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Origin of large Landau-Placzek ratio in a liquid metallic alloy
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Dynamic structure factors for Na K; _ . liquid metallic alloys and pure components are studied by
molecular dynamics simulations. Large values of Landau-Placzek ratio for four compositions of the
liquid alloy are analyzed by wave-number dependent contributions from relaxation and propagating
processes within the generalized collective modes method. The origin of the large Landau-Placzek
ratio for liquid alloys is discussed. © 2011 American Institute of Physics. [doi:10.1063/1.3651170]

. INTRODUCTION

Theoretical and simulation studies of dynamic proper-
ties of liquids are of great interest because of permanent im-
provement of resolution of inelastic x-ray scattering (IXS)
technique,' which brings important information about atomic
dynamics outside the hydrodynamic regime. On macroscopic
space and time scales, the hydrodynamic theory, which is in
fact a continuum approach,? predicts dynamic structure fac-
tors S(k, w), where k and w are wave number and frequency,
respectively, that contain two Brillouin side peaks (centered
at nonzero frequency) in addition to the central Rayleigh one
at w = 0. In both pure and binary liquids, these side peaks
stem from acoustic collective excitations over hydrodynamic
ranges of wave numbers and frequencies. On the other hand,
two relaxation processes connected respectively with thermal
and mutual diffusivities contribute to the central peak in bi-
nary mixtures, while only the first one does, of course, in a
pure liquid. In the specific case of pure liquid metals, the side
peaks of the dynamic structure factor are well pronounced in
agreement with a rather small Landau-Placzek ratio of inte-
grated intensities of the central and side peaks*>
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As an example, the ratio of the specific heats, y, lies between
1.06 and 1.15" in the case of liquid alkali metals; this means
that /g, the integrated intensity of Brillouin peaks, is from
3 up to 8 times as large as I enear, the one of the Rayleigh
peak. The case of binary alloys seems to be strongly different.
Indeed, for very small momentum transfer, scattering experi-
ments on liquid Na-Cs,® K-Cs,” and Na-K?® alloys show a very
strong central peak and either small side peaks or shoulders in
the shape of the scattered intensities depending on resolution
of the experiment. However, in spite of these striking experi-
mental facts, the issue of the relative intensities of the central
and side peaks of S(k, w) in the case of liquid alloys has not
been discussed so far in the literature.
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Collective dynamics of liquid alloys is also of great inter-
est because of the contributions of many non-hydrodynamic
(kinetic) effects observed beyond the hydrodynamic regime in
molecular dynamics (MD) simulations, as well as in inelas-
tic x-ray and neutron scattering experiments. These effects
include propagating non-hydrodynamic modes like so-called
“fast sound” in a disparate-mass binary liquid alloys,” ' or
optic-like modes deduced from scattering experiments on
Lig3Big7!' and Nags7Koa3® alloys. In this study we are
mainly interested in non-hydrodynamic relaxation processes
and their contributions to the central peak of S(k, ). The most
obvious non-hydrodynamic relaxation process in liquids is the
structural relaxation and one of the most interesting issues is
how its contribution is compared to the ones from hydrody-
namic relaxation processes outside the hydrodynamic regime.
It is obvious that the structural relaxation causes deviation
from the standard Landau-Placzek ratio for binary liquids®
that takes into account only hydrodynamic processes.

