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Ground states of the lattice-gas model on the triangular lattice with nearest- and
next-nearest-neighbor pairwise interactions and with three-particle interaction:

Full-dimensional ground states

Yu. I. Dublenych
Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, 79011 Lviv, Ukraine

(Received 19 October 2010; revised manuscript received 6 January 2011; published 11 July 2011)

In this paper, we completely solve the problem of the ground states of the lattice-gas model on the infinite plane
triangular lattice with nearest- and next-nearest-neighbor pairwise interactions and with additional interaction
between three particles at the vertices of a nearest-neighbor triangle. We use this model to illustrate how the
complete solution of the ground-state problem of a lattice-gas model (or equivalent spin model) should look.
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I. INTRODUCTION

Lattice-gas models or equivalent spin models, owing to
their numerous applications, still remain a subject of intensive
studies. It is natural to start the investigation of such models
by determining their ground states. These latter give an idea
about the low-temperature behavior of these models and are
often the only exact solutions that can be obtained. Although
the methods for determining the ground states of lattice-gas
models have been developed for more than 50 years [1], no
general algorithm existed until now. Moreover, there is no
clear understanding as to when this problem can be considered
completely solved. The researchers mostly restrict their studies
to the ground states in full-dimensional regions of the space of
the Hamiltonian parameters including the chemical potential
(or the external field for spin Hamiltonians). We will call such
ground states full dimensional. But the knowledge of full-
dimensional ground states only is not sufficient to answer the
question about ground states in the case of a fixed density of
particles. In this case, one should also know the ground states
at the boundaries of full-dimensional regions.

In Ref. [2], we developed a method for determining ground
states of lattice-gas models or equivalent spin models and,
using this method, the complete solution for the ground-state
problem of the lattice-gas model on the triangular lattice with
nearest- and next-nearest-neighbor interactions was found.
Here, we refine our method and demonstrate that it is
also applicable to the lattice-gas models with many-particle
interactions. Lattice-gas models of this kind are interesting
not only from a pure theoretical point of view, but are
also widely applied to the description of adsorption [3] and
intercalation [4] processes. In these cases simple models
with pairwise interactions often do not provide an adequate
description. For instance, lattice-gas models with pairwise
interactions of particles lead to the symmetrical voltage curve
(dependence of the chemical potential on the particle density)
due to the particle-hole symmetry of the Hamiltonian. In
contrast, the voltage curves of real intercalated compounds are
asymmetrical [5]. To reproduce this asymmetry, many-particle
effective interactions should be introduced into the Hamilto-
nian. Lattice-gas models with many-particle interactions are
also used in the studies of the ground states of the quantum
Falicov-Kimball model [6].

Here we consider one of the simplest lattice-gas models
with many-particle interaction, namely the lattice-gas model

on the triangular lattice with nearest- and next-nearest-
neighbor pairwise interactions and with interaction between
three particles at the vertices of a nearest-neighbor triangle.
Ground states of this model were investigated earlier by Brandt
and Stolze [7]. They found full-dimensional ground-state
structures, however, for two of these structures they did not
prove that these really are the ground-state ones. Furthermore,
the Brandt and Stolze method does not make it possible to find
disordered and ordered-but-aperiodic ground-state structures.
This is possible with our approach. Although with the Brandt
and Stolze method it is possible to identify the first-order
phase transitions, it is not easy, and such an analysis was not
performed. It is relatively easy to do this with our method.

This paper represents only a part of our studies of the
ground-state problem, but it is the essential part. It contains
the description of the method, the complete solution of the
ground-state problem, and construction of the full-dimensional
ground-state structures. So as not to overburden the paper,
construction and analysis of the ground-state structures at
the boundaries of the full-dimensional regions are reserved
for future publications. The paper is organized as follows.
In Sec. II, we explain the principles of our method for the
determination of the ground states of lattice-gas models by
applying them to the lattice-gas model on the triangular lattice
with nearest- and next-nearest-neighbor pairwise interactions
and with three-particle interaction. In Sec. III, we give the
solution of the ground-state problem in the form of a set of
the so-called “basic rays” and the corresponding sets of cluster
configurations. In Sec. IV, we determine the full-dimensional
ground-state structures and prove the completeness of the set
of basic rays. Section V contains some concluding remarks.

Our results can be applied, in particular, to the description
of some kinds of particles adsorbed on the surface of graphite
or sheets of graphene. This is increasingly important from the
point of view of possible applications.

II. METHOD FOR CONSTRUCTION OF GROUND-STATE
STRUCTURES OF LATTICE-GAS MODELS

A. Lattice-gas Hamiltonian and the family of equivalent
Hamiltonians

Let us consider the lattice-gas model on the triangular lattice
with nearest- and next-nearest-neighbor pairwise interactions
and with three-particle interaction between particles at the
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vertices of a nearest-neighbor triangle. The Hamiltonian of
this model reads

Hlg = I1

∑
NN

cicj + I2

∑
NNN

cicj

+ I�
∑
�

cicj ck − μlg

∑
i

ci . (1)

Here ci are the lattice-gas occupation variables (ci = 1 if
the ith site is occupied by a particle and ci = 0 otherwise),
I1, I2 are the nearest- and next-nearest-neighbor couplings,
respectively, I� is the three-particle interaction, and μlg

denotes the chemical potential of particles. NN , NNN , and
� denote the summation over the nearest neighbors, the
next-nearest neighbors, and the nearest-neighbor triangles,
respectively.

It is easy to show that this model is mathematically
equivalent to the spin model

HI = J1

∑
NN

σiσj + J2

∑
NNN

σiσj

+ J�
∑
�

σiσjσk − h
∑

i

σi, (2)

with the coupling constants and external field

J1 = I1 + I�
4

, J2 = I2

4
, J� = I�

8
,

(3)
h = μlg

2
− 6(J1 + J2 − J�).

