
This article was downloaded by: [BYU Brigham Young University]
On: 10 January 2012, At: 03:20
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Molecular Physics
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tmph20

Generalized collective excitations in supercritical
argon
Taras Bryk a b & Giancarlo Ruocco c d
a Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1
Svientsitskii Street, 79011 Lviv, Ukraine
b Institute of Applied Mathematics and Fundamental Sciences, National Technical University
of Lviv, 79013 Lviv, Ukraine
c Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185, Roma, Italy
d IPCF-CNR, Universita di Roma, I-00185, Roma, Italy

Available online: 26 Oct 2011

To cite this article: Taras Bryk & Giancarlo Ruocco (2011): Generalized collective excitations in supercritical argon,
Molecular Physics, 109:23-24, 2929-2934

To link to this article:  http://dx.doi.org/10.1080/00268976.2011.617321

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tmph20
http://dx.doi.org/10.1080/00268976.2011.617321
http://www.tandfonline.com/page/terms-and-conditions


Molecular Physics
Vol. 109, Nos. 23–24, 10 December–20 December 2011, 2929–2934

INVITED ARTICLE

Generalized collective excitations in supercritical argon

Taras Brykab and Giancarlo Ruoccocd*

aInstitute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street,
79011 Lviv, Ukraine; bInstitute of Applied Mathematics and Fundamental Sciences, National Technical
University of Lviv, 79013 Lviv, Ukraine; cDipartimento di Fisica, Universita di Roma La Sapienza,

I-00185, Roma, Italy; dIPCF-CNR, Universita di Roma, I-00185, Roma, Italy

(Received 14 July 2011; final version received 19 August 2011)

Dispersion and damping of collective excitations in supercritical argon along the isothermal line of 280K are
studied by a combination of molecular dynamics simulations and Generalized Collective Mode (GCM) analysis.
‘Positive dispersion’ of collective excitations and its dependence on density is discussed on the basis of GCM
theory of ‘positive dispersion’.
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1. Introduction

Collective dynamics in liquids and supercritical fluids
is of renewed interest to the scientific community.
Systematic improvements ot the resolution in Inelastic
X-ray Scattering (IXS) and Inelastic Neutron
Scattering (INS) techniques [1,2] have made possible
precise estimations of the dispersion of collective
excitations in liquids as well as a search for the
manifestation of non-hydrodynamic collective pro-
cesses in dynamic structure factors S(k,!), where k
and ! are the wave number and the frequency,
respectively. Very recently one of the most fascinating
problems in collective dynamics of supercritical fluids
has become the issue of the dependence of the so-called
‘positive dispersion’ of collective excitations on den-
sity. Outside the hydrodynamic regime the sound
excitations in dense fluids have dispersion !sðkÞ
which is no longer linear with wave number but bent
up towards higher frequencies. This ‘positive disper-
sion’ of collective excitations was initially explained by
mode coupling theory (MCT) [3,4]. The microscopic
mechanism responsible for ‘positive dispersion’ in
MCT [3] is the non-local (with different wave numbers)
coupling of hydrodynamic relaxation and propagating
modes. The MCT yields a correction to the hydrody-
namic dispersion law of acoustic excitations �sk

5=2 with
a positive prefactor �s. This prefactor can be calculated
from a sophisticated expression given in [5], that
requires the knowledge of explicit density dependences

of adiabatic speed of sound csðnÞ and thermal expan-

sion coefficient �TðnÞ.
Recent IXS experiments performed on supercritical

Ar at 573K and subsequent MD simulations [6]

showed that the positive dispersion in supercritical

Ar decreased with the reduction of density and almost

vanished at some density, which was associated with

the Widom line extended into the supercritical region

[7]. One of the consequences of this finding was a

suggestion that the ‘positive dispersion’ can be a

dynamic quantity that can discriminate between

liquid-like and gas-like fluids in the supercritical

region. However the calculations of density depen-

dence of the MCT coefficient �s for Ar at 573K, which

is responsible for the ‘positive dispersion’, were not in

agreement with experimental findings, but supported

previous calculations [5] for Ar at 120K indicating an

increase of �s with decreasing density.
Recently a theory of ‘positive dispersion’ of collec-

tive excitations in fluids was developed within the

method of Generalized Collective Modes (GCM) [8].