The only theoretical method of analysis of collective dy-
namics of liquids that permits to separate contributions from
different relaxation and propagating collective modes to var-
ious time correlation functions and corresponding dynamic
structure factors is the approach of generalized collective
modes (GCM).!>!3 This method is based on an extension of
hydrodynamic set of equations by additional ones that permits
to describe non-hydrodynamic processes and their coupling
in local approximation with hydrodynamic modes. The out-
put of the GCM analysis is a set of wave-number-dependent
dynamic eigenmodes and corresponding eigenvectors that de-
fine mode contributions to dynamic structure factors in a stud-
ied window of frequencies and wave numbers. The GCM ap-
proach in connection with MD simulations is nowadays one
of the most powerful and reliable methods of analysis of col-
lective dynamics in disordered systems. Numerous analytical
GCM results on non-hydrodynamic processes such as optic-
like modes,'* heat waves,? “positive dispersion” of sound,!®
or structural relaxation'”'® give new insight into origin of
different non-hydrodynamic modes and their contributions to
the time correlation functions on the boundary of hydrody-
namic regime. Contributions from the optic-like modes and
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“fast sound” modes in a wide range of wave numbers to the
total and partial dynamic structure factors were studied inten-
sively within the GCM approach before, however a little is
known about the different contributions from relaxation pro-
cesses to the central peak of dynamic structure factors for bi-
nary and many-component liquids outside the hydrodynamic
region. Namely, these contributions in the long-wavelength
limit are connected with the Landau-Placzek ratio.®> There-
fore, our aim was to perform the GCM analysis of collective
dynamics of a binary liquid alloy, estimate leading contribu-
tions to the central peak of S(k, w), and compare them with
the case of pure liquids.

The paper is organized as follows: in Sec. II, we will
shortly describe the details of our MD simulations and GCM
analysis. Section III will contain the analysis of the relax-
ing dynamic eigenmodes in liquid alloys obtained within an
eight-variable thermo-viscoelastic model and their contribu-
tions to the central peak of total dynamic structure factor, and
Sec. IV will summarize the conclusions of this study.

Il. METHOD
A. Molecular dynamics simulations

We performed MD simulations of model systems of
pure Na and K as well as of Na K; _ . liquid alloys with ¢
= 0.2, 0.4, 0.6, and 0.8 at temperature 373 K. At this tem-
perature just above Na melting point, both pure metals and
the four alloys are liquid according to the phase diagram.
Considering the same temperature ensures to only observe
composition effects. This could be important since diffusion
properties have shown to be very sensitive to temperature.
Each system in simulations was containing 4000 particles un-
der periodic boundary conditions in standard microcanoni-
cal ensemble with number density matching the experimen-
tal value. The effective pair interactions were obtained from
Fiolhais’ pseudopotentials'® and Ichimaru-Utsumi local field
correction.”’ The reliability of this model had been tested in
a previous study of static properties of liquid Na-K alloys at
temperature 373 K.?! Although more recent local-field factors
exist in the literature (see Ref. 22, for instance), their impact
has been shown to be negligible, at least as far as static prop-
erties are concerned.”® The cut-off radius of effective pair po-
tentials was 20 A, which was 25% larger than in our previous
study.”! Higher cut-off was needed for a better representation
of energy and heat fluctuations, which were sampled directly
in MD simulations with the purpose of subsequent GCM anal-
ysis of collective dynamics.

In our simulations, the time step was 10 fs and the pro-
duction runs were 300 000 steps long. Each sixth config-
uration was used to evaluate the static averages and time
correlation functions. Thus, the elements of the general-
ized hydrodynamic matrix are computed with an accuracy
high enough to avoid any unphysical behavior of the dy-
namic eigenvalues, as required by the GCM approach. Twenty
k-points were considered when estimating k-dependent quan-
tities. The smallest k-values reached in the current study were
in a range from 0.09 A~' (for pure K) to 0.11 A~! (for pure
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FIG. 1. Dynamic structure factors for pure Na (top frame) and K (bottom
frame) at T = 373 K for three wavenumbers on the boundary and outside the
hydrodynamic regime.

Na). Averages were performed over all the wavenumbers with
identical absolute values but different directions.