Here σi = 2ci − 1 = ±1 are spin variables.
Both Hamiltonians (1) and (2) have the same ground states.

This is also true for the whole family of Hamiltonians

H = V1

∑
NN

(a1σi + b1)(a1σj + b1)

+V2

∑
NNN

(a2σi + b2)(a2σj + b2)

+V�
∑
�

(a�σi + b�)(a�σj + b�)(a�σk + b�)

−μ
∑

i

(a0σi + b0), (4)

where the couplings V1, V2, and V� and the “chemical
potential” μ are related to the parameters of model (2) as

J1 = a2
1V1 + 2a2

�b�V�, J2 = a2
2V2, J� = a3

�V�,
(5)

h = a0μ − 6
(
a1b1V1 + a2b2V2 + a�b2

�V�
)
.

The values ai , bi (i = 0,1,2), and a�, b�, which are indepen-
dent of spin variables, can be arbitrary; the only restrictions
are ai �= 0 and a� �= 0. We will see later that the values bi

and b� are very important for the determination of the ground
states.

Equations (5) can be reversed as

V1 = J1

a2
1

− 2b�J�
a2

1a�
, V2 = J2

a2
2

, V� = J�
a3

�
,

(6)

μ = 1

a0

[
h + 6

(
b1

a1
J1 + b2

a2
J2 + a1b

2
� − 2b1a�b�

a1a
2
�

J�

)]
.

Let us note that Hamiltonian (2) is invariant with re-
spect to the flip of all spins with simultaneous inversion
of the signs of J� and h. To exploit this symmetry, we
consider ground states of Hamiltonian (2), but for the sake
of clarity we use the “language of the lattice-gas model.” It
is easy to switch from spin Hamiltonian (2) to lattice-gas
Hamiltonian (1) using the transformations that are inverse to
transformations (3)

I1 = 4J1 − 8J�, I2 = 4J2, I� = 8J�,
(7)

μlg = 2h + 12(J1 + J2 − J�).

B. Hamiltonian in the form of the sum over flowers

We will build the global ground-state structures with
configurations of a cluster. (The terms “structure,” “cluster,”
and “configuration of a cluster” are clearly defined in Ref. [8].)
To build a structure with a set of configurations of a cluster
means to construct such a structure on the lattice that
every cluster of this type in the structure will have one
of the configurations belonging to the set. This structure
will be a ground-state one (in a region of the space of
the Hamiltonian parameters) if the configurations of the
set have equal energy and this energy is the smallest one
among the energies of all other configurations. Which cluster
should be chosen? There is no a priori answer for this.
Of course, the cluster should be big enough to contain all
interactions included into the Hamiltonian; this is a necessary
condition. It turns out that the seven-site cluster in the form
of a “flower” (hexagon with the central site) is sufficient for
construction of all ground-state structures of the model under
consideration.

Hence, let us rewrite Hamiltonian (4) in the form of a single
sum over all possible flowers on the lattice

H =
∑

i

Hi =
∑

i

{
V1

2(β1 + β2)

[
β1σ

1
i0

(
σ 1

i1 + σ 1
i2 + σ 1

i3 + σ 1
i4 + σ 1

i5 + σ 1
i6

)

+β2
(
σ 1

i1σ
1
i2 + σ 1

i2σ
1
i3 + σ 1

i3σ
1
i4 + σ 1

i4σ
1
i5 + σ 1

i5σ
1
i6

)]
+ V2

2

(
σ 2

i1σ
2
i3 + σ 2

i3σ
2
i5 + σ 2

i5σ
2
i1 + σ 2

i2σ
2
i4 + σ 2

i4σ
2
i6 + σ 2

i6σ
2
i2

)
+ V�

3
σ

�
i0

(
σ

�
i1σ

�
i2 + σ

�
i2σ

�
i3 + σ

�
i3σ

�
i4 + σ

�
i4σ

�
i5 + σ

�
i5σ

�
i6 + σ

�
i6σ

�
i1

)
− μ

α1 + 6α2

[
α1σ

0
i0 + α2

(
σ 0

i1 + σ 0
i2 + σ 0

i3 + σ 0
i4 + σ 0

i5 + σ 0
i6

)]}
. (8)
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Here the following notations are introduced:

σ 1
ij = a1σij + b1, σ 2

ij = a2σij + b2,
(9)

σ 0
ij = a0σij + b0, σ

�
ij = a�σij + b�.

The first index at spin variables σij denotes the host flower,
and the second one counts the sites within the flower (the
central site is marked as zero). Every bond between a pair
of next-nearest neighbors belongs to two different flowers
and is counted twice, therefore the factor 1

2 is introduced in
the second term. Every triangle of nearest neighbors belongs
to three different flowers, thus we have the factor 1

3 in the
respective term of the Hamiltonian. Arbitrary factors α1 and
α2 (α1 �= −6α2) account for the fact that every site belongs
to one flower as the central site and also to six flowers as
a lateral site. Similarly, the presence of arbitrary factors β1

and β2 (β2 �= −β1) reflects the fact that every bond between
nearest-neighbor sites belongs to two flowers as a radial bond
and to two other flowers as a lateral bond. One should notice
that the Hamiltonian H does not depend on α1, α2, β1, and β2,
although the local Hamiltonian Hi does depend on them.

Why do we need to introduce “free” coefficients ak , a�,
bk , b�, αk , and βk? The point is that there are only two
structures which can be built with a single flower configuration:
the empty one (no particles) and the filled one (every site
contains a particle). Therefore, we need to minimize the energy
Hi of several flower configurations simultaneously. “Free”
coefficients are introduced to provide this possibility.

