НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ ІНСТИТУТ ФІЗИКИ КОНДЕНСОВАНИХ СИСТЕМ

ВДОВИЧ Андрій Степанович

54

УДК 538.951, 538.956

ВПЛИВ ЕЛЕКТРИЧНИХ ПОЛІВ І МЕХАНІЧНИХ НАПРУГ НА ФІЗИЧНІ ВЛАСТИВОСТІ СЕГНЕТОАКТИВНИХ СПОЛУК ТИПУ ЛАД-БЕЗЛАД

01.04.07 – фізика твердого тіла

АВТОРЕФЕРАТ дисертації на здобуття наукового ступеня доктора фізико-математичних наук

ЛЬВІВ-2021

Дисертацією є рукопис.

Робота виконана в Інституті фізики конденсованих систем Національної академії наук України.

Науковий консультант – доктор фізико-математичних наук, професор Левицький Роман Романович, Інститут фізики конденсованих систем НАН України (м. Львів), провідний науковий співробітник відділу квантової статистики.

- Офіційні опоненти академік НАН України, доктор фізико-математичних наук, професор Харченко Микола Федорович, Фізико-технічний інститут низьких температур ім. Б. І. Вєркіна НАН України (м. Харків), головний науковий співробітник відділу магнетизму;
 - член-кореспондент НАН України, доктор фізикоматематичних наук, професор Височанський Юліан Миронович, Ужгородський національний університет (м. Ужгород), директор Науково-дослідного інституту фізики і хімії твердого тіла;
 - доктор фізико-математичних наук, професор Капустяник Володимир Богданович, Львівський національний університет імені Івана Франка (м. Львів), завідувач кафедри фізики твердого тіла.

Захист відбудеться 5 <u>травня</u> 2021 року о 15.30 на засіданні спеціалізованої вченої ради Д 35.156.01 при Інституті фізики конденсованих систем Національної академії наук України за адресою: 79011 м. Львів, вул. Свєнціцького, 1.

З дисертацією можна ознайомитись у науковій бібліотеці Інституту фізики конденсованих систем НАН України за адресою: 79026 м. Львів, вул. Козельницька, 4.

Автореферат дисертації розіслано "<u>1</u>" квітня 2021 року.

Вчений секретар спеціалізованої вченої ради Д 35.156.01 доктор фіз.-мат. наук

А.М. Швайка

Актуальність теми. Значну частину сегнетоактивних матеріалів становлять сполуки, в яких відбуваються фазові переходи типу лад-безлад. Їх поведінка належним чином описується квантово-статистичними моделями. Найбільш відомими представниками даного типу матеріалів є сегнетоактивні сполуки з водневими зв'язками. Прикладання зовнішніх тисків і полів різної симетрії є ефективним засобом неперервної зміни геометричних характеристик водневих зв'язків, що дозволяє глибше дослідити їх роль у механізмах фазових переходів та діелектичному відгуку цих кристалів. Значна частина сегнетоактивних сполук з водневими зв'язками є п'єзоактивними в парафазі. Прикладання зсувних напруг дає можливість вивчати роль п'єзоелектричних взаємодій у фазових переходах та в формуванні п'єзоелектричних, пружних та діелектричних характеристик цих кристалів.

Сегнетоактивні сполуки з водневими зв'язками мають складну структуру ефективних дипольних моментів. Такі сполуки переважно містять кілька підграток ефективних диполів, що не завжди є взаємно паралельними. Серед сполук з водневими зв'язками найповніше експериментально (див. [1]) вивчено вплив гідростатичного тиску на кристали сім'ї КН₂PO₄. Було встановлено, що цей тиск суттєво впливає на фазові переходи в цих кристалах і помітно змінюються при цьому їх фізичні характеристики. В той же час вплив тисків інших симетрій на згадані кристали досліджений значно менше. В основу опису поведінки сегнетоактивних сполук з водневими зв'язками, в тому числі і типу КН₂PO₄, покладають модель протонного впорядкування [1,2].

Пізніше на основі моделі протонного впорядкування було розроблено псевдоспінові моделі КН₂PO₄, які враховують лінійну залежність параметрів взаємодії від діагональних деформацій гратки. Це дозволило вивчити вплив гідростатичного та одновісних тисків на термодинамічні характеристики ряду сегнетоактивних сполук сім'ї КН₂PO₄.

Крім того, було модифіковано псевдоспінові моделі KH_2PO_4 , враховуючи ефективне деформаційне поле, яке виникає при наявності зсувних деформацій, і пов'язане як з внутрішнім п'єзоефектом, так і з псевдоспіновою взаємодією, перенормованою електрострикційними внесками. Це дозволило розрахувати вплив зсувних напруг на термодинамічні характеристики ряду сегнетоактивних сполук сім'ї KH_2PO_4 . Актуальним залишається врахування одночасно діагональних і зсувних деформацій в псевдоспінових моделях деформованих кристалів. В роботах [1, 2] підведено підсумок дослідження фізичних характеристик сегнетоактивних сполук сім'ї KH_2PO_4 на основі запропонованих моделей деформованих кристалів. При цьому в [1] були розпочаті дослідження в рамках спрощеної моделі польових ефектів у фосфіті гліцину (GPI). Наявність достатньої кількості експериментальних робіт, присвячених цьому сегнетоактивному кристалу, становить значний інтерес до розробки для нього сучасної теорії польових і деформаційних ефектів.

Слід відзначити, що деякі модельні параметри в сегнетоелектриках можуть мати різне значення в пара- і сегнетофазі у зв'язку з різною симетрією цих фаз; зокрема ефективні дипольні моменти псевдоспінів. Внаслідок цього неможливо коректно описати розмиття фазового переходу під впливом полів чи напруг певної

симетрії. Тому важливо також узгодити ці дипольні моменти в пара- і сегнетофазі, наприклад, вважаючи їх залежними від параметрів впорядкування.

Такі псевдоспінові моделі деформованих кристалів дадуть можливість дослідити поведінку цих кристалів у присутності електричного поля чи механічних напруг різної симетрії, а також проводити пошук нових фізичних ефектів, які не спостерігаються при відсутності зовнішніх впливів.