Dynamic structure factors were calculated as numerical
Fourier transforms of total density time autocorrelation func-
tions, F(q, t), for each pure component (Fig. 1) and of

Fu(g, 1) = cFNana(q, 1) + (1 — ¢) Fxk(q, 1)

+2/c(l — c)Fnak(g, 1) 2

for each liquid alloy (Fig. 2). This latter function corresponds
to Bhatia-Thornton’s definition of number-number dynamic
structure factor and differs from the experimentally measured
quantities in the weighting by the diffusion lengths. The rel-
ative intensities of central and side peaks show completely
different behaviors. For pure liquid K and Na in the region of
small wave numbers, one observes pronounced Brillouin side
peaks and a relatively small value of S(k, @ = 0), which is de-
fined by thermal diffusivity according to hydrodynamic the-
ory. The relative intensities of central and side peaks are pic-
tured by Landau-Placzek ratio (Eq. (1)) with values of y being
close to unity for liquid metals. In this study we are interested
mainly in the wavenumber region k < 1 A~', because the
Landau-Placzek ratio corresponds to hydrodynamic picture,
while for large wavenumbers the non-hydrodynamic struc-
tural relaxation is responsible for leading contribution to the
central peak in pure liquids. As it is seen from Fig. 2 in liquid
alloys the central peaks of dynamic structure factor Sy (k, @
= 0) have large amplitudes for all the studied compositions,
so that the side peaks can only be distinguished on a logarith-
mic scale.

B. GCM approach

The essential difference between pure metals and alloys
in the contributions to the central and side peaks is studied
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FIG. 2. Total dynamic structure factors, S (k, @), at three wave numbers for
four compositions of Na.K; _ . liquid alloys. Compositions ¢ = 0.2, 0.4, 0.6,
and 0.8 are displayed from top to bottom. Logarithmic scale was used in order
to show large amplitudes of the central peaks in the metallic alloy.

here by the theoretical GCM approach. For pure liquid met-
als, the GCM analysis of time correlation functions was per-
formed within a five-variable (thermo-viscoelastic) dynamic
model

Ak, 1) = {n(k, 1), J* (k, 1), ek, 1), J*(k, 1), &k, 1))
3)
for the case of longitudinal dynamics. Particle density n(k, ?),
density of longitudinal mass-current J*(k, ¢), and energy den-
sity e(k, r) are the hydrodynamic variables defined as follows:

nk,t) = J_ﬁ Z;V:1 ek
JHk, ) = 2300 Hre @
sk, t) = \/Lﬁ 27:] gje k.

Here, N and m are the number and mass of particles, and ¢; is
the single-particle energy of the j-th particle, which can easily
be calculated in the case of effective pair potentials such as
those used in our MD simulations. The dotted dynamic vari-
ables are the extended ones and represent the first time deriva-
tives of the corresponding hydrodynamic variables (Eq. (4)).
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In order to study the alloys within the same level of ap-
proximation for the treatment of fast processes, we restricted
the basis set of dynamic variables to the first derivatives of
energy and partial currents. Hence, binary alloys were stud-
ied within the following eight-variable dynamic model:

A®K, 1) = {nak, 1), Ik, 1), npk, 1), J5(k, 1), ek, 1),
x Jy(k, 1), Jg(k, 1), é(k, 1)} )

for the case of longitudinal dynamics.

All the dynamic variables were easily sampled straight
during the MD simulations. Their time evolution has been
used to estimate the (in general case 8 x 8) matrix of their
time correlation functions F(k, r) with elements

Fijk, 1) = (A7 (k,t = 0)A;(k, 1)). (6)

Note that energy density and extended variables connected
with energy flux were sampled in our simulations - hence our
dynamic models represented consistent extension of hydrody-
namic description avoiding any fit. This is one of the advan-
tages of actual study because almost all theoretical and sim-
ulation studies of collective dynamics in liquids except GCM
either ignore heat fluctuations in the analysis or take them into
account using some fitting parameters. '

Having the matrix of time correlation functions with all
the elements calculated in MD simulations one can generate
the generalized hydrodynamic matrix

T(k) = F(k,z = 0)F ' (k,r = 0),

where F(k, z = 0) is the matrix of Laplace-transformed cor-
relation functions in Markovian approximation. The gener-
alized hydrodynamic matrix was calculated for each k-point
sampled in MD and corresponding eigenvalues were esti-
mated. We recall that as many eigenvalues as considered dy-
namic variables are to be determined. As we will see, they
can be either pure real eigenvalues (relaxation modes), dg(k),
or pairs of complex conjugated ones (propagating modes)

2o(k) = 0o (k) L iwy (k).