Let us assume that for a certain point in the space of the
Hamiltonian parameters (V1,V2,V�,μ), one can choose such
a set of values of ak , a�, bk , b�, αk , and βk , that some
flower configurations (one or more) have equal energy Hi

and that this energy is the smallest one among the energies
of all other configurations. If at least one structure can be
constructed with these configurations, then they generate all
ground-state structures at this point. Let us note that, without
loss of generality, the coefficients ak and a� may be chosen
equal, for instance, to 1

2 .

C. Characteristics of a structure and expression for density
of energy

To denote and characterize particular structures we
will use the notations of Kanamori and Kaburagi [9]:
S(p0; p1,p2,p3, . . . ; p�), where p0 is the number of particles
per site, pi (i = 1,2,3, . . .) provides the number of pairs of
particles (per particle) that are ith neighbors, and p� is the
number of triplets of particles that are nearest neighbors. The
energy per site of a structure can be expressed in terms of p0,
p1, p2, . . ., p� as

E =
∑

i

p0piIi + p0p�I� − p0μlg, i = 1,2, . . . . (10)

One can switch from the parameters of lattice-gas Hamiltonian
to the parameters of spin Hamiltonian using the following
relations [compare to Eqs. (7)]:

I1 = 4J1 − 8J�, Ii = 4Ji (i = 2,3, . . .),
(11)

I� = 8J�, μlg = 2h + 2
∑

k

zkJk − 12J�.

FIG. 1. (Color online) Neighbors on the triangular lattice (with
respect to the solid circle at the bottom). Neighbors with coordination
numbers 6, 12, and 18 are represented by red (light gray), black, and
dotted olive circles, respectively.

Here zk is the coordination number of kth neighbors. One can
see from Fig. 1 that for k � 25, the coordination number zk

can be equal to 6 (red circles), 12 (black circles), or 18 (for
20th neighbors, olive dotted circles).

Structures can be characterized also by the fractional
content of configurations of a cluster that includes all inter-
actions which are considered. We will numerate the cluster
configurations of a structure by index l and denote the fraction
of the lth configuration in the structure by kl . Values p0, pi

(i = 1,2,3, . . .), p� can be expressed in terms of kl ,

p0 =
∑

l

klp0l , pi =
∑

l klpil

cip0
, p� =

∑
l klp�l

c�p0
, (12)

where p0l is the density of particles in lth configuration, pil is
the number of ith-neighbor pairs in the lth configuration, p�l

is the number of triplets of particles that are nearest neighbors
in the lth configuration, and ci and c� are the numbers of
clusters on the lattice which include a bond between ith
neighbors and a nearest-neighbor triangle, respectively. (All
bonds between ith neighbors as well as all nearest-neighbor
triangles are supposed to be equivalent.) The calculation of
p0, pi (i = 1,2,3, . . .), and p� using Eqs. (12) is simpler than
direct calculations of these values.

Sometimes, to simplify calculations of p0, pi (i =
1,2,3, . . .), and p�, the following statement will be useful
(it is easy to prove it): If structures S

(
p0; p1,p2,p3, . . . ; p�

)
and S

(
p̄0; p̄1,p̄2,p̄3, . . . ; p̄�

)
are mutually symmetrical with

respect to the particle-vacancy symmetry, then

p̄0 = 1 − p0, p̄i = zi + 2p0pi − zi

2(1 − p0)
,

(13)

p̄� = 2 − p0(6 − 2p1 + p�)

1 − p0
.
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TABLE I. Basic rays and basic sets of flower configurations for the spin model on the triangular lattice with
nearest- and next-nearest-neighbor pairwise interactions and with three-spin nearest-neighbor interaction. J� � 0.

Basic ray Basic set of flower Full-dimensional “Free”

ri (h, J1, J2, J�) configurations Ri structures coefficients

r1 (0,0, − 1,0) 1, 1̄, 3, 3̄ β2 = 0

r2 (0,0,1,0) 4a, 4a, 4b, 4b, β2 = 0

5, 6, 9, 9̄

r3 (6,0,1,0) 1, 2, 4a, 4b β2 = 0

r4 (0,0,1,3) 1̄, 2, 3, 4a, β2 = 0, b� = 0

9, 10, 11, 12

r5 (6, − 2,0,3) 1, 1̄, α2 = 0, β2 = 0,|
2, 3 b� = −a�

r6 (2, − 2,2,3) 1̄, 2, 4a α2 = 2b�
a�+b� α1, β2 = 0,

4b, 5, 9 b1 = a2
�+3b2

�
6a�b� a1|

r7 (6, − 4,2,3) 1, 1̄, 2, α2 = a�+2b�
a�+b� α1, β2 = 0,

4b, 5 b1 = b2
�

a�(a�+2b�) a1

r8 (−2, − 1,1,0) 1̄, 4a, 4b, 5 α1 = 0, β2 = 0, a1 = 3b1

|

r9 (4,1,1,0) 2, 4a, 4b, α1 = 0, a1 = −3b1

6, 9|

r10 (−6,2,0,1) 1̄, 2̄, 3, 3̄, α2 = 2α1, b1 = (a�+b�)
2a� a1

4a, 6, 10, 11

r11 (6,4,2,3) 2, 3, 6, α2 = − a�−2b�
a�−b� α1, β2 = 0,

9, 11, 12 b1 = − b2
�

a�(a�−2b�) a1

r12 (−2,2,2,3) 4a, 6, α2 = − 2b�
a�−b� α1, β2 = 0,

9, 10, 12 b1 = − a2
�−3b2

�
6a�b� a1|

r13 (−10,14,8,15) 6, 10, α2 = 2(a�−5b�)
5(a�−b�) α1, β2 = 0,

11, 12 b1 = 5(a2
�−3b2

�)

