changes are
the result of the competition between free energies Fdem and
Fconf introduced above. In pillar morphology, the gain from
the first contribution due to merging of brushes is bigger than
the loss from the second one, due to deformation of the chains.

In the lamellar morphology observed at pore size of
d = 20, the distribution of chains in space is more isotropic
(Gxx ≈ G yy ≈ Gzz). Gxx is slightly larger than two other
components and exhibits a maximum in modulated lamel-
lar morphology (for w ∈ [8, 9]). This indicates extension of
chains along the X axis close to the surfaces in order to fill-in
the polymer-free stripes. Additional gain in Fdem is achieved
by filling these regions also by the solvent A beads. This com-
pensates for the the loss in Fconf, similarly to the case dis-
cussed above. With the increase of w , a sharp decrease of the
value of Gxx occurs at w ≈ 10, where Gxx drops down to
about 1 and stays constant with further increase of w . Pillar
morphology for the pore size d = 20 demonstrates even larger
anisotropy in gyration tensor components than that found for
d = 13.333. In fact, the values of Gzz are up to four times
larger than the values of Gxx or G yy (see Table II).

To characterize both lamellar and pillar morphologies
and the transition between them quantitatively, we analyzed
the measure of merging between both adjacent stripes within
the same surface plane and between stripes placed at opposite
pore walls. Let us consider the case of adjacent stripes within
the same wall first. We built a 3D grid of cells and then the
loop over all pairs of chains, m and n is performed provid-
ing that the chains belong to adjacent stripes. The inner loop
runs then over all the (i, j) pairs of beads, where the bead i
belongs to mth chain and the bead j belongs to nth chain.
From all of these pairs we select only those for which (yi , zi )
and (y j , z j ) belong to the same grid cell in the Y Z plane. All
the distances ri j between such pairs are calculated and the
minimum one, rmin, is selected to construct the histogram of

w=3
w=4
ρz(rmin)ρx(rmin)

w=3
w=4

ρz(rmin)
w=5.2
w=5.1

ρx(rmin)
w=5.2
w=5.1

0 5 10 15 20 rmin

ρz(rmin)
w=5.4, 7, 10

ρx(rmin)w=5.4
w=7

w=10

FIG. 9. Distributions of the chain-chain shortest distances rmin for the chain
pairs from adjacent stripes on the same surface, ρx (rmin), and for the chain
pairs from opposite stripes in Z direction, ρz(rmin). Top frame – lamellar
morphology, bottom frame – pillar morphology, middle frame – transitional
mixed morphology. The pore size is d = 13.333.

the distribution, ρx (rmin). Similar procedure is used to eval-
uate the histogram ρz(rmin) of the shortest distances between
chains located within the stripes at opposite walls. The defi-
nition for the chain-chain minimum distance, rmin, in both X
and Z directions is illustrated in Fig. 1 (bottom frame).

The histograms for ρx (rmin) and ρz(rmin) in lamellar and
pillar morphologies, as well as for transitional mixed mor-
phology for d = 13.333 are shown in Fig. 9. In the case of
lamellar morphology (top frame in Fig. 9), one observes high
peak of ρx (rmin) at small distances indicating merging adja-
cent stripes. The opposite stripes are separated by a distance
of at least 5 and the average distance between them equals to
about 8.5, as indicated by the plot of ρz(rmin). In the case of
pillar morphology (bottom frame in Fig. 9) the situation is re-
versed, as clearly indicated by high values of ρz(rmin) at small
distances. The distributions are independent on w . The sepa-
ration of adjacent layers along X has a maximum at approx-
imately 2w . The case of transitional mixed morphology for
w = 5.1 and 5.2 is shown in the middle frame of Fig. 9. The
shape of both distributions indicates partial merging of some
adjacent and some opposite stripes, supporting the snapshot
shown in Fig. 2 (top frame, on the right).

The distributions of chain-chain minimum distances
ρx (rmin) and ρz(rmin) for the modulated lamellar morphol-
ogy and droplets morphology for d = 20 are shown in Fig.
10. One should note that the polymer chains overlap only

0 10 20 30 40 rmin

w = 9
w = 13

ρz(rmin)
ρx(rmin)

FIG. 10. Distributions similar to those displayed in Fig. 9. Modulated lamel-
lar (at w = 9) and separate droplets (at w = 13) morphology are shown, the
pore size is d = 20.
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FIG. 11. Local density and local temperature profiles for lamellar morphol-
ogy at pore size d = 13.333 and stripe width w = 4. Bead sorts A, B are
marked by subscripts and coloured lines, ρ(z) and kB T (z) stand for the total
density and temperature profiles, respectively.

little along the X axis in modulated lamellar morphology (as
compared to lamellar morphology for d = 13.333, Fig. 9).
This indicates that much filling of the lamellae is done by the
solvent A beads. This behavior is discussed below in terms
of the density profiles. The distributions shown in Fig. 10
for w = 13 indicate complete separation of droplets in both
directions.