The essential difference between MCT and GCM is in

the explicit treatment of the non-hydrodynamic pro-

cesses in the GCM approach and their coupling with

hydrodynamic modes in the local approximation

[9,10]. Thus, due to coupling of collective excitations

with a non-hydrodynamic process of structural relax-

ation, one obtains within the GCM analytical treat-

ment the ‘positive dispersion’ of acoustic excitations on

*Corresponding author. Email: Giancarlo.Ruocco@roma1.infn.it

ISSN 0026–8976 print/ISSN 1362–3028 online

� 2011 Taylor & Francis

http://dx.doi.org/10.1080/00268976.2011.617321

http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [

B
Y

U
 B

ri
gh

am
 Y

ou
ng

 U
ni

ve
rs

ity
] 

at
 0

3:
20

 1
0 

Ja
nu

ar
y 

20
12

 



the boundary of the hydrodynamic regime [8]. Another

interesting finding was the possibility of ‘negative

dispersion’ of acoustic excitations due to their coupling

with thermal processes. The GCM analysis of collec-

tive modes was performed in [8] for liquid Ar simulated

with Lennard-Jones potentials at two temperatures 205
and 573K. It was shown that the ‘positive dispersion’

vanishes with decreasing density for both tempera-

tures, while ‘negative dispersion’ can appear for

temperatures and densities by approaching the critical

point.
An important issue is to study the ‘positive’

dispersion of collective excitations along more isother-

mal lines in the supercritical region. This would either

support or discard the suggestion that the ‘positive

dispersion’ vanishes by approaching the Widom line

from the high-density side. Additionally, a problem in
the simulations of the dynamic properties of supercrit-

ical fluids close to the critical point are finite-size

effects. In [8] for the lower isothermal line correspond-

ing to the temperature of 205K a large deviation from

the NIST data for the ratio of specific heats � right at

its maximum as a function of density was obtained,
which could be a consequence of finite-size effects.

Therefore in this study we aimed to check the relevant

thermodynamic quantities obtained from the simula-

tions with the NIST data in order to be sure that our

simulations correctly reflected thermal processes in the
supercritical fluid and then performed theoretical

analysis of ‘positive dispersion’ based on the GCM

approach. The remaining paper is organized as follows:

in the next section we give details of the molecular

dynamics simulations and consequent GCM analysis.

The results on thermodynamic quantities and ‘positive
dispersion’ for Ar at 280K are reported in the third

section, and the last section contains the conclusions of

this study.

2. Molecular dynamics simulations

We performed MD simulations for 13 densities along
the isothermal line T¼ 280K for supercritical argon

using systems of 2000 particles interacting via ab initio

Woon potentials [11]. Parameters of the potentials

were taken from [12] and the cut-off radius was 12 Å.

These potentials were the same as those used in MD

simulations of supercritical Ar at 573K [6]. The time
step in the simulations was 2 fs. All the simulations

were performed in the microcanonical ensemble.

Energy conservation was at a very good level: the

energy drift was less than 0.02% over the production

runs of 480,000 time steps.

Every sixth configuration was used for sampling
the dynamic variables. Dynamic variables of particle
density, momentum density and energy density as well
as their time derivatives needed for the GCM analysis
were sampled for 30 different wave numbers directly in
the MD simulations. The averages of the static and
time correlation functions over all possible directions
for different wave vectors with the same magnitude
were performed.