6a�(a�−5b�) a1[ , , enter in structures with
the neighborhoods shown in Fig. 2(b)]

III. BASIC RAYS (VECTORS) AND BASIC SETS
OF FLOWER CONFIGURATIONS

In the Hamiltonian parameter space, the region that corre-
sponds to a ground state is a convex polyhedral cone with the
vertex at the origin of the coordinates. Convexity allows one
to find ground-state structures in any point of the Hamiltonian
parameter space if all edges of full-dimensional polyhedral
cones, as well as ground-state structures on these edges, are
known. We will call such edges “basic rays.” In mathematical
usage, they are 1-faces of multidimensional polyhedral cones

that correspond to full-dimensional ground states. If the
complete set of basic rays is known (it will be shown later what
the term “complete” means and how the completeness can be
proven), as well as all ground-state structures in them, then, in
principle, the problem can be considered solved. The construc-
tion of ground states in any point of Hamiltonian parameter
space reduces then to a “purely technical” problem. However,
the determination of the complete set of basic rays is difficult
and tedious. We did not manage to elaborate the universal
algorithm for it, so we do not provide the details of our calcu-
lations. We give only the final output that can be easily verified
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TABLE II. Basic rays and basic sets of flower configurations for the spin model on the
triangular lattice with nearest- and next-nearest-neighbor pairwise interactions and with three-spin
nearest-neighbor interaction. J� � 0.

Basic ray Basic set of flower Full-dimensional

r−
i (h, J1, J2, J�) configurations R−

i structures

r−
3 (−6,0,1,0) 1̄, 2̄, 4a, 4b

r−
4 (0,0,1, − 3) 1, 2̄, 3̄, 4a, 9̄, 10, 11, 12

r−
5 (−6, − 2,0, − 3) 1, 1̄, 2̄, 3̄

|
r−

6 (−2, − 2,2, − 3) 1, 2̄, 4a, 4b, 5, 9̄|
r−

7 (−6, − 4,2, − 3) 1, 1̄, 2̄, 4b, 5

r−
8 (2, − 1,1,0) 1, 4a, 4b, 5|

r−
9 (−4,1,1,0) 2̄, 4a, 4b, 6, 9̄|

r−
10 (6,2,0, − 1) 1, 2, 3, 3̄,

4a,6,10,11

r−
11 (−6,4,2, − 3) 2̄, 3̄, 6, 9̄, 11, 12

r−
12 (2,2,2, − 3) 4a, 6, 9̄, 10, 12|

r−
13 (10,14,8, − 15) 6,10,

Condition symmetric to the condition for r13. 11, 12

even without a computer. Let us note that the results obtained
previously by Brandt and Stolze [7] facilitated our task.

A complete set of basic rays for a spin model on the
triangular lattice with nearest- and next-nearest-neighbor
pairwise interactions and with three-spin nearest-neighbor
interaction is given in Tables I and II. In the first, second, third,
fourth, and fifth columns of Table I, the notations of basic
rays, their direction vectors (we will also call these vectors
“basic” and the notations for them will be the same as for
corresponding basic rays), the sets Ri of flower configurations
generating the ground-state structures in the corresponding
basic rays, the full-dimensional ground-state structures in these
rays (see Sec. IV), and the “free” coefficients in Hamiltonian
(8) are given, respectively.

Let us explain, for instance, the eighth row of Table I. Its
meaning is the following: If in Hamiltonian Hi [see Eqs. (8)
and (6)] α1 = 0, β2 = 0, and a1 = 3b1, then at h = −2g,
J1 = −g, J2 = g, and J3 = 0, where g is arbitrary positive
number, the following flower configurations have the minimal

(and equal for all) energy: , , , , , , , , ,

and . (Here and thereafter, open circles represent vacancies,
solid circles, except for gray ones, represent particles, and gray
circles are undefined.) The last and next to last configurations
(separated from the others by the symbol |) cannot be realized
in such a set, though they have the minimal energy, also.
These configurations are incompatible with the others and
with themselves and can be rejected. Ground-state structures
without defects in this ray are only such structures in which
every flower has one of the enumerated configurations. Among

these structures, there are four full-dimensional ones: 1̄, 4a,
4b, and 5 (see Sec. IV).

Basic rays r−
i (see Table II) have been obtained from

basic rays ri by the inversions h → −h and J� → −J�. The
respective sets of flower configurations R−

i have been obtained
from sets Ri by the inversion σ = −1 ↔ σ = +1 (or particle
↔ vacancy) that reflects the symmetry of Hamiltonian (2).
Basic rays r1 and r2 and the corresponding sets of flower
configurations are self-symmetric.

The most complicated problem that we managed to solve is
the determination of the basic ray r13 and the corresponding set
of flower configurations R13. The principle for construction of
ground states in this basic ray is a little different than in other
basic rays. One should not simply fill the triangular lattice
with flower configurations of basic set R13, but fill it in such a

way that three configurations of this set, namely , , and

, enter in structures only with the neighborhoods depicted
in Fig. 2(b). Let us prove that structures constructed in such
a manner exhaust all ground states without defects in this ray.

If β2 = 0, α2 = 2(a�−5b�)
5(a�−b�) α1, b1 = 5(a2

�−3b2
�)

6a�(a�−5b�)a1 (without
loss of generality b� can be set equal to zero), then in
ray h = − 5

7J1, J2 = 4
7J1, J� = 15

14J1, J1 > 0 (basic ray r13),

configurations , , and have equal energy which
is less than the energy of any other configuration, except

configuration ; the latter has the smallest energy. Let us

take the energy of configurations , , and as zero.