Let us consider now the local densities and local temper-
atures. The symmetry of lamellar morphology, observed for
d = 13.333 and w = 4, allows us to average local properties
over the X axis and build density and temperature profiles
only in Z direction. They are abbreviated as ρA(z), ρB(z), and
ρ(z) (for total density) and kB TA(z), kB TB(z), and kB T (z) (for
average temperature), respectively. We show them in Fig. 11.
The regions z < 0.5 and z > 12.833 are excluded from the
plots because beads cannot approach the surface closer than
by 0.5. In the top frame of Fig. 11, one can observe the effect
of microphase separation of A and B species. The profiles
quantify the snapshot shown on the left of the top frame of
Fig. 2. At the distances of about 0.9 from both surfaces one
observes density peaks due to grafting of the first bead of each
chain. One can also see the total density drop in the regions
where the densities of A and B species are equal (z ≈ 3.4
and z ≈ 9.9). This is explained by strong repulsion of A
and B beads. No anomalies of the total density are observed
near both surfaces which confirms the validity of the applied
integrator.

The local temperature profiles for the lamellar morphol-
ogy (bottom frame of Fig. 11) indicate good conservation of

0 10 20 30
0

1

2

3

3

x

ρA(x) ρB(x)

ρ(x)

FIG. 12. Local density profiles for pillar morphology for the pore size d
= 13.333 and for the stripe width w = 10. The notations are the same as in
Fig. 11.
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FIG. 13. Local density profiles calculated along Z axis within slab regions
as explained in the text. The case of “strong” pillar morphology in the pore
of the size d = 13.333 and stripe width w = 10.

temperature (equal to 1.0) in both polymer-rich and solvent B
rich regions. Large fluctuations of local temperature of poly-
mer beads in solvent B region and vice verse result from poor
statistics due to insufficient number of beads in these regions.
One should stress that no anomalies for the local temperature
near the walls are observed.

Similar profiles can be built for pillar morphology that
has been observed for d = 13.333 and w = 10. In this case
the local properties are averaged in Z direction and the fol-
lowing profiles along X axis can be evaluated: ρA(x), ρB(x),
ρ(x), kB TA(x), kB TB(x), and kB T (x). The behavior of these
profiles is quantitatively similar to that in Fig. 11, but now
the modulation of the local properties takes place along the X
axis. In Fig. 12, we show only local density profiles for the
sake of brevity. The behavior of the local temperature is sim-
ilar as in the case of Fig. 11 with large fluctuations of partial
temperatures within low local density regions.

Visual inspection of pillars formed during simulation re-
veals various levels of their overlap, ranging from touching
droplets (“weak” pillars) up to highly developed “strong”
pillars with meniscus-like sides (see, e.g., bottom frame in
Fig. 2). The solvent A beads appear to mix quite uniformly
with the polymer beads. To quantify the “quality” of pillar
morphology we compute the density profiles within pillars,
ρA(z), ρB(z), and ρ(z). They were evaluated inside the slab
regions spanning over entire range in Y and Z directions and
restricted to the intervals x ∈ [0, w], x ∈ [2w, 3w] and so on
along the X axis. The profiles are then averaged over all slab
regions. Normalized difference between the densities in the
middle of the pore, �ρ = (ρA( d

2 ) − ρB( d
2 ))/ρ( d

2 ), can be con-
sidered as the order parameter for the pillar morphology.

The result for the pore of d = 13.333 and for w = 10
is shown in Fig. 13. It demonstrates a “strong pillar” case

0 2 4 6 8 10 12 14 16 18
0

1

2

3

3

z

ρA(z)

ρB(z)

ρ(z)

ρpA(z)

ρsA(z)

FIG. 14. Local density profiles calculated along Z axis within slab regions
as explained in the text. The case of droplets morphology in the pore of the
size d = 20 and stripe width w = 13 is shown here.
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FIG. 15. Local density profiles calculated along Z axis within slab regions
as explained in the text. The figure illustrates case of “critical” pillar mor-
phology in the pore of the size d = 20 and stripe width w = 30.

with the pillar order parameter �ρ = 0.65. The breaking con-
tinuity within pillars leads to droplets morphology. The pil-
lar order parameter is negative in this case, in particular case
of d = 20, w = 13 it equals �ρ = −1, as can be seen in
Fig. 14. In this case, we see that the polymer and solvent A
are completely excluded from the central region, whereas the
solvent B beads are present in droplets with non-zero density
ρs

B(x) ≈ 0.7. The solvent A beads profile ρs
A(x) is found to

follow closely that for the polymer beads, ρ
p
A(x), which is an

indication of the sole effect of droplets swelling due to solvent
A beads entering polymer rich regions.