Thus, the real part, o4 (k), of a complex eigenvalue describes
the damping of the corresponding collective excitation, while
its imaginary part, w,(k), accounts for its dispersion. More-
over, it may happen that two real eigenvalues merge into a
pair of complex ones at a given k-value, or vice versa.

lll. GCM ANALYSIS OF CONTRIBUTIONS TO THE
DYNAMIC STRUCTURE FACTORS IN NA-K LIQUID
ALLOYS

A. Generalized thermodynamic quantities

We will present the calculated generalized (i.e.,
wavenumber-dependent) thermodynamic quantities needed in
the subsequent analysis of the collective dynamics in liquid
alloys. The generalized thermodynamic quantities involving
heat fluctuations are shown in Fig. 3. The generalized linear
thermal expansion coefficient, or(k), behaves almost identi-
cally in the long-wavelength region, whatever the composi-
tion, while the sequence of maxima versus composition is
similar to that of total static structure factor in the region of
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FIG. 3. Wavenumber-dependent thermodynamic quantities: generalized lin-
ear expansion coefficient, «r(k), generalized specific heat at constant volume,
Cy(k), and generalized ratio of specific heats, y (k), for pure components and
four compositions of the liquid alloy.

their first sharp diffraction peak. An interesting feature is ob-
served in the wavenumber-dependence of the generalized spe-
cific heat at constant volume Cy (k). In the atomic-scale region
(at large wave numbers), Cy(k) clearly decreases with increas-
ing Na concentration. On the other hand, on macroscopic dis-
tances (Cy(k = 0) values are given in Table I), it is no more
monotonously changing with concentration, but rather reflects
the behavior of S..(k = 0)/c(1 — ¢) as accurately determined
in Ref. 21, which reveals an influence of the chemical order on
this quantity. We should also mention that the limiting values
agree with those obtained directly from thermal fluctuations
during the MD runs. The generalized ratio of specific heats,
y(k), is also very important for the analysis of collective dy-
namics in liquid alloys. It reflects coupling between thermal
and viscous processes on different space scales. It is impor-
tant to note that the obtained macroscopic values y(k — 0)
(see Table I) change gradually from 1.06 in the case of pure
K to 1.12 for liquid Na, in nice agreement with experimental
data for pure components.1

B. Generalized relaxation modes

For binary liquid alloys we obtained in the long-
wavelength region four real eigenvalues and two pairs of
complex-conjugated eigenvalues while approximately for
k ~ 0.5A~" another complex-conjugated pair of eigenval-
ues emerged and was stable for all higher wave numbers.
This additional low-frequency pair of complex-conjugated
eigenvalues replaced in the spectrum two real eigenmodes
that were mainly connected with heat fluctuations, hence in-
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TABLE 1. Calculated ratio of the heat capacities, y, heat capacity at
constant volume, Cy, and Landau-Placzek ratio estimated from the long-
wavelength asymptotes of Eq. (11) in liquid binary alloys Na K _ . at
373 K.

CNa Yy Cylkg LP ratio
0.0 1.06 3.378 0.10
0.2 1.07 3415 3.33
0.4 1.08 3451 4.43
0.6 1.09 3.465 7.19
0.8 1.11 3.406 5.53
1.0 1.12 3.359 0.12

dicating the origin of the low-frequency branch of propa-
gating modes as heat waves.'>?* The heat waves are non-
hydrodynamic excitations and therefore they cannot exist in
the long-wavelength region while can be important for heat
transport on nanoscales.