Then the energy of configuration is negative and equal to

011106-5
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− 2
7J1, and the energies of other configurations are positive.

Now we will prove that the energy per one flower for any
structure in ray r13 cannot be less than zero, and we will find
all structures for which it is equal to zero.

Let us call flower configurations which have positive (zero,
negative) energy “positive” (“zero,” “negative”) flowers. All
flowers in a structure can be grouped in the following way:
Every positive flower is grouped with such negative flowers

, the central sites of which are lateral sites of this positive

flower. The energy of the flower which enters in two or
more groups is shared equally between these groups. It is easy

to see that every negative flower enters in a group with
at least one positive flower. Among all positive flowers only
the following ones are compatible and can be grouped with a

negative flower (the corresponding energies are indicated

in parentheses): ( 26
7 J1), ( 2

7J1), ( 8
7J1), ( 8

7J1),

( 2
7J1), ( 6

7J1), ( 12
7 J1), and ( 12

7 J1). These groups are
depicted in Fig. 2(a).

As one can see, there are no groups with negative energy.
Four groups can have zero energy. These are groups with

flowers , , , and . But they have zero energy only

if every flower contained in such a group belongs only to

this group. Therefore the group with flower cannot enter in

FIG. 2. (Color online) (a) Groups of positive flowers with the
negative flower. (b) Neighborhoods of the zero-energy groups.

ground-state structures and three other groups enter only with
the neighborhoods depicted in Fig. 2(b).

Therefore, we have proven that the ground-state structures

in ray r13 are constructed with flowers , , , , ,

, and in such a way that flowers , , and enter
in these structures only with the neighborhoods depicted in

Fig. 2(b). Notice that in this ray, flower can be combined

only with flower .
To conclude, we have found ground states in ray r13

by grouping the terms of Hamiltonian (8) in two ways:
(1) grouping them accordingly to the flowers and (2) grouping
the flowers themselves. This simple but nontrivial way enabled
us to use only seven-site cluster in the form of a flower. If we
searched ground states in this ray in the same way as in all
other basic rays, we would have to consider a much larger
cluster (ten or maybe even more sites) and the problem would
become very complicated.

To facilitate the understanding of the concept of basic rays
and basic sets of configurations, the J� = 0 case is considered
in the Appendix. The space of Hamiltonian parameters can be
visualized in this case.

IV. FULL-DIMENSIONAL STRUCTURES AND
COMPLETENESS OF THE SET OF BASIC RAYS

A. Construction of the ground-state structures using the basic
set of configurations

The 24 basic rays given in Tables I and II constitute a
complete set of basic rays, that is, knowing all ground states
in these rays, one can easily find ground states in every point
of the Hamiltonian parameter space. But before proving the
completeness of the set of basic rays, one should show how to
construct ground-state structures using basic sets of configura-
tions. It should be mentioned that a basic set cannot be a subset
of any other basic set. To find the region in the Hamiltonian
parameter space where a structure (or a set of structures) is a
ground-state structure, one needs to determine all basic sets
for which the generating set of the structure (that is, the set of
flower configurations of this structure) is a subset. The region to
be found will be the linear hull with non-negative coefficients
of the corresponding basic vectors. In mathematical usage
this type of hull is called a conical hull. Hence, a structure
is the ground-state one if and only if its generating set of
configurations is a subset of at least one basic set. If such a basic
set is unique then this structure is a ground state only in the
respective basic ray. We call such a structure one dimensional.
If a structure is generated by a set of configurations which is a
subset of two basic sets only, then such a structure is a ground
state in a two-dimensional region (two-dimensional angle).
Radius vectors of points of this region are linear combinations
with non-negative coefficients (conical combinations) of two
basic vectors. We call such a structure two dimensional.

A structure which is a ground-state one in an m-dimensional
region (an m-dimensional convex polyhedral cone with the
vertex at the origin of coordinates) is called an m-dimensional
structure. It is generated by a set of configurations that is
a subset of at least m basic sets given the condition that
among the corresponding basic vectors there are m linearly
independent ones (and not more). We call the structures which
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are ground-state ones in regions with the dimensionality equal
to that of the Hamiltonian parameter space (the Hamiltonian
should include the chemical potential or the external field) the
full-dimensional structures.

Researchers usually found only full-dimensional structures
(see, e.g., Ref. [7]). But it is not the complete solution of a
ground-state problem. Knowing only full-dimensional ground
states does not make it possible to find the ground states
at a fixed density of particles (not the chemical potential).
Moreover, in this case, one cannot determine the order of
phase transition between two neighboring full-dimensional
structures (phases).

A ground-state problem can be considered as completely
solved only if the complete set of basic rays and all ground
states in them or the corresponding basic sets of configurations
are found (how to prove the completeness will be shown later).
The rest is a “technical” problem of simple combinatorics and
multidimensional analytical geometry. True, the knowledge of
all full-dimensional structures enables one to find the complete
set of basic rays, but it is not sufficient; one should also know
all ground states in these rays.

B. Full-dimensional ground-state regions and structures

Let us find full-dimensional structures for our set of
basic rays and corresponding basic sets of configurations.
To do so, we should find all sets of basic rays with the
following properties: (1) The set contains at least four basic
rays and between corresponding basic vectors there are four
linearly independent ones; (2) at least one structure on the
triangular lattice can be constructed with flower configurations
belonging to the intersection of corresponding basic sets of
configurations; and (3) this intersection is not a subset of
any other basic set except the basic sets corresponding to the
considered set of basic rays. Such an intersection of basic sets
generates full-dimensional structure(s) in the region which is
the conical hull of the corresponding basic vectors. If the set of
rays contains the ray r13 or r−

13, then the additional condition
(restriction) should be taken into account when constructing
ground-state structures.

