
PHYSICAL REVIEW E 83, 022101 (2011)

Structures on lattices: Some useful relations
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We consider a lattice and structures on it generated by a set of configurations of a cluster. Using some general
considerations, we show that there exist linear relations between fractional contents of these configurations in
the structures. Such relations can be useful for the determination of the ground states of lattice-gas models (or
equivalent spin models). As an illustration we consider a set of configurations of a seven-site cluster on the
triangular lattice.
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In many methods for determination of the ground states
of lattice-gas models (or equivalent spin models), the global
ground-state structures are constructed with local configu-
rations of some subset of the lattice [1–3]. We show here
that there exist some linear relations between the fractional
contents of these configurations in any structure that they
generate. To avoid equivocacies we first give some simple
definitions.

Let us consider a lattice without any restriction on its spatial
dimension and topology, for instance, a triangular lattice on
an infinite plane, or a three-dimensional face-centered cubic
lattice, or a triangular lattice on the surface of an infinite
cylinder. As an example we consider the infinite planar
triangular lattice.

Let us consider a finite set of sites on the lattice. We will
call it a “cluster.” In the case of the triangular lattice it can

be, for instance, a site with six neighboring sites (such a
cluster is called a “flower”). Two clusters on the lattice are
equivalent if each of them can be transformed into the other
by a symmetry transformation of the lattice. We assume that
all clusters, equivalent to the chosen one, cover the lattice
(certainly, with overlaps). For instance, the triangular lattice
can be covered with overlapping flowers: each site is the center
of a flower. Due to the symmetry of the isotropic triangular
lattice, every flower on the lattice is equivalent to every other
flower and the orientation of a flower does not matter. We
consider equivalent clusters as the same cluster in different
positions on the lattice, and we simply say that the lattice can
be covered with the cluster.

Each site of the lattice can be in one state from a finite
number of states. In the simplest case this number is equal
to 2. For instance, a site can be occupied by a particle (we
depict such a site as a filled circle) or vacate (an open circle).
If the state of each site is determined, then we say that there
is a structure on the lattice. Similarly, if the state of every site
of a cluster is determined, then we have a configuration of
the cluster. For a given structure the configuration of a cluster
depends on its position on the lattice.

Consider cluster K, which covers the lattice with overlaps
and a set of its configurations {Kl} (l = 1,2,...,L). Consider
subcluster Q of this cluster. Let the subcluster occupy M

nonequivalent positions in the cluster. We enumerate them
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with subscript m (m = 1,2, . . . ,M). Let each cluster Q on
the lattice be contained in cm clusters K as subcluster Q in
position number m. Here is an example: the central and lateral
positions of the one-site subcluster in the flower (M = 2).
c1 = 1, because each site is contained in the one flower in
central position, and c2 = 6, because each site is contained in
six flowers in the lateral position.

Consider a structure S on the lattice generated by the set
of cluster configurations {Kl}. This means that each cluster
K on the lattice has one of the configurations of the set. We
denote the fractional content of configuration Kl in structure S
by kl . The following trivial relation holds true:

∑

l

kl = 1. (1)

Now let us consider a subcluster configuration Qt from
the set of all possible subcluster configurations {Qt} and let us
calculate its content in structure S. This can be done in different
ways, depending on the position of the subcluster in the cluster.
Let it be position m. Then the number of configurations Qt per
one cluster K is equal to

∑

l

klnml

cm

, (2)

where nml is the number of configurations Qt occupying
position m in configuration Kl of the cluster.

The number of configurations Qt should not depend on m.
Therefore the following relation holds:

∑

l

klnm1l

cm1

=
∑

l

klnm2l

cm2

, (3)

where m1 and m2 are arbitrary nonequivalent positions of
subcluster Q in cluster K. This equality gives a relation
between fractional contents kl . Considering different pairs
of positions of the subcluster in the cluster, we obtain other
relations. We can also consider another subcluster of cluster
K. An important point is that the subcluster should have at
least two nonequivalent positions in the cluster.

Let us consider an example. The cluster “flower” on the
triangular lattice has only three subclusters of this type:
(1) one-site subcluster, (2) a pair of nearest neighbors, and (3)
three sites that create a 120◦ angle. Each of these subclusters
has two nonequivalent positions in the cluster flower.

Let us consider the following set of configurations of the
cluster flower on the triangular lattice: { , , , , }.
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FIG. 1. (Color online) Two-site subcluster [in (red) oval] on the
triangular lattice contained in two flowers in the radial position (left)
and in two flowers in the lateral position (right).

Their fractional contents in a structure are k1, k2, k3, k4, and k5,
respectively. Let the subcluster be two neighboring sites. This
subcluster can occupy two positions in the cluster (Fig. 1): a
radial one (m = 1) and a lateral one (m = 2). Consider the
configuration of the subcluster in which both sites are filled.
Then we have, for this configuration,

c1 = 2, n11 = 1, n12 = 2, n13 = 0, n14 = 0, n15 = 2;
(4)

c2 = 2, n21 = 0, n22 = 0, n23 = 1, n24 = 2, n25 = 1.

c1 = c2 = 2 because the subcluster belongs to two flowers in
both radial and lateral positions.

Substituting these numbers in Eq. (3), we obtain a relation
between fractional contents of flower configurations in every
structure generated by these configurations (an example of
such a structure is shown in Fig. 2):

k1 + 2k2 − k3 − 2k4 + k5 = 0. (5)

Consider now the subcluster configuration in which both
sites are unoccupied. Numbers nml for this configuration are
as follows:

n11 = 0, n12 = 0, n13 = 3, n14 = 2, n15 = 0;
(6)

n21 = 4, n22 = 2, n23 = 1, n24 = 0, n25 = 3.

Substituting these numbers in Eq. (3), we obtain one more
relation:

4k1 + 2k2 − 2k3 − 2k4 + 3k5 = 0. (7)

Hence, besides trivial relation (1), there are two addi-
tional relations between fractional contents of configura-
tions , , , , in the structures that they

FIG. 2. Example of a structure generated by the set of flower
configurations described in the text.

generate. It can be shown that other relations (generated by
other subclusters) will be linear combinations of these three
relations. If we have a set of only three flower configurations,
then, in general, three relations completely determine their
fractional contents in any structure generated by these con-
figurations. If a structure is generated by a set of four flower
configurations, then only one of four fractional contents can be
independent.

The knowledge of fractional contents kl of cluster config-
urations in a structure makes it possible to find the density
pQt

(number per cluster K) of any configuration Qt of any
subcluster Q in the structure:

pQt
=

∑
l klnQt l

cQ
, (8)

where nQt l
is the number of configurations Qt in the lth

configuration of cluster K, and cQ is the total number of
clusters K containing a subcluster Q on the lattice. For the
same purpose, expression (2) can be used.

Everything stated above is not applicable for a cluster in
which there are no subclusters with at least two different
positions in the cluster. Ring is an example of such a
cluster on the triangular lattice.

Relations (3) between fractional contents of configurations
of a cluster in a structure are interesting by themselves.
Moreover, they are very useful and sometimes even necessary
in the analysis of ground states of lattice-gas models (or
equivalent spin models). This will be shown in our next
publication.

Some questions arise that we are not able to answer at the
moment. Is there a simple way to determine the number of
lineally independent relations for a given cluster? Is there
always a subcluster that generates all lineally independent
relations as in the example considered?
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