Two cases discussed above demonstrate the “strong” pil-
lar and no pillar (droplets) morphologies. The critical case
must exist which corresponds to the droplets “touching” each
other at the pore center. Pillar order parameter in this case is
approximately zero. Such a case is found for d = 20 and for
w = 30 and the density profiles within the slabs are shown in
Fig. 15. Solvent A beads spread more or less uniformly across
the pore with a slight increase of their local density in the mid-
dle of the pore. Polymer beads are also found to spread into
the middle of the pore, where they mix well with solvent A
beads. As the result, the total densities, ρA( d

2 ) and ρB( d
2 ) for

A and B beads, respectively, are approximately equal bringing
the value for the order parameter to �ρ ≈ 0.

Similar study can be undertaken also for the lamellar
morphologies. Especially, the case of non-trivial modulated
lamellar morphology (see, Fig. 3, top frame) is of interest.
The distribution of polymer and solvent A beads in such mor-
phology can be quantified via the local density profiles within
the layers adjacent to both surfaces. In particular, for the case
of d = 20, w = 9 the layers were defined by restricting the
Z coordinates to the intervals z ∈ [0.5, 6] and z ∈ [14, 19.5].

0 10 20 30 40 50 60 70
0

1

2

3

3

x

ρA(x)

ρB(x)

ρ(x)

ρpA(x) ρsA(x)

FIG. 16. Local density profiles calculated along X axis within the layers
adjacent to the surfaces for modulated lamellar morphology. The pore size is
d = 20 and stripe width is w = 9.

The results are shown in Fig. 16. The shape of the distribu-
tions of both polymer and solvent B beads are found to be very
close to sinusoidal, whereas the density of solvent A beads is
constant across the entire X range. The latter can be explained
solely by the fact that the solvent A beads are distributed more
densely within the regions of the “valleys” of the sinusoidal
shape.

V. SUMMARY

In this work we have employed the DPD simulation tech-
nique to study the structure of a binary mixture inside pores
modified by stripes of tethered polymer brushes. The solvent
has been composed of two types of beads. The beads A have
been identical to the beads of chain particles, while the beads
of the second sort, B, have been selected in such a way that the
bulk A-B mixture exhibits partial mixing. All the calculations
have been carried out assuming that the ratio of the total num-
ber of A beads to the number of B beads was equal to one. The
main aim of our calculations has been to investigate the mor-
phologies that appear inside the pore, depending on the pore
size d and the width of the stripes, w . We have constructed
a sketch of the diagram of the morphologies and have found
that they are governed by (i) the characteristic lengthscale L
that is the length of the chains, and by (ii) the fraction of the
A-type molecules in the polymer-free regions. For the values
of w close to L/2 and for d > dmin ∼ L/2 lamellar morphol-
ogy was found, while for w > w lp ∼ L/4 and dmin < d < L ,

we observed the formation of pillars. Beyond the above re-
gions either droplets or droplets plus bulk-type morphologies
have been observed. The self-aggregation within polymer-
free stripes seems to be governed by the size of the stripes
and by the fraction of A beads within these regions. When this
fraction is close to 1/3, cylinders inside polymer-free regions
have been formed, while for the fraction close to 1/2 lamellae
have developed. In order to characterize the observed mor-
phologies we have calculated several parameters, as the radii
of gyration, local densities and histograms of the minimum
distances between polymers located in different (within the
same plane, as well as at opposing walls) stripes.

It would be of interest to check how the morphologies
evolve if the ratio of A to B beads will change and how the
morphologies formed under static condition will be preserved
– or changed – if the fluid would undergo a pressure-driven
flow along the pore axis. The last aspect seems to be particu-
larly interesting, and even important from the practical point
of view because the formation of some structures inside the
pore “locks” the pore. It would be therefore of interest to
check what pressure will be necessary to break the “dams”
inside the pore and to open it. These problems are currently
under study in our laboratories.
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