We numerate full-dimensional structures and correspond-
ing regions in the same manner as in Ref. [7] and we
write their characteristics in the form used by Kaburagi and
Kanamori [9] and also in the form that we introduced here. All
full-dimensional structures are described in Tables III and IV.
The bar over the number of a region (structure) indicates that
this region (structure) is symmetric to the region (structure)
with the same number but without the bar. We mean the
symmetry h ↔ −h and J� ↔ −J� in regards to regions and
the symmetry σ = −1 ↔ σ = +1 (or particle ↔ vacancy)
in regards to structures. Regions 5 and 6 and corresponding
structures are self-symmetric.

In the first, second, third, and fourth columns of Tables III
and IV are given, respectively: (1) the notation of the region,
(2) the set of flower configurations generating ground-state
structures in this region, (3) the characteristics of the structures
S(p0; p1,p2; p�) and also (in square brackets) the fractional
contents of the corresponding flower configurations in the
structures, and (4) the dimensions of the unit cell of the
structure. In the fourth column, “Disorder” specifies regions

where there is an infinite number of ground-state structures,
including disordered ones. In column five, there are num-
bers of hyperfaces of full-dimensional regions (i.e., of full-
dimensional polyhedral cones). In the last column of Tables III
and IV, the conditions for existence of full-dimensional regions
in the plane (h,J2) are given.

The full-dimensional structures with numbers without
bars, except for the completely filled one, are depicted in Figs.
3–5. There are 20 full-dimensional structures (phases) in total.

Notice that the flowers , , and generate an infinite
number of structures with equal density of energy. Among
these structures there are ordered ones as well as disordered
ones. The ordered structure with the smallest unit cell is shown
in Fig. 4(a). We denote it 9a. From the infinite number of
structures 9, Brandt and Stolze [7] found only this one. Starting
from structure 9a, one can obtain all structures 9, shifting
the rows of this structure either along smaller (structures of
type A) or larger sides of the unit cell (structures of type B) [see
Figs. 4(b) and 4(c)]. A part of these structures will be periodic
and another part will be aperiodic (i.e., with an infinite period).
One can say that phase 9 is chaotic, meaning this infinite
number of structures. It is easy to see that none of structures 9
can be transformed into another of these structures using only
local changes. Therefore, this degeneracy does not lead to the
residual density of entropy and this disorder can be called one
dimensional.

FIG. 3. (Color online) Full-dimensional structures (a) 2, (b) 3,
(c) 4a, (d) 4b, (e) 5, (f) 6, (g) 10, and (h) 11. Unit cells are indicated.
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TABLE III. Full-dimensional grounds-state regions and structures for the spin model on the triangular lattice with nearest- and next-
nearest-neighbor pairwise interactions and with three-spin nearest-neighbor interaction.

Generating Conditions for
configurations Characteristics Dimensions of Number of existence in the

Region of the structure of the structure the unit cell Basic rays hyperfaces plane (h,J2)

1 S (1; 3,3; 2) 1 × 1 r1,r3,r5,r7,r−
4 ,r−

5 , 8 Always

[1] r−
6 ,r−

7 ,r−
8 ,r−

10

2 S
(

3
4 ; 2,2; 2

3

)
2 × 2 r3,r4,r5,r6,r7,r9, 7 −3J1 − 4J� � 0,[

3
4 , 1

4

]
r11,r−

10 −J1 − 2J� � 0

3 S
(

2
3 ; 3

2 ,3; 0
) √

3 × √
3 r1,r4,r5,r10,r11,r−

10 6 −3J1 − 2J� � 0,[
2
3 , 1

3

] −J1 − 2J� � 0

4a S
(

2
3 ; 2, 3

2 ; 1
)

1 × 3 r2,r3,r9,r−
4 ,r−

6 ,r−
8 , 7 J� � 0[

1
3 , 2

3

]
r−

10,r
−
12

4b S
(

2
3 ; 2, 3

2 ; 5
6

)
3 × 3 r2,r3,r6,r7,r9,r−

8 5 −J� � 0[
1
3 , 1

3 , 1
3

]
5 S

(
1
2 ; 2,1; 1

)
1 × 4 r2,r6,r7,r8,r−

6 ,r−
7 , 6 3J1 − 2J� � 0,[

1
2 , 1

2

]
r−

8 3J1 + 2J� � 0

6 S
(

1
2 ; 1,1; 0

)
1 × 2 r2,r9,r10,r11,r12,r13, 14 −3J1 + 2J� � 0,[

1
2 , 1

2

]
r−

9 ,r−
10,r

−
11,r

−
12,r

−
13 −3J1 − 2J� � 0

9 S
(

3
5 ; 5

3 , 4
3 ; 4

9

)
Disorder r2,r4,r6,r9,r11,r12 5 −J� � 0,[

2
5 , 2

5 , 1
5

] −3J1 − 2J� � 0

10 S
(

1
2 ; 5

4 , 3
2 ; 0

) √
7 × √

7 r4,r10,r12,r13 4 −J1 � 0,[
1
4 , 1

4 , 1
4 , 1

4

]
J1 − 2J� � 0

11 S
(

9
16 ; 4

3 ,2; 0
)

4 × 4 r4,r10,r11,r13 4 −J1 � 0,[
3
16 , 3

8 , 3
8 , 1

16

]
J1 − 2J� � 0

forbidden

12 S
(

5
9 ; 7

5 , 8
5 ; 2

15

)
Disorder r4,r11,r12,r13 4 −J1 � 0,

forbidden
[

1
9 , 4

9 , 2
9 , 2

9

]
3J1 − 4J� � 0

FIG. 4. (Color online) (a) Ordered structure 9 with the smallest
unit cell and (b) structures 9 of type A and (c) of type B.