The GCM analysis of the collective dynamics in
supercritical argon was performed within a thermo-
viscoelastic five-variable dynamic model:

Að5Þðk, tÞ ¼ nðk, tÞ, JLðk, tÞ, hðk, tÞ, _JLðk, tÞ, _hðk, tÞ
n o

,

ð1Þ

where n(k, t), JLðk, tÞ and h(k, t) are the Fourier
components for the hydrodynamic variables of particle
density, density of longitudinal component of current
and heat density, and the overdots in the extended
dynamic variables correspond to the first time deriv-
atives of the hydrodynamic variables. Since the static
average of the cross-correlations between a dynamic
variable and its first time derivative is equal to zero,
they are orthogonal, and the extension of the hydro-
dynamic basis set with the time derivatives of the
hydrodynamic variables can be useful in describing
non-hydrodynamic processes. Within the GCM
approach the chosen extended set of N dynamic
variables is used for the construction of the N�N
generalized hydrodynamic matrix T(k), eigenvalues
zi(k) of which correspond to wave-number dependent
collective modes. Analytical solution of the thermo-
viscoelastic dynamic model in the long-wavelength
limit was obtained in [13].

The matrix elements of generalized hydrodynamic
matrix T(k) can be expressed via wave-number depen-
dent thermodynamic quantities, therefore for each
density we estimated the following generalized ther-
modynamic quantities: generalized thermal expansion
coefficient �TðkÞ, specific heat at constant volume
Cv(k), ratio of specific heats �(k), as well as regular
static structure factor S(k). We performed a check of
the calculated thermodynamic quantities with the
NIST database [14]. The long-wavelength limit of
Cv(k) was in perfect agreement with values Cv esti-
mated from temperature fluctuations in the standard
way. In Figure 1 one can see that the values of Cv

calculated in MD are in good agreement with the NIST
data. The values for the ratio of specific heats � are
within the acceptable 5% discrepancy with the NIST
data, the calculated density dependence correctly
reproduces the location of the maximum. Note that
for Cp, the density dependence has its maximum at
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n� ¼ 0:355, i.e. for supercritical argon at 280K the
Widom line crosses the density dependences at
n� ¼ 0:355. For convenience in comparison with
Lennard-Jones systems the reduced density was taken
as n� ¼ n � ð3:405 ÅÞ3.

The adiabatic speed of sound cs was calculated
from the long-wavelength limit of ½�ðkÞ=SðkÞ�1=2. In
Figure 2 the calculated density dependence of the
adiabatic speed of sound for supercritical Ar at 280K
is shown to be in good agreement with the NIST data.
The adiabatic speed of sound increases monotonically
with density having the most steep increase at high
densities. An analytical expression for the density
dependence of adiabatic speed of sound can be found
in [15]. Another important quantity that usually is used
in GCM analysis of collective dynamics is the high-
frequency speed of sound c1, which was estimated
from the following expression

lim
k!0

h _JLð�kÞ _JLðkÞi

hJLð�kÞJLðkÞi
/ c21k

2:

In Figure 2 it is shown that, in contrast to the adiabatic
speed of sound, c1 increases almost linearly with
density up to n� � 0:4, while for high-density fluids it
increases more steeply with density.

3. Results and discussion

We are mainly interested in dispersion of generalized
sound excitations in supercritical Ar. Figures 3 and 4
show the dispersion and damping of collective excita-
tions for two densities, obtained from the imaginary
and real parts of complex eigenvalues in the GCM
analysis of density–density, density–energy and
energy–energy hydrodynamic time correlation

functions obtained from MD simulations. Matrix
elements of the 5�5 generalized hydrodynamic
matrix T(k), constructed on the basis set of dynamic
variables (1), were calculated via static and time
correlation functions for each wave number. No fit
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Figure 3. Dispersion and damping of generalized sound
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 0

 500

 1000

 1500

 2000

 2500

 0  0.2  0.4  0.6  0.8  1

S
pe

ed
 o

f s
ou

nd
 / 

m
s–1

Reduced density n*

NIST
cs
c∞
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adiabatic speed of sound for Ar at 280K from the NIST
database.
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Molecular Physics 2931