In Fig. 4 three most important lowest real eigenvalues (re-
laxing modes) obtained for compositions ¢ = 0.2 (top frame)
and ¢ = 0.6 (bottom frame) are shown. The mode d, is mainly
of thermal origin and for k > 0.5A~" it disappears from the
spectrum of eigenmodes being replaced by heat waves. The
relaxation process dsz(k) has complete analogy in pure liq-
uids and is connected with structural relaxation. This is a
non-hydrodynamic relaxation process that tends to a non-zero
value in the long-wavelength limit:'3

2 2

ds(k — 0) = 2%

Dy

where D; is kinematic viscosity, ¢, and ¢y are the high-

frequency and adiabatic speeds of sound. Comparing the re-

laxing eigenmodes of binary alloys with the standard case

of pure liquids one has to mention that there appears an

additional slow relaxation process d;(k) with hydrodynamic
asymptote ~k” in the long-wavelength limit.
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FIG. 4. Three lowest real eigenvalues in liquid binary alloys Na.K; _ . for
¢ = 0.2 (top) and ¢ = 0.6 (bottom). The hydrodynamic modes d; (k) and d (k)
correspond in the long-wavelength region to coupled relaxations connected
with mutual and thermal diffusivity. The mode d3(k) is the wave-number-
dependent structural relaxation mode.
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FIG. 5. Lowest relaxation modes in liquid binary alloys Na.K; _ . for four
different compositions, connected with mutual diffusion of species, and cor-
responding fit with k*-dependence.

The lowest relaxing mode is shown in the long-
wavelength range for each composition in Fig. 5. According
to its parabolic behavior, this collective mode represents a hy-
drodynamic process that is absent in pure components. In bi-
nary liquids, only two relaxing modes have asymptotes ~k?
in the hydrodynamic limit: d;(k) = D;jk%, j = 1, 2,3 where co-
efficients D; are obtained as:

D;

Diz%umc+DTiJamc+Dn%—umDﬂ,

(N
where D1, and Dy are mutual and thermal diffusivity, respec-
tively, and the factor ¢ describes the coupling between heat
and concentration fluctuations and depends on thermal dif-
fusion ratio, specific heat at constant pressure C,, and factor
Z(k = 0), which is connected with the long-wavelength limit
of static concentration-concentration structure factor.® In case
of very weak coupling between concentration and heat fluc-
tuations, these two relaxing modes can solely be ascribed to
relaxing concentration mode

di (k) ~ Dypk* ®)
and heat mode
dr(k) ~ Drk>. 9)

The latter is analogous to the hydrodynamic heat mode con-
nected with thermal diffusivity in pure liquids. From the &>
asymptotes shown in Fig. 5, the relaxing eigenvalues can be
fitted to the corresponding hydrodynamic asymptotes with
values Dj, which are in reasonable agreement with the mu-
tual diffusivities calculated directly from MD data in Ref. 21.
This is another evidence that coupling between concentration
and heat fluctuations is quite small in Na K, _ . liquid binary
alloys especially for low concentrations. This perhaps gives
evidence that there is stronger effect of thermal fluctuations
on behavior of the lowest relaxing collective modes and that
approximate expressions (8) and (9) cannot be used for higher
concentrations of K for precise calculation of mutual and ther-
mal diffusivities. The increasing effect of thermal fluctuations
with concentration of K is supported by the increasing values
of the ratio of specific heats shown in Table 1.
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FIG. 6. Mode strengths of propagating and relaxing modes in collective dy-
namics of pure components K and Na.

C. Mode contributions to dynamic structure factors

One of the important advantages of the GCM approach
over the other theoretical analysis schemes is the possibil-
ity to represent the density-density time correlation functions
of liquids (and corresponding dynamic structure factors) as a
separable sum of contributions from hydrodynamic and non-
hydrodynamic collective modes. The expression for GCM
replicas with real weight coefficients estimated from eigen-
vectors associated with each eigenvalue writes:

F.(.NV)(k [) Nrelax Nprop
UFT = Y A% O 4 [ B (k) cos(wa (k)1)
i a=1 a=1

+ Df; (k) sin(aq (k)t)|e 7" (10)

The number of terms in this expression is defined by the num-
ber of relaxing, Nrejax, and propagating, Npop, eigenmodes via
Ny = Nrelax + 2Nprop, Where Ny is the number of dynamic
variables in the basis set. In Eq. (10), A;"j (k) are the ampli-
tudes of the non-propagating relaxing modes contributions,
while Bf‘j (k) and Df‘] (k) are those of symmetric and asymmet-
ric contributions of the a-th propagating mode, respectively.