The set of structures 12 is generated with flower configura-

tions , , , and at the condition that configuration

enters into the structures with its neighborhood depicted in
Fig. 2(b). Here this condition is equivalent to the requirement

of the absence of configuration . As seen in Fig. 5(a),
full-dimensional phase 12 is also chaotic. One site from each
pair of neighboring gray sites should be filled and the other
should be vacant. However, if in a pair of gray sites we
fill, for instance, the upper site, then in all other pairs of
gray sites of this band only the upper sites should be filled.
That means that we have the one-dimensional disorder: the
order in vertical direction and partial disorder in horizontal
direction. Brandt and Stolze [7] found only one structure from
the infinite number of structures 12, namely this one which
has the smallest unit cell [structure 12a, Fig. 5(b)].

The comparison with the case J� = 0 (see Ref. [2]) shows
that the three-spin interaction can lead to the appearance of
eight full-dimensional phases: 9, 10, 11, 12, 9̄, 10, 11, and 12.
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TABLE IV. Full-dimensional grounds-state regions and structures (numbered with bars) for the spin model on the triangular lattice with
nearest- and next-nearest-neighbor pairwise interactions and with three-spin nearest-neighbor interaction.

Generating Conditions for
configurations Characteristics Dimensions Number of existence in the

Region of the structure of the structure of the unit cell Basic rays hyperfaces plane (h,J2)

1̄ S (0; 0,0; 0) 1 × 1 r1,r4,r5,r6,r7,r8, 8 Always

[1] r10,r−
3 ,r−

5 ,r−
7

2̄ S
(

1
4 ; 0,0; 0

)
2 × 2 r10,r−

3 ,r−
4 ,r−

5 ,r−
6 ,r−

7 , 7 −3J1 + 4J� � 0,[
1
4 , 3

4

]
r−

9 ,r−
11 −J1 + 2J� � 0

3̄ S
(

1
3 ; 0,3; 0

) √
3 × √

3 r1,r10,r−
4 ,r−

5 ,r−
10,r

−
11 6 −3J1 + 2J� � 0,[

1
3 , 2

3

] −J1 + 2J� � 0

4a S
(

1
3 ; 1,0; 0

)
1 × 3 r2,r4,r6,r8,r10,r12, 7 −J� � 0[

2
3 , 1

3

]
r−

3 ,r−
9

4b S
(

1
3 ; 1,0; 1

3

)
3 × 3 r2,r8,r−

3 ,r−
6 ,r−

7 ,r−
9 5 J� � 0[

1
3 , 1

3 , 1
3

]
9̄ S

(
2
5 ; 1, 1

2 ; 1
3

)
Disorder r2,r−

4 ,r−
6 ,r−

9 ,r−
11,r

−
12, 5 J� � 0,[

1
5 , 2

5 , 2
5

] −3J1 + 2J� � 0

10 S
(

1
2 ; 5

4 , 3
2 ; 1

2

) √
7 × √

7 r−
4 ,r−

10,r
−
12,r

−
13 4 −J1 � 0,[

1
4 , 1

4 , 1
4 , 1

4

]
J1 + 2J� � 0

11 S
(

7
16 ; 6

7 , 12
7 ; 2

7

)
4 × 4 r−

4 ,r−
10,r

−
11,r

−
13 4 −J1 � 0,

forbidden
[

1
16 , 3

8 , 3
8 , 3

16

]
J1 + 2J� � 0

12 S
(

4
9 ; 1, 5

4 ; 1
3

)
Disorder r−

4 ,r−
11,r

−
12,r

−
13 4 −J1 � 0,

forbidden
[

2
9 , 2

9 , 4
9 , 1

9

]
3J1 + 4J� � 0

C. Proof of the completeness of the set of basic rays

Now we can prove the completeness of the set of basic
rays. It means to show that the full-dimensional regions
found on the base of these rays fill the space of parameters
without gaps. Let us recall that full-dimensional regions
in n-dimensional Hamiltonian parameter space are convex
polyhedral cones with their vertices at the origin of coordi-
nates. An n-dimensional polyhedral cone is bounded by a
zero-dimensional vertex, one-dimensional edges, and two-,

three-, . . ., (n − 1)-dimensional faces. In mathematics, these
geometrical objects are called i-faces: 0-face is a vertex,
1-face is an edge, 2-face is a two-dimensional face, etc. The
boundary between full-dimensional regions is the conical hull
of basic vectors corresponding to those basic rays (1-faces)
which are common for these regions. And the ground-state
structures on this boundary are generated with those cluster
configurations which are common for corresponding basic
sets.

FIG. 5. (Color online) (a) Chaotization of phase 12. In every zigzag, either upper or lower gray circles in each pair should be solid (but
identically for each pair of the zigzag). (b) Structure 12a with the smallest unit cell.
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TABLE V. Basic rays and basic sets of flower configurations for the spin model on the triangular lattice with nearest- and next-nearest-
neighbor pairwise interactions.