D
ow

nl
oa

de
d 

by
 [

B
Y

U
 B

ri
gh

am
 Y

ou
ng

 U
ni

ve
rs

ity
] 

at
 0

3:
20

 1
0 

Ja
nu

ar
y 

20
12

 



parameters were used. The solution of the eigenvalue

problem for T(k) corresponds to dynamic eigenmodes

that can exist in some frequency windows and a given

wave number k in the studied fluid. In the long-

wavelength region the standard three hydrodynamic

modes were recovered: the real eigenvalue with long-

wavelength asymptote

d1ðkÞ ¼ DTk
2, ð2Þ

where DT is thermal diffusivity, and a complex-

conjugated pair of eigenvalues corresponding to

hydrodynamic sound:

zsðkÞ ¼ Gk2 � icsk, ð3Þ

where G ¼ ðDL þ ð� � 1ÞDTÞ=2 is the sound damping

coefficient, and DL is the kinematic viscosity. The

hydrodynamic long-wavelength asymptotes for sound

excitations (3) are recovered for GCM eigenvalues as

shown in Figures 3 and 4. One can see that the region

of wave numbers, where the GCM sound eigenvalues

reach the hydrodynamic asymptotes, depends on

density: for high-density fluids it is quite narrow and

it increases with reduction of density. This is evidence

of different strengths of processes responsible for the

emergence of ‘positive dispersion’ of collective

excitations.
One has to note, that in the long-wavelength region

the imaginary parts of complex eigenvalues Im zsðkÞ

exactly correspond to the frequency of the side peak of

dynamic structure factor S(k,!). However beyond the

hydrodynamic regime the side peak position is not

exactly equal to Im zsðkÞ because of other contributions

to S(k,!) like the asymmetric (non-Lorentzian) one,

which increases linearly with k in the long-wavelength

region and becomes quite important beyond the

hydrodynamic regime [16]. Additionally, non-hydro-

dynamic excitations like heat waves or ‘fast sound’ in

binary melts with disparate masses make non-zero

contributions to the dynamic structure factors mea-

sured in scattering experiments. Experimental estima-

tion of sound dispersion via Brillouin peak position of

S(k,!) is based solely on the hydrodynamic picture of

collective dynamics, while more sophisticated models

are needed for the analysis of experimental S(k,!) with
the purpose of estimating the true sound dispersion.

Among the five eigenmodes, obtained in the long-

wavelength region two real eigenvalues tend to non-

zero values in the k! 0 limit, which is evidence that

they belong to non-hydrodynamic processes with finite

lifetime on macroscopic distances, i.e. they do not
survive on the macroscopic scale in comparison with

hydrodynamic processes. The analytical solution for

the five-variable dynamic model was obtained in the

long-wavelength limit in [13], and expressions for the

two long-wavelength non-hydrodynamic (kinetic)

modes read:

d2ðkÞ ¼ d02 �DLk
2 þ ð� � 1ÞDk2, ð4Þ

and

d3ðkÞ ¼ d03 � �DTk
2 � ð� � 1ÞDk2, ð5Þ

where the k¼ 0 values are:

d02 ¼
c21 � c2s
DL

and

d03 ¼
cV
m�

Gh �
ð� � 1Þ

�T

� �
:

Here

D ¼
d02d

0
3

d03 � d02

DT

DLc2s
ðDT �DLÞ

2

is a coefficient that reflects coupling between the two

non-hydrodynamic modes. The quantities Gh and �T
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correspond to heat rigidity modulus and isothermal

compressibility, respectively. Because of the factor

(�� 1) the last terms on the right-hand sides of (4) and

(5) appear only due to coupling between the heat and

density fluctuations. The quantity ðc21 � c2s Þ is referred

to in the literature as the strength of structural

relaxation and for wave numbers in the vicinity of

the first sharp diffraction peak it is possible to show

that d2(k) is the inverse relaxation time of the cage of

nearest neighbours [17]. Namely the non-hydrody-

namic mode d2(k) reflects the structural relaxation in

fluids. The other non-hydrodynamic mode, d3(k), is of

thermal origin, it keeps information about heat rigid-

ity in the fluid, and as shown in [18] the

non-hydrodynamic process d3(k) for increasing wave

numbers is responsible for the emergence of non-

hydrodynamic heat waves which can exist on nano-

scales but not for macroscopic distances and times.
The ‘positive dispersion’ of collective excitations

appears mainly due to interaction of acoustic modes

with structural relaxation on the boundary of the

hydrodynamic regime. In Figure 5 we show how the

strength of structural relaxation changes with density.