В даній дисертації основна увага буде приділена розробці теорії польових та деформаційних ефектів для сегнетоактивних кристалів KH₂PO₄, GPI, CsH₂PO₄, RbD₂PO₄, RbHSO₄ та сегнетової солі.

Зв'язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконана в Інституті фізики конденсованих систем НАН України в рамках держбюджетних тем "Моделювання фізичних властивостей квантових граткових багаточастинковими систем сильними кореляціями" (держреєстрація 3 0108U001154, 2008-2012 p.), "Багатомасштабність i структурна складність конденсованої речовини: теорія і застосування" (держреєстрація 0112U003119, 2012-2016 р.), "Квантові багаточастинкові ґраткові системи: динамічний відгук і ефекти сильних кореляцій" (держреєстрація 0112U007761, 2013-2017 р.), "Нові концепції статистичного опису і їх застосування у теорії багаточастинкових систем" (держреєстрація 0117U002093, 2017-2021 р.), "Сильні кореляції і конкуренції взаємодій у класичних і квантових граткових системах різної вимірності" (держреєстрація 0118U003010, 2018-2022 р.).

Мета і задачі дослідження. Метою даної роботи є розробка мікроскопічних теорій для опису сегнетоактивних сполук типу лад-безлад, а також дослідження на їх основі впливу електричних полів та механічних напруг на фізичні характеристки цих сполук. Для досягнення цієї мети поставлено кілька задач:

• розробка псевдоспінової моделі деформованого сегнетоелектрика фосфіту гліцину, яка враховує зв'язок псевдоспінової підсистеми з деформаціями гратки, а також дослідження на основі цієї моделі впливу механічних напруг різної симетрії та зовнішніх електричних полів на термодинамічні та динамічні характеристики кристала;

• розрахунок термодинамічних характеристик кристала CsH_2PO_4 на основі псевдоспінової моделі деформованого сегнетоелектрика, яка враховує зв'язок структурних елементів, які впорядковуються в цих кристалах, з деформаціями гратки ε_1 , ε_2 , ε_3 , ε_5 , а також залежність ефективних дипольних моментів псевдоспінів від параметрів впорядкування, та дослідження впливу поздовжнього електричного поля, гідростатичного та одновісних тисків на його поведінку;

• вивчення поведінки діелектричної проникності кристала RbD₂PO₄ при наявності гідростатичного тиску на основі псевдоспінової моделі цього кристала, яка враховує зв'язок псевдоспінової підсистеми з деформаціями гратки ε₁, ε₂, ε₃, ε₅;

• розрахунок термодинамічних характеристик кристала KH_2PO_4 при наявності гідростатичного тиску на основі модифікованої псевдоспінової моделі, яка враховує лінійні за деформаціями ε_1 , ε_2 , ε_3 , ε_6 внески в параметри взаємодії між псевдоспінами;

• вивчення термодинамічних характеристик кристала КH₂PO₄ при наявності поздовжнього електричного поля на основі модифікованої псевдоспінової моделі,

яка враховує залежність ефективних дипольних моментів псевдоспінів від параметрів впорядкування;

• дослідження впливу поперечного електричного поля на термодинамічні характеристики кристала сегнетової солі на основі запропонованої чотирипідграткової моделі, яка враховує п'єзоелектричний зв'язок псевдоспінової підсистеми з деформаціями гратки ε_4 , ε_5 , ε_6 ;

• розвиток псевдоспінової моделі деформованого кристала RbHSO₄ шляхом врахування розщеплення параметрів взаємодії між псевдоспінами при зсувних деформаціях, а також дослідження на її основі впливу механічних напруг різної симетрії та поздовжнього електричного поля на її характеристики.

Об'єктом дослідження є сегнетоактивні сполуки типу лад-безлад.

Предметом дослідження є псевдоспінові моделі для опису діелектричних, п'єзоелектричних, пружних і теплових властивостей цих сполук.

Методи дослідження. Використовується метод кластерного розвинення та метод Глаубера.

Наукова новизна одержаних результатів.

• На основі запропонованої псевдоспінової моделі деформованого сегнетоелектрика GPI, яка враховує лінійну залежність параметрів взаємодії між між структурними елементами, які впорядковуються в цих кристалах, з деформаціями гратки, в наближенні двочастинкового кластера, розроблена кількісна мікроскопічна теорія його статичних і динамічних діелектричних проникностей, п'єзоелектричних, пружних та теплових характеристик.

• В рамках даної моделі проведено ґрунтовні теоретичні дослідження впливу електричного поля, гідростатичного та одновісних тисків, а також одночасно електричного поля та механічних напруг на фізичні характеристики GPI. Проведено детальний числовий аналіз отриманих результатів. Отримано добрий кількісний опис запропонованою теорією наявних експериментальних даних.

• Вперше в рамках запропонованої моделі досліджено поздовжній та поперечний електрокалоричні ефекти в кристалі GPI.

• Запропоновано двопідграткову псевдоспінову модель деформованого сегнетоелектрика з водневими зв'язками CsH_2PO_4 , яка враховує лінійну залежність параметрів міжпсевдоспінової взаємодії з деформаціями гратки ε_1 , ε_2 , ε_3 , ε_5 . Враховано також залежність ефективних дипольних моментів псевдоспінів від параметрів впорядкування. В рамках цієї моделі в наближенні двочастинкового кластера розраховано діелектричні, п'єзоелектричні, пружні та теплові характеристики кристала CsH_2PO_4 . Проведено детальне дослідження їх залежності від гідростатичного, одновісного тисків та поздовжнього електричного поля.

• В рамках запропонованої псевдоспінової моделі деформованого RbD₂PO₄ в наближенні двочастинкового кластера розраховано і досліджено вплив гідростатичного тиску на його поздовжню діелектричну проникність. Досягнуто узгодження результатів теоретичних розрахунків з відповідними експериментальними даними.

• В рамках модифікованої псевдоспінової моделі сегнетоелектриків типу KH_2PO_4 з врахуванням лінійного за деформаціями ε_1 , ε_2 , ε_3 , ε_6 вкладу в енергію псевдоспінової підсистеми в наближенні чотиричастинкового кластера вивчено

вплив гідростатичного та одновісного тисків на фазовий перехід та фізичні характеристики частково детерованих сегнетоелектриків $K(H_{1-x}D_x)_2PO_4$.

• На основі псевдоспінової моделі кристалів типу KH_2PO_4 з врахуванням п'єзоелектричного зв'язку псевдоспінової підсистеми з деформацією ε_6 та залежності ефективних дипольних моментів псевдоспінів від параметра порядку досліджено поведінку термодинамічних характеристик під дією електричного поля E_3 та зсувної напруги σ_6 , а також електрокалоричний та п'єзокалоричний ефекти в цих кристалах.

• Вперше в рамках модифікованої чотирипідграткової моделі сегнетової солі з врахуванням п'єзоелектричного зв'язку псевдоспінової підсистеми зі зсувними деформаціями ε_4 , ε_5 , ε_6 в наближенні молекулярного поля проведено ґрунтовне дослідження впливу поперечних електричних полів E_2 і E_3 на її температури фазових переходів, спонтанну поляризацію, діелектричні, п'єзоелектричні та пружні характеристики.

• Запропоновано модифіковану чотирипідграткову псевдоспінову модель сегнетоелектрика RbHSO₄, яка враховує лінійну за деформаціями ε_j , (*j*=1,...6) залежність параметрів взаємодії між структурними елементами, які впорядковуються в цьому кристалі. На основі цієї моделі в рамках наближення молекулярного поля вивчено вплив поздовжнього електричного поля та механічних напруг різної симетрії на фазовий перехід і фізичні характеристики RbHSO₄, а також досліджено електрокалоричний ефект в цьому кристалі.

Практичне значення одержаних результатів. Отримані теоретичні результати для фізичних характеристик сегнетоактивних матеріалів, які досліджувались, були використані для опису та пояснення відповідних експериментальних даних. При цьому грунтовний числовий аналіз залежностей розрахованих фізичних характеристик цих матеріалів від модельних параметрів дозволив отримати оптимальні їх значення, які забезпечили добрий кількісний опис наявних для них експериментальних даних.

Запропоновані в даній роботі підходи та методи для розрахунку фізичних характеристик розглянутих кристалів можна використати при дослідженні інших сегнетоактивних сполук типу лад-безлад. Вони сприятимуть глибшому розумінню польових та деформаційних ефектів у цих сполуках. Отримані результати також можуть дати поштовх для проведення нових експериментальних досліджень згаданих матеріалів та комп'ютерного моделювання фізичних процесів у них.

Можливим є також використання окремих фрагментів дисертації в якості лекційного матеріалу з теорії фазових переходів в деформованих кристалах, особливо цієї частини, що стосується польових та деформаційних ефектів.

Проведені дослідження електрокалоричного та п'єзокалоричного ефектів допоможуть у пошуку матеріалів для електрокалоричного чи п'єзокалоричного охолодження та піроелектричного перетворення енергії.

Особистий внесок здобувача.

• Дисертант приймав активну участь в розробці моделей деформованих кристалів GPI [9,10,15-17,24] (зі списку опублікованих дисертантом праць), CsH₂PO₄ [21], KH₂PO₄ [6,8,26], RbHSO₄ [22].

• Він вдосконалив псевдоспінову модель деформованого кристала GPI [17], врахувавши зміну симетрії кристала при зсувних деформаціях ε_4 , ε_6 .

• Врахувавши залежність ефективних дипольних моментів псевдоспінів від параметрів порядку, він одноосібно належним чином описав поведінку фізичних характеристик при прикладанні поздовжнього електричного поля до кристалів GPI [24], KH₂PO₄ [6,8,26], CsH₂PO₄ [21] (зі списку опублікованих дисертантом праць).

• Він одноосібно розрахував і грунтовно вивчив електрокалоричний ефект в кристалах GPI [24], KH₂PO₄[6,8,26] і RbHSO₄[22].

• В рамках моделі деформованого кристала автор дослідив вплив гідростатичного тиску і поздовжнього електричного поля на фазовий перехід та фізичні характеристики квазіодновимірного сегнетоелектрика CsH₂PO₄ [21].

• Дисертант одноосібно виконав всі числові розрахунки фізичних характеристик для кристалів, які досліджувались, та дослідив польові та деформаційні ефекти в цих кристалах [1-26].

• Він брав безпосередню участь в обговоренні всіх результатів, отриманих у спільних дослідженнях.

Апробація результатів дисертації. Результати дисертації представлялись на таких конференціях: "Statistical Physics: Modern Trends and Applications" (Львів, 2009 p.); "2nd Ukrainian–Polish–Lithuanian Meeting on Ferroelectrics Physics (UPL MFP-2)" (Львів, 2012 р.); "The Seventh International Seminar on Ferroelastic Physics" (Voronezh, Russia, 2012 p.); "III Polish–Lithuanian– Ukrainian Meeting on Ferroelectrics Physics" (Wroslaw, Poland, 2014 p.); "The Eighth International Seminar on Ferroelastic Physics" (Voronezh, Russia, 2015 p.); 5th Seminar "Properties of ferroelectric and superionic systems" (Uzhhorod, Ukraine, 2015 p.); 6th Seminar "Properties of ferroelectric and superionic systems" (Uzhhorod, Ukraine, 2016 p.); 7th Seminar "Properties of ferroelectric and superionic systems" (Uzhhorod, Ukraine, 2017 p.); International Conference on Oxide Materials for Electronic Engineering - fabrication, properties and applications "OMEE-2017" (Львів, 2017 р.); V Ukrainian-Polish-Lithuanian Meeting on Physics of Ferroelectrics (Uzhhorod, Ukraine, 2018 p.); the 5-th Conference "Statistical Physics: Modern Trends and Applications" (Львів, 2019 р.); VIII International seminar "Properties of ferroelectric and superionic systems" (Львів, 2019 р.); а також семінарах в Інституті фізики конденсованих систем НАН України.

Публікації. За результатами дисертації опубліковано 42 роботи, в тому числі 22 статті, видані у фахових журналах, 4 препринти, 16 тез наукових конференцій.

Структура та об'єм дисертації. Дисертація складається з вступу, шістьох розділів, в яких викладені результати досліджень дисертанта, висновків, списку цитованої літератури і додатків. Робота викладена на 275 сторінках (разом з літературою та додатками – 324 сторінки). Загальна кількість рисунків – 198, таблиць – 5, додатків – 3, бібліографічний список містить 275 найменувань.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі висвітлено стан проблеми, актуальність теми дослідження, сформульовано мету роботи та відзначено її наукову новизну.

В першому розділі зроблено огляд публікацій стосовно сегнетоелектрика GPI (NH₃CH₂COOH·H₂PO₃). Запропоновано псевдоспінову модель GPI, яка враховує залежність взаємодії між структурними елементами, які впорядковуються в цих

кристалах, від деформацій гратки, а також вивчено вплив тисків і зсувних напруг різної симетрії на термодинамічні характеристики цього кристала.

Фазовий перехід в цьому кристалі пов'язаний з впорядкуванням протонів на водневих зв'язках з двомінімумним потенціалом, які з'єднують фосфітні групи в зигзагоподібні ланцюжки вздовж кристалографічної *c*-осі. При цьому ланцюжки "A" і "В" впорядковані антипаралельно, так що їх поляризації в площині (*a*,*c*) взаємно компенсуються, а вздовж *b*-осі не компенсуються. В результаті виникає спонтанна поляризація вздовж *b*-осі.

Гамільтоніан псевдоспінової моделі GPI при наявності електричних полів E_1 , E_2 і E_3 вздовж декартових осей X, Y і Z має вигляд:

$$\hat{H} = NU_{seed} + \hat{H}_{short} + \hat{H}_{long} + \hat{H}_{E}, \qquad (1)$$

де N – загальна кількість примітивних комірок. Доданок U_{seed} в (1) – "затравна" енергія, яка відповідає гратці важких іонів і явно не залежить від конфігурації протонної підсистеми та містить пружну, п'єзоелектричну і діелектричну частини, що виражаються через електричні поля E_i (i = 1, 2, 3) та деформації ε_i (j = 1, ..., 6):

$$U_{seed} = v(\frac{1}{2}\sum_{j,j'=1}^{6} c_{jj'}^{E_0}(T) \mathcal{E}_j \mathcal{E}_{j'} - \sum_{i=1}^{3} \sum_{j=1}^{6} e_{ij}^0 \mathcal{E}_j E_i - \sum_{i,i'=1}^{3} \frac{1}{2} \chi_{ii'}^{\varepsilon_0} E_i E_{i'}).$$
(2)

Параметри $c_{jj'}^{E0}(T)$, e_{ij}^{0} , χ_{ij}^{e0} – т.зв. затравні пружні сталі, коефіцієнти п'єзоелектричної напруги та діелектричні сприйнятливості, v – об'єм примітивної комірки. В парафазі всі коефіцієнти $e_{ij}^{0} \equiv 0$ у зв'язку з наявністю центра симетрії.

Інші доданки в (1) описують псевдоспінову частину гамільтоніана. Зокрема, другий доданок в (1) – гамільтоніан короткосяжних взаємодій

$$\hat{H}_{short} = -2\sum_{qq'} \left(w_1 \frac{\sigma_{q1}}{2} \frac{\sigma_{q2}}{2} + w_2 \frac{\sigma_{q3}}{2} \frac{\sigma_{q4}}{2} \right) (\delta_{\vec{R}_q \vec{R}_{q'}} + \delta_{\vec{R}_q + \vec{R}_c, \vec{R}_{q'}}).$$
(3)

У (3) σ_{qf} – *z*-компонента оператора псевдоспіна, що описує стан *f*-го водневого зв'язку (*f*=1,2,3,4), який знаходиться в *q*-ій комірці. Перший символ Кронекера відповідає взаємодії між протонами у ланцюжках поблизу тетраедрів HPO₃ типу "I", а другий – поблизу тетраедрів типу "II", R_c – радіус-вектор гратки вздовж кристалографічної *c*-осі. Параметри *w*₁, *w*₂, які описують короткосяжні взаємодії протонів у двох структурно нееквівалентних ланцюжках "А" і "В", розкладаємо в ряди за деформаціями ε_j , обмежуючись лінійними доданками:

$$w_{1,2} = w^0 + \sum_l \delta_l \varepsilon_l \pm \delta_4 \varepsilon_4 \pm \delta_6 \varepsilon_6, (l = 1, 2, 3, 5)$$
(4)

Третій доданок у (1) описує далекосяжні диполь-дипольні і непрямі (через коливання гратки) взаємодії між псевдоспінами, які враховано в наближенні середнього поля:

$$\hat{H}_{long} = NH^0 - \sum_{q} \sum_{f=1}^{4} H_f \frac{\sigma_{qf}}{2},$$
(5)

де

$$H^{0} = \sum_{f,f'=1}^{4} \frac{1}{8} J_{ff'} \eta_{f} \eta_{f'}, \quad H_{f} = \sum_{f'=1}^{4} \frac{1}{2} J_{ff'} \eta_{f'}, \quad \eta_{f} = \langle \sigma_{qf} \rangle.$$
(6)

Фур'є-образи констант взаємодії $J_{ff'} = \sum_{qq'} J_{ff'}(qq')$ при **k** = 0 лінійно розкладено за деформаціями ε_i :

$$J_{11}_{33} = J_{11}^{0} + \sum_{l} \psi_{11l} \varepsilon_{l} \pm \psi_{114} \varepsilon_{4} \pm \psi_{116} \varepsilon_{6}, \ J_{13} = J_{13}^{0} + \sum_{l} \psi_{13l} \varepsilon_{l} + \psi_{134} \varepsilon_{4} + \psi_{136} \varepsilon_{6},$$

$$J_{12}_{34} = J_{12}^{0} + \sum_{l} \psi_{12l} \varepsilon_{l} \pm \psi_{124} \varepsilon_{4} \pm \psi_{126} \varepsilon_{6}, \ J_{14}_{23} = J_{14}^{0} + \sum_{l} \psi_{14l} \varepsilon_{l} \pm \psi_{144} \varepsilon_{4} \pm \psi_{146} \varepsilon_{6},$$

$$J_{22}_{44} = J_{22}^{0} + \sum_{l} \psi_{22l} \varepsilon_{l} \pm \psi_{224} \varepsilon_{4} \pm \psi_{226} \varepsilon_{6}, \ J_{24} = J_{24}^{0} + \sum_{l} \psi_{24l} \varepsilon_{l} + \psi_{244} \varepsilon_{4} + \psi_{246} \varepsilon_{6},$$

Четвертий доданок в (1) описує взаємодію псевдоспінів з електричним полем:

$$\hat{H}_E = -\sum_{qf} \vec{\mu}_f \vec{E} \frac{\sigma_{qf}}{2}.$$
(7)

Тут $\vec{\mu}_1 = (\mu_{13}^x, \mu_{13}^y, \mu_{13}^z), \quad \vec{\mu}_3 = (-\mu_{13}^x, \mu_{13}^y, -\mu_{13}^z), \quad \vec{\mu}_2 = (-\mu_{24}^x, -\mu_{24}^y, \mu_{24}^z), \quad \vec{\mu}_4 = (\mu_{24}^x, -\mu_{24}^y, -\mu_{24}^z) - eфективні дипольні моменти в розрахунку на один псевдоспін.$

При розрахунку термодинамічних і динамічних характеристик сегнетоелектрика GPI використано наближення двочастинкового кластера (НДК). В цьому наближенні термодинамічний потенціал GPI у розрахунку на одну комірку при прикладанні до кристала напруг σ_j має вигляд:

$$g = U_{seed} + H^0 - 2(w^0 + \sum_l \delta_l \varepsilon_l) + 2k_B T \ln 2 - v \sum_{j=1}^6 \sigma_j \varepsilon_j - \frac{1}{2} k_B T \sum_{f=1}^4 \ln(1 - \eta_f^2) - 2k_B T \ln D.$$
(8)

Тут величина *D* описує вклад в статистичну суму, який враховує короткосяжні кореляції псевдоспінів в межах двочастинкового кластера. З умови мінімуму термодинамічного потенціалу $(\partial g/\partial \eta_f)_{\varepsilon_j, \varepsilon_i, \sigma_j, T} = 0$, $(\partial g/\partial \varepsilon_j)_{\eta_f, \varepsilon_i, \sigma_j, T} = 0$ отримуємо систему рівнянь для параметрів порядку η_f і деформацій ε_j . У випадку прикладання до кристала гідростатичного тиску: $\sigma_1 = \sigma_2 = \sigma_3 = -p_h \neq 0$, $\sigma_4 = \sigma_5 = \sigma_6 = 0$; при наявності одновісного тиску вздовж осі ОХ: $\sigma_1 = -p_1 \neq 0$, інші $\sigma_j = 0$; вздовж осі ОZ: $\sigma_3 = -p_3 \neq 0$, інші $\sigma_j = 0$; а при зсувних напругах: $\sigma_j \neq 0$ (*j*=4, 5 або 6), інші $\sigma_j = 0$.

Упохіднюючи рівноважний термодинамічний потенціал за полями E_i отримуємо вирази для компонент вектора поляризації P_i .

$$P_i = -\left(\frac{\partial g}{\partial E_i}\right)_{\varepsilon_j} = \sum_{j=1}^6 e_{ij}^0 \varepsilon_j + \sum_{i'=1}^3 \chi_{ii'}^{\varepsilon_0} E_{i'} + \frac{1}{2\upsilon} \sum_{f=1}^4 \mu_f^i \eta_f, \qquad (9)$$

Статичні ізотермічні діелектричні сприйнятливості GPI вздовж осей для механічно затиснутого кристала і коефіцієнти п'єзоелектричної напруги отримано, диференціюючи компоненти P_i за полями E_i і деформаціями ε_j , відповідно: $\chi_{ii'}^{\varepsilon} = (\partial P_i / \partial E_{i'})_{\varepsilon_j}, e_{ij} = (\partial P_i / \partial \varepsilon_j)_{\varepsilon_j}$. Компоненти діелектричної проникності $\varepsilon_{ii'}^{\varepsilon} = 1 + 4\pi \chi_{ii'}^{\varepsilon}$.

Рівняння для деформацій ε_j є одночасно виразами для механічних напруг σ_j . Диференціюючи чисельно ці напруги за деформаціями ε_j при постійному полі, знаходимо пружні сталі GPI $c_{jj'}^E$. Інші діелектричні, п'єзоелектричні і пружні характеристики GPI можна отримати, використовуючи розраховані вище характеристики на основі загальновідомих термодинамічних співвідношень. Молярну ентропію і теплоємність кристала, що обумовлені псевдоспіновою підсистемою, знаходимо диференціюючи чисельно термодинамічний потенціал за температурою: $S = -N_A (\partial g / \partial T)_{\sigma}$, $\Delta C^{\sigma} = T (\partial S / \partial T)_{\sigma}$.

Параметри моделі GPI визначено з умови найкращого узгодження розрахованих температурних залежностей фізичних характеристик GPI з відповідними наявними експериментальними даними.

Фазовий перехід в кристалі GPI є переходом другого роду. Як наслідок, розрахована спонтанна поляризація $P_s = P_2$ частково дейтерованого GPI_{1-x}DGPI_x (рис. 1) з різним ступенем дейтерування x монотонно і неперервно зменшується при

Рис. 1: а) Температурні залежності спонтанної поляризації P_s : 1 – x=0.00,•; 2 – 0.16, •; 3 – 0.31, •; 4 – 0.47, •; 5 – 0.67, •; 6 – 0.75, •. Точки – експериментальні дані [3].

б) Температурні залежності поздовжньої статичної діелектричної проникності механічно вільного кристала $\text{GPI}_{1-x} \text{DGPI}_x$: 1 – x=0.00, •; 2 – 0.16, •; 3 – 0.31, •; 4 – 0.47, •; 5 – 0.67, •; 6 – 0.75, •. Точки – експериментальні дані [4].

підвищенні температури, і зануляється при температурі фазового переходу $T=T_c$; а поздовжня діелектрична проникність ε_{22} механічно вільного кристала GPI прямує до безмежності в точці T_c . Поперечні компоненти діелектричної проникності ε_{11} , ε_{33} , ε_{31} є скінченні в усьому температурному діапазоні (рис. 2). Відзначимо, що компоненти проникності механічно вільного і затиснутого кристалів практично співпадають. П'єзоелектричні коефіцієнти e_{21} і d_{21} зростають з температурою і прямують до безмежності в точці T_c . (рис. 3).

Рис. 2: Температурні залежності поперечних компонент діелектричної проникності ε_{11} , ε_{33} і ε_{31} кристала GPI; \blacktriangle , \bigstar [5].

Рис. 3: Температурні залежності п'єзоелектричних коефіцієнтів $e_{21} - 1$, $e_{22} - 2$, $e_{23} - 3$, $e_{25} - 4$; а також $d_{21} - 1$, • [6], $d_{22} - 2$, $d_{23} - 3$, • [6], $d_{25} - 4$ кристала GPI.

Рис. 4: Температурні залежності пружних сталих крстала GPI: $c_{11} - 1$, $c_{12} - 2$, $c_{13} - 3$, $c_{22} - 4$, $c_{23} - 5$, $c_{33} - 6$, $c_{15} - 7$, $c_{25} - 8$, $c_{35} - 9$, $c_{55} - 10$, $c_{44} - 11$, $c_{46} - 12$, $c_{66} - 13$; • – експериментальні дані [7]; • – $c_{22} = \rho v_2^2$, [8]; • – $c_{22} = \rho v_2^2$ [9].

Рис. 5: Залежності температур переходу T_c кристала GPI від гідростатичного тиску p_h (крива h), одновісних тисків p_1 (1), p_2 (2), p_3 (3) і різних зсувних напруг σ_4 (4), σ_5 (5), σ_6 (6). • – експериментальні дані [10].

Пружні сталі c_{ij} (рис. 4) кристала GPI визначаються восновному гратковим вкладом і дуже слабо залежать від температури. Вони мають невеликі стрибки в точці T_c при i, j = 1,2,3,5; а при i, j = 4, 6 вони залежать від температури неперервно і мають злам в точці T_c .

Гідростатичний p_h і одновісний тиски p_1 , p_2 , p_3 , понижують температуру фазового переходу T_c кристала GPI, а зсувні напруги σ_j – підвищують T_c (рис. 5,6)

Рис. 6: а) Залежності температур переходу T_c кристала GPI_{1-x}DGPI_x від гідростатичного тиску p_h при різних х: 0.00 – 1; \circ [10]; 0.808 – 2; \blacktriangle [11];

б) Залежності температур переходу T_c кристала GPI_{0.25}DGPI_{0.75} від одновісних тисків p_i (кбар): $p_1 - 1$; $p_2 - 2$; $p_3 - 3$, •; •, • [12].

Як наслідок, відбувається зсув до нижчих чи вищих температур особливих точок (зламів чи піків) температурних залежностей термодинамічних характеристик GPI, зокрема діелектричної проникності ε_{33} (рис. 7, криві *h*, 1, 2, 3).

Рис. 7: Температурні залежності діелектричної проникності ε_{33} кристала GPI при відсутності тисків та зсувних напруг (0), при гідростатичному тиску (крива h), одновісних тисках p_1 (1), p_2 (2), p_3 (3) і різних зсувних напругах σ_4 (4), σ_5 5), σ_6 (6). Величина тисків і напруг – 2 кбар. Символи – експериментальні дані [5](\blacktriangle).

На рис. 8 продемонстровано вплив гідростатичного тиску на температурну залежність оберненої поздовжньої діелектричної проникності. З цих рисунків видно, що поздовжня проникність поблизу точки T_c залежить від температури приблизно за законом Кюрі-Вейса. Одновісні тиски подібно до гідростатичного якісно не міняють температурну залежність діелектричної проникності.

Рис. 8: Температурні залежності оберненої діелектричної проникності $(\mathcal{E}_{22}^{\varepsilon})^{-1}$ кристала GPI (а) при різних значеннях гідростатичного тиску p_h , (кбар): 0.0 - 1, ∇ [13], \triangleright [14], \circ [10]; 0.6 - 2, \circ [10]; 0.9 - 3, \circ [10]; 1.7 - 4, \circ [10]; 3.0 - 5, \circ [10]; 4.0 - 6 та GPI_{0.192}DGPI_{0.808} (б) при різних значеннях гідростатичного тиску p_h , (кбар): 0.0 - 1, 2.0 - 2, 4.0 - 3, 6.0 - 4, $8.0 - 5 \bullet$, ∇ , \blacktriangleleft , \blacksquare [11].

Проте, якісно іншим є вплив зсувних напруг σ_4 і σ_6 в площині XZ. Оскільки під впливом цих напруг підгратки "А" і "В" стають нееквівалентними, то дипольні моменти двох підграток в площині XZ не компенсуються. В результаті виникають компоненти спонтанної поляризації P_1 і P_3 в площині XZ, а криві $\varepsilon_{11}(T)$ і $\varepsilon_{33}(T)$, поводять себе як поздовжня компонента діелектричної проникності (рис. 7, криві 4 і 6).

В другому розділі розраховано динамічні діелектричні характеристики кристала GPI на основі псевдоспінової моделі GPI, описаної в першому розділі, у випадку відсутності електричного поля і зсувних напруг. В цьому випадку зсувні деформації ε_4 . і ε_6 . рівні нулеві. Тоді параметри короткосяжних взаємодій в обох ланцюжках ("A" і "B") однакові, тобто $w_1=w_2=w$. Для дослідження динамічних властивостей кристала GPI використано підхід, який грунтується на ідеях стохастичної моделі Глаубера. В рамках цього підходу отримано систему рівнянь Глаубера для залежних від часу кореляційних функцій:

$$-\alpha \frac{d}{dt} \langle \prod_{f} \sigma_{qf} \rangle = \sum_{f'} \langle \prod_{f} \sigma_{qf} [1 - \sigma_{qf'} \tanh \frac{1}{2} \beta \varepsilon_{qf'}(t)] \rangle, \qquad (10)$$

де параметр *а* визначає часову шкалу динамічних процесів, $\varepsilon_{qf'}(t)$ – локальне поле, що діє на *f*'-ий псевдоспін у *q*-ій комірці; воно є коефіцієнтом при $\sigma_{qf'}/2$ у вихідному гамільтоніані. В наближенні двочастинкового кластера отримуємо замкнуту систему рівнянь для середніх значень псевдоспінів $\eta_f = \langle \sigma_{qf} \rangle$. Розв'язок цієї системи знаходимо у вигляді рівноважного розв'язку і лінійного відгуку системи на зовнішнє змінне поле (механічно затиснутий кристал) $\eta_{1,3} = \tilde{\eta}_{13} + \eta_{1,3t}, \quad \eta_{2,4} = \tilde{\eta}_{24} + \eta_{2,4t}$. Отримані компоненти сприйнятливості складаються з "затравочної" частини і двох релаксаційних мод:

$$\chi_{ii}(\boldsymbol{\omega}) = \chi_{ii}^{0} + \sum_{l=1}^{2} \frac{\chi_{l}^{i}}{1 + i\boldsymbol{\omega}\tau_{l}^{i}}, i = 1, 2, 3 \to x, y, z$$
(11)

де $\chi_{1,2}^{i}$ – статичні вклади в сприйнятливість, а $\tau_{1,2}^{i}$ – часи релаксації. Числові розрахунки показують, що $\chi_{2}^{i} >> \chi_{1}^{i}$, $\tau_{2}^{i} >> \tau_{1}^{i}$.

Для розрахунків використано параметри теорії, визначені в попередньому розділі. Вплив гідростатичного тиску на поздовжній час релаксації проілюстровано на рис. 9, а вплив на динамічну проникність – на частотних залежностях дійсної ε'_{22} і уявної ε''_{22} частин діелектричної проникності при різних відхиленнях температури від точки фазового переходу $\Delta T = T - T_c$ і при різних значеннях гідростатичного тиску p_h (рис. 10).

Рис. 9: Температурні залежності оберненого часу релаксації τ_2^{-1} при різних значеннях гідростатичного тиску p_h , (кбар): 0 - 1,[15]; 1.7 - 2; 3 - 3.

Рис. 10: Частотні залежності дійсної \mathcal{E}'_{22} і уявної \mathcal{E}''_{22} частин діелектричної проникності GPI при різних ΔT (K):1 - 1, \blacksquare [15]; 2 – 2, \blacksquare [15]; 5 – 3, \blacksquare [15] і при різних значеннях гідростатичного тиску p_h , (кбар): 0 - а); 1.7 - b); 3 - с).

При відсутності тиску (криві 1а, 2а, 3а) на кривих $\mathcal{E}'_{22}(v)$ і $\mathcal{E}''_{22}(v)$ існує область дисперсії в діапазоні $10^7 - 10^{10}$ Гц. При наближенні температури до T_c область дисперсії зсувається в бік нижчих частот внаслідок збільшення часу релаксації при наближенні до T_c (рис. 9, крива 1). Гідростатичний тиск p_h понижує температуру T_c і зменшує величину (τ_2^v)⁻¹ при фіксованому ΔT (рис. 9, криві 2, 3) порівняно з (τ_2^v)⁻¹ без тиску. Як наслідок, криві $\mathcal{E}'_{22}(v)$ і $\mathcal{E}''_{22}(v)$ при наявності тиску (криві 1*b*, 2*b*, 3*b*, 1*c*, 2*c*, 3*c*) мають додатковий зсув у бік нижчих частот, який пов'язаний зі збільшенням часу релаксації під дією тиску. Крім того, ці криві йдуть вище, ніж при відсутності тиску внаслідок зростання статичної проникності з тиском.

Поперечні часи релаксації $\tau_2^{x,z}$ на відміну від τ_2^y є скінченими при $T = T_c$. Вони є менші ніж поздовжні і також збільшуються при наближенні до температури фазового переходу. Частотні залежності дійсної і уявної частин поперечної діелектричної проникності $\varepsilon'_{33}(v)$ і $\varepsilon''_{33}(v)$ при різних ΔT якісно подібні до частотних залежностей $\varepsilon_{22}(v)$, але область дисперсії існує при вищих частотах і слабше міняється з температурою. А вплив гідростатичного тиску на частотну залежність $\varepsilon_{33}(v)$ є подібним до впливу цього тиску на поздовжню проникність $\varepsilon_{22}(v)$.

Вплив одновісних тисків на динамічні діелектричні характеристики якісно подібний до впливу гідростатичного тиску, але слабший.

В третьому розділі в рамках псевдоспінової моделі GPI, описаної в першому розділі, досліджено вплив поперечних полів E_1 і E_3 , поздовжнього поля E_2 , а також одночасний вплив полів і зсувних напруг різної симетрії на термодинамічні характеристики кристала GPI та вивчено електрокалоричний (*EK*) ефект в GPI.

Під дією полів E_1 і E_3 при відсутності механічних напруг температура фазового переходу T_c при слабих полях понижується приблизно за квадратичним законом, причому вплив поля E_3 на порядок сильніший, ніж E_1 . Крім того, в полі E_1 або E_3 значно зростають по-перечні компоненти проникності ε_{11} і ε_{33} в сегнетофазі (рис. 11а), а також індукуються компоненти поляризації P_1 і P_3 в площині XZ у всьому температурному діапазоні.

Рис. 11: (а) Температурні залежності діелектричної проникності \mathcal{E}_{33} при різних значеннях напруженості електричного поля E_3 (МВ/м): 0.0 –0, \triangleleft ; 1.0 – 1, \square ; 2.0 – 2, \Diamond ; 3.0 – 3, Δ ; 4.0 – 4, ∇ ; символи – експериментальні дані [16].

(б) Те саме при одночасному прикладанні поля $E_2 = E_3/20$.

Видно, що поблизу температури фазового переходу теоретичні криві $\varepsilon_{33}(T)$ для механічно затиснутого кристала мають згладжений максимум, а в самій точці T_c мають злам. А екпериментальні криві $\varepsilon_{33}(T)$ є згладжені, тобто фазовий перехід є розмитий. Щоб вияснити причину такої поведінки проникності ε_{33} , проведено розрахунок цієї компоненти у припущенні, що поряд із прикладеним полем E_3 виникає ще й внутрішнє поле E_2 . Як виявилося, можна досягнути задовільного опису температурної залежності ε_{33} , якщо покласти E_2 =0.05 E_3 (рис. 11б). Така складова поля E_2 могла б виникати внаслідок неповної реорієнтаційної релаксації груп гліцину (що проявлялося під час вимірювань у гістерезисній поведінці ε_{33}); не можна також виключити, що у процесі експерименту існувала можливість певного відхилення прикладеного поперечного поля від осі ОZ (приблизно 2.86[°]). Поле E_1 впливає на діелектричні характеристики подібно, як і поле E_3 , але на порядок слабше. Слід відзначити, що діелектричну проникність ε_{11} змінюється під дією полів E_1 і E_3 подібно, як і ε_{33} , але на порядок слабше.

Поздовжня проникність ε_{22} механічно затиснутого кристала і поздовжні п'єзоелектричні коефіцієнти e_{2j} при наявності поля E_1 чи E_3 стають скінченними в точці T_c , проте, залишаються великими, а поперечні п'єзоелектричні коефіцієнти e_{1j} і e_{3j} міняють знак в сегнетофазі поблизу температури T_c . Це пов'язано з перекиданням псевдоспінів у підгратці "В" поблизу T_c при наявності поперечного поля.

Вплив поперечних полів на температурні залежності термодинамічних характеристик під дією одночасно зсувної напруги σ_5 якісно не відрізняється від впливу цих полів у відсутності напруг, оскільки напруга σ_5 не змінює симетрію кристала GPI. Вплив поперечного поля E_3 на температурні залежності термодинамічних характеристик GPI при одночасно прикладеній зсувній напрузі σ_4 якісно інший (рис. 12). На цьому рисунку в позначеннях кривих головне число 4 означає напрям прикладеної напруги (σ_4), верхній індекс вказує величину напруги (кбар), а нижній – величину напруженості поля (МВ/м). Оскільки в присутності зсувної напруги σ_4 в сегнетофазі всі компоненти $P_{\alpha} \neq 0$, то прикладене додатково до напруги σ_4 ще й поле E_3 містить складову, паралельну до сумарної поляризації (поздовжню складову $\vec{E}_3^* \parallel \vec{P}$). А поздовжня складова поля призводить до розмивання фазового переходу (криві 4_1^2 , 4_2^2 , $4_4^{0.2}$, 4_4^1 , 4_4^2).

Рис. 12: Температурні залежності поздовжньої P_2 і поперечної P_3 компонент поляризації, оберненої поздовжньої проникності ε_{22}^{-1} , поперечної проникності ε_{33} механічно затиснутого кристала GPI при різних значеннях напруги σ_4 і поля E_3 . • – [3], • – [5].

Ефекти, що мають місце при одночасній дії поля E_3 і напруги σ_4 , можна описати, виходячи також із симетрійних міркувань. Зокрема, під впливом лише напруги σ_4 точкова симетрія кристала GPI у парафазі понижується з C_{2h} до C_i . При цьому зникає вісь симетрії другого порядку, але залишається перетворення інверсії (*I*) і тим самим зберігається фазовий перехід з пара- до сегнетофази. З другого боку, прикладання лише поперечного поля E_3 понижує симетрію з C_{2h} до C_{1h} . При цьому також зникає вісь симетрії другого порядку, але зберігається площина відбивання (*a*,*c*), перпендикулярна до сегнетоелектричної осі; і також зберігається перехід парафаза-сегнетофаза. При прикладанні одночасно поля E_3 і напруги σ_4 зникають і центр симетрії і площина відбивання (*ac*), а фазовий перехід розмивається. Одночасна дія полів і напруг (E_3 , σ_6), (E_1 , σ_4), (E_1 , σ_6) якісно подібна до дії (E_3 , σ_4).

Для теоретичного опису впливу поздовжнього поля на поздовжні діелектричні характеристики потрібно узгодити ефективні дипольні моменти μ_{13}^{y} псевдоспінів у пара- і сегнетофазі. Для цього можна припустити, що ефективний дипольний момент на водневому зв'язку залежить від параметра порядку на цьому зв'язку. Тоді гамільтоніан кристала матиме вигляд:

$$\hat{H} = NU_{seed} + \hat{H}_{short} + \hat{H}_{long} + \hat{H}_E + \hat{H}'_E, \qquad (12)$$

де перші чотири доданки ті самі, що і в виразі (1). Крім того, виникає доданок \hat{H}'_{E} , який враховує залежність поздовжніх компонент дипольних моментів від середніх значень псевдоспінів s_f :

$$\hat{H}'_{E} = -\sum_{qf} s_{f}^{2} \mu'_{f} E_{2} \frac{\sigma_{qf}}{2} = -\sum_{qf} \left(\frac{1}{N} \sum_{q'} \sigma_{q'f} \right)^{2} \mu'_{f} E_{2} \frac{\sigma_{qf}}{2}.$$
(13)

Тут використовуються поправки до дипольних моментів $s_f^2 \mu'_f$ замість $s_f \mu'_f$ з симетрійних міркувань, енергія не має змінитися при зміні знака поля і всіх псевдоспінів на протилежний.

В наближенні двочастинкового кластера отримано дещо модифікований термодинамічний потенціал, диференціюючи який за полем E_2 отримуємо вираз для компоненти поляризації P_2 :

$$P_{2} = e_{21}^{0} \varepsilon_{1} + e_{22}^{0} \varepsilon_{2} + e_{23}^{0} \varepsilon_{3} + e_{25}^{0} \varepsilon_{5} + \chi_{22}^{\varepsilon_{0}} E_{2} + \frac{1}{2\nu} [\mu_{13}^{y}(\eta_{1} + \eta_{3}) - \mu_{24}^{y}(\eta_{2} + \eta_{4})] + \frac{1}{2\nu} \sum_{f=1}^{4} \eta_{f}^{3} \mu_{f}^{\prime}.$$
 (14)

Компоненти тензора ізотермічної діелектричної сприйнятливості механічно затиснутого кристала GPI знаходимо диференціюванням компонент вектора поляризації за компонентами поля при постійній деформації.

Молярна ентропія псевдоспінової підсистеми (де *R* – універсальна газова стала):

$$S = -\frac{N_A}{4} \left(\frac{\partial g}{\partial T}\right)_{\eta, \varepsilon_i} = \frac{R}{4} \{-4\ln 2 + \frac{1}{2} \sum_{f=1}^{4} \ln(1 - \eta_f) + 2\ln Z - \frac{2\beta}{Z} Sp\{H_{2\beta}e^{-\beta H_{sh} + \sum_{f=1}^{y_f - \frac{2g}{2}}}\}, \quad (15)$$

де використані такі позначення:

$$Sp\{...\