Basic ray Basic set of flower Full-dimensional

r (h, J1, J2) configurations Ri structures

O (0,1,0) 3, 3̄, 6

A (−2, − 1,1) 1̄, 4a, 4b, 5

B (0, − 2,1) 1, 1̄, 5

C (−4,1,1) 2̄, 4a, 4b, 6|
D (−6,1,0) 1̄, 2̄, 3̄

E (−12,5,1) 2̄, 3̄, 6

F (−6,0,1) 1̄, 2̄, 4a, 4b

G (0,0, − 1) 1, 1̄, 3, 3̄,

H (0,0,1) 4a, 4b, 4a, 4b, 5, 6

A− (2, − 1,1) 1, 4a, 4b, 5

C− (4,1,1) 2, 4a, 4b, 6|
D− (6,1,0) 1, 2, 3

E− (12,5,1) 2, 3, 6

F− (6,0,1) 1, 2, 4a, 4b

Two full-dimensional regions can share an i-face if 0 � i �
n − 1. If two full-dimensional regions share a (n − 1)-face,
then we call them neighboring regions. In our four-dimensional
Hamiltonian parameter space, boundaries between two neigh-
boring full-dimensional regions are 3-faces. We call them
hyperfaces. 2-faces are called simply “faces.” If the set of
basic vectors (rays) for a full-dimensional region is known,
then one can find its subsets, the elements of which generate
hyperfaces of the region. A hyperface is generated by three or
more basic vectors (rays). To prove the completeness of the
set of basic rays it is necessary (1) to find all hyperfaces of the
full-dimensional regions and (2) to show that each hyperface

FIG. 6. (Color online) Three-dimensional ground-state phase
diagram for the spin model on the triangular lattice with nearest-
and next-nearest-neighbor pairwise interactions (see also Tables V
and VI). Basic rays are marked in red (light gray).

belongs to two different full-dimensional regions. It is easy to
do this in the three-dimensional case when J� = 0 (see the
Appendix).

Let us show how to find the hyperfaces of the full-
dimensional regions. Let ri , rj , and rk be the three basic
vectors (rays) of a hyperface. (Every triplet of basic vectors of a
full-dimensional region is linearly independent.) The equation

TABLE VI. Full-dimensional grounds-state regions and struc-
tures for the spin model on the triangular lattice with nearest- and
next-nearest-neighbor pairwise interactions.

Generating configurations
Region of the structure(s) Basic rays

1 A−,B,G,D−,F −

1̄ A,B,G,D,F

2 C−,E−,D−,F −

2̄ C,E,D,F

3 O,G,D−,E−

3̄ O,G,D,E

4 A−,H,C−,F −

4̄ A,H,C,F

5 A,B,A−,H

6 O,E,C,H,C−,E−
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of the hyperplane that contains the origin of the coordinates
and the tips of ri , rj , and rk vectors reads

det |r − ri ,rj − ri ,rk − ri ,ri | = 0, (14)

where r = (h,J1,J2,J�)T is the column vector of the spin
Hamiltonian’s parameters.

Vector n, composed out of the coefficients near the variables
h, J1, J2, and J� in this determinant, is orthogonal to the
hyperplane. If the scalar products of this vector with all
basic vectors of the considered full-dimensional region have
the same sign or some of them are equal to zero, then the
conical hull of vectors ri , rj , rk , and those vectors of the
full-dimensional region which are orthogonal to vector n will
be a hyperface of this region. If every hyperface of every
full-dimensional region is at the same time a hyperface of one
more full-dimensional region (the neighboring one), then these
regions filled the Hamiltonian parameter space with no gaps,
and, therefore, the set of basic vectors is complete. In such
a way we verified the completeness of the set of basic rays
(vectors) that we had found. The total number of hyperfaces
is rather large (equal to 60), therefore we will not enumerate
them here.

V. CONCLUSIONS

In conclusion, we developed a method for determination
of the ground states of lattice-gas models, and by using it,
we found a complete solution for the ground-state problem
of the lattice-gas model (or the equivalent spin model) on
the infinite plane triangular lattice with nearest- and next-
nearest-neighbor pairwise interactions and with an additional
interaction between triplets of particles at the vertices of
nearest-neighbor triangles. The main idea of this method is
to construct global configurations of a lattice using the set
of configurations of a finite-size cluster. We proved that for
finding ground states in any point of the Hamiltonian parameter
space it suffices to find all ground states in 24 rays originating
from the origin of coordinates, and we showed that in 22 rays
the ground states are generated with sets of configurations
of a seven-site cluster in the form of a flower (without any
restriction). In the remaining two mutually symmetric rays, the
ground states are constructed with some flower configurations
but also with an additional restriction (three configurations
enter into structures only with some neighborhoods). To prove
this, we formulated a rule for grouping the flowers of structures
and we found the groups with minimal energy. This method
can be used also for the determination of the ground states of
some other lattice-gas models.

Having found the flower configurations for the ground states
in 24 rays, we determined all full-dimensional ground-state
structures (some of them turned out to be chaotic), and we
proved the completeness of the determined set of basic rays.

In principle, the results presented here can be considered
as a complete solution for the ground-state problem. What
remains is to construct, using the solution found, the ground-
state structures on hyperfaces of full-dimensional regions. It
will give, in particular, the possibility to analyze the types
of phase transitions between full-dimensional structures and,
even more important, to determine all ground-state structures
at a fixed density of particles (but not the chemical potential).
This is nearly done and will be a subject of future publications.
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APPENDIX: J� = 0 CASE

To further clarify the concept of basic rays and basic sets of
configuration, let us consider the simple particular case J� = 0
analyzed in Ref. [2]. The solution of this ground-state problem
can be represented in the form of basic rays and basic sets
of flower configurations (see Table V). The full-dimensional
regions and structures are indicated in Table VI.

Since the space of parameters is three dimensional, one
can visualize the polyhedral cones corresponding to the full-
dimensional ground states. They are depicted in Fig. 6. The
faces of polyhedral cones in the figure are bordered by arcs of
the unit sphere.

In Table VI, the basic rays for every full-dimensional region
are enumerated in such an order that each pair of neighboring
rays (the first and the last ones are also neighboring) generates a
two-dimensional face of the three-dimensional region. As one
can easily see, each face belongs to two full-dimensional re-
gions. It means that there are no gaps between full-dimensional
regions, and, therefore, the set of basic rays is complete.

Let us note that in region 4 (4̄) there are two ground-state
structures: 4a and 4b (4a and 4b).
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