In the case of pure components, the leading contributions
to the density time autocorrelation functions are shown in
Fig. 6. In complete agreement with hydrodynamics, the sym-
metric contribution of sound excitations and that of thermal
relaxation process tend to 1/y and (y — 1)/y in the long-
wavelength limit, respectively. For pure K and Na, the differ-
ence in the ratio of specific heats y (see Table I) is reflected
in the little difference between corresponding contributions in
Fig. 6. Hence, the strong manifestation of the Brillouin peaks
in dynamic structure factors of pure liquid K and Na shown in
Fig. 1 is connected with close-to-unity values of y for both
liquid metals. The non-hydrodynamic process of structural
relaxation does not contribute to S(k, @) in long-wavelength
limit, however its contribution to the central peak becomes
predominant for k > 0.5 A~'. In the same region, thermal
processes do not contribute significantly to S(k, w).
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FIG. 7. Mode strengths of propagating and relaxing modes in collective dy-
namics of liquid binary alloys Na.K; _ . for concentration 0.2, 0.6.

Leading mode contributions for two compositions of the
Na K| _ . liquid alloy are shown in Fig. 7, where a striking
difference with the mode contribution in the case of pure lig-
uid metals can be seen. For binary liquid alloys, the main
contribution to the central peak of Sy(k, @) comes from the
relaxation process connected mainly with mutual diffusivity
dy (k). This large contribution completely changes the mutual
strengths of relaxation and propagating processes, known as
Landau-Placzek ratio, when compared to the case of pure liq-
uid metals. The expression of Landau-Placzek’s ratio of bi-
nary liquids derived from the GCM mode contributions in the
long-wavelength limit

Atlt(k) + Atzt(k)
Btstound (k)

I central
2Lqe k=0

(11)

explains the shape of MD-derived total dynamic structure fac-
tors shown in Fig. 2. Extrapolating the mode contributions to
k — 0, we can estimate the Landau-Placzek ratio according to
(Eq. (11)); for ¢ = 0.2, it is about 3 (By(k) ~ 0.23 for k — 0)
and it reaches ~7 for ¢ = 0.6 (By(k) =~ 0.12 for k — 0). This
is in agreement with Fig. 2, where the central peak is highest
at the concentration ¢ = 0.6.

Note that in Ref. 8 the mode contributions to the liquid
alloy NagscKo44 were studied in another form. The weight
of the «-th propagating mode was represented via absolute
values of the normalized complex GCM coefficients Gf‘] (k)8
However, the representation of GCM-replicas via real weight
coefficients (10), as it was suggested in Ref. 25, is more infor-
mative because it allows to separate the parts responsible for
the height (coefficients Bf‘j (k)) and asymmetry (coefficients
Dj(k)) of the side peaks in the shape of dynamic structure
factors S;;(k, ). Moreover, the fitting scheme proposed in
Ref. 8 for analyzing the IXS experiment made use of only
the first three sum rules. On the other hand, expression (10)
within the A®(k, 1) basis set yields GCM replicas fulfilling at
least six sum rules for partial density-density time correlation
functions: five for short-time behavior and another one for the
corresponding correlation time.
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FIG. 8. Generalized Landau-Placzek ratio (12) as a functions of wavenumber
for different compositions of the liquid Na.Kj _ . alloy.

Another interesting issue is on the contributions from
the non-hydrodynamic structural relaxation, i.e., generalized
mode d;(k), to the central peak of dynamic structure factors.
It is seen from Fig. 7 that this non-hydrodynamic process be-
comes important already for k ~ 0.2 A=, and its contribution
increases with wave number reaching the same value as from
the extended hydrodynamic mode d;(k) close to k ~ 1 A1
This means that outside the hydrodynamic regime mainly two
modes contribute to the central peak of total dynamic struc-
ture factor: extended hydrodynamic mode d;(k) connected
mainly with mutual diffusivity and non-hydrodynamic mode
of structural relaxation d3(k). The contributions from ther-
mal processes outside the hydrodynamic region are negligi-
ble. This means that the heat waves cannot be detected in
the spectrum of density fluctuations for metallic liquid binary
alloys.

In Ref. 3, another expression of the Landau-Placzek ratio
as a function of thermodynamic quantities has been reported.
Its generalization to wave-number-dependent thermodynamic
quantities allows us to use the MD-calculated values of lin-
ear thermal expansion coefficient, generalized specific heats,
and their ratio, shown in Fig. 3. The N — C dilatation (k)
and Z(k)-factor are directly connected to the Bhatia-Thornton
static structure factors.>! Hence we were able to calculate also
the generalized Landau-Placzek ratio from generalized ther-
modynamic quantities as follows:

I central (k )

82(k)Cp(k) } (12)
2l iqe(k) '

— 0 - 1) [1 + T
In Fig. 8, we show the generalized Landau-Placzek ra-
tio of pure components and four compositions of the liq-
uid Na.K; _ . alloy. It is remarkable that these generalized
Landau-Placzek ratios reach much larger values in the case of
binary alloys, in agreement with the GCM analysis performed
before, which impute this situation to slow relaxation mode,
connected mainly with mutual diffusivity. The £k — 0 lim-
its are in very good agreement with the corresponding values
calculated via the mode-contributions amplitudes (Eq. (11))
and shown in Table I, giving evidences of the applicability of
both approaches to estimate the Landau-Placzek ratio in bi-
nary liquids.
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IV. CONCLUSION

We have studied the composition dependence of relax-
ation modes and their contributions to dynamic structure fac-
tors for four concentration of binary liquid alloy Na K; _ .
and pure liquid metals K and Na. Time correlation functions
derived in molecular dynamics simulations were analyzed
by extended dynamic models of generalized hydrodynam-
ics within the approach of generalized collective modes. The
main conclusions of this study can be formulated as follows.

(1) In comparison with one-component liquid metals, the
binary liquid alloys Na K _ . contain a slow relaxation
mode, which is mainly defined by mutual diffusivity.
This relaxation mode is making the main contribution
to the central peak of total dynamic structure factor.

(i1) It has been shown that the Landau-Placzek ratio for bi-
nary alloys Na.K; _ . can be calculated by two ways:
using generalized thermodynamic quantities or GCM
amplitudes of mode contributions from relaxation pro-
cesses and sound excitations to the total dynamic struc-
ture factors.

(iii) The composition dependence of the Landau-Placzek ra-
tio permits to explain correctly the shape of dynamic
structure factors obtained in MD at different concentra-
tions.

Considering that Na-K is a rather random mixture with
no marked chemical order, it would be interesting to extend
this study to either homo- or hetero-coordinated alloys. An-
other interesting issue is to study evolution of contributions
from relaxation processes to Sy (k, w) in binary liquids versus
density, especially in supercritical region where it is possi-
ble to change the density in very broad range. For the case
of dense binary gases a kinetic approach based on revised
Enskog theory can be applied in the study of relaxation pro-
cesses. In Ref. 26 analytical expressions for partial time cor-
relation functions of binary systems were obtained within the
revised Enskog theory, but satisfying correct short-time be-
havior only to some level. It seems possible to separate in
those expressions contributions from thermal and diffusion
processes, estimate their strengths and compare with the re-
sults obtained by the GCM approach in this study. Another
possibility is to understand how the relaxation processes con-
nected with Enskog’s diffusion coefficient?”-?® can be related
to some of generalized collective modes obtained from ex-
tended hydrodynamic GCM approach. This will be studied
elsewhere.
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