In the high-density region there is a maximum that

appears because of a faster drop in kinematic viscosity

DL with reduction of density than with the change in

ðc21 � c2s Þ. Further decrease of density leads to mono-

tonic decay of d02 which implies that even for low

density fluids the non-hydrodynamic mode d2(k) will

have quite a large relaxation time and therefore will be

important in the collective dynamics of low-density

fluids too. On the other hand the elastic properties of

the system monotonically decay with decreasing den-

sity, as seen from Figure 6, where the high-frequency

shear module G1 and bulk module K1 are shown.

Within the GCM theory the ‘positive dispersion’

can be obtained as a long-wavelength correction to the

hydrodynamic dispersion law which is proportional

to k3 [8]

!sðkÞ � cskþ �k
3 þ 	 	 	 ð6Þ

with the prefactor � that reads:

� ¼
csD

2
L

8

5� ðc1=csÞ
2

c21 � c2s

� ð� � 1ÞDT
6DL þ ð� � 5ÞDT

8cs
�

cs

2d03

� �
: ð7Þ

For the viscoelastic approximation, when the ratio of

specific heats �¼ 1, one obtains a very simple expres-

sion for the dispersion of the collective excitations on

the boundary of the hydrodynamic regime:

!ðkÞ � cskþ
csD

2
L

8

5� ðc1=csÞ
2

c21 � c2s
k3: ð8Þ

It follows from this expression that, depending on the

ratio of high-frequency speed of sound to adiabatic

speed of sound, one can obtain even vanishing to zero

‘positive dispersion’ and possible ‘negative dispersion’.

From Figure 2 one can see that the largest ratio of the

high-frequency speed of sound to the adiabatic one,

c1=cs, is larger than 2 and takes place between

densities n� ¼ 0:4465 and n� ¼ 0:2351, which implies

almost vanishing ‘positive dispersion’ in that region of

densities. In Figure 7 one can see how the positive

dispersion reduces with decreasing density. According

to the NIST database for argon [14] the Widom line

crosses the isotherm T¼ 280K at n� ¼ 0:357 which is

in agreement with Figure 7, where the ‘positive

dispersion’ almost vanishes on approaching that den-

sity. Another interesting finding is a small increase of
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the ‘positive dispersion’ for very low-density fluids,
which within the adopted approximation in our GCM
analysis is explained by decreasing for very low density
systems the ratio between the high-frequency sound
and the adiabatic one. Note that the analysis of IXS
experiments on Ar at 573K in [6] gave evidence of a
small (�4%) ‘positive dispersion’ even in the
low-density region.

4. Conclusions

We performed a combined study based on MD
simulations of supercritical Ar along the isothermal
line of 280K and theoretical GCM analysis of collec-
tive excitations. We made check that our calculated
density dependences of adiabatic speed of sound, ratio
of specific heats and specific heat at constant volume
were in good agreement with the NIST data. Based on
these quantities we studied the ‘positive dispersion’ of
collective excitations in supercritical Ar and how it
depends on density.

We made use of the five-variable dynamic model
for GCM analysis of time correlation functions
obtained in MD simulations. We found, that the
‘positive dispersion’ reduces with decreasing density.
The theoretical GCM expression for the correction to
the hydrodynamic dispersion law yields ‘positive dis-
persion’ in good agreement with the MD data over a
wide region of densities. We found, that the theoretical
expression for ‘positive dispersion’ is in agreement with

a suggestion that the ‘positive dispersion’ can vanish in
the vicinity of the Widom line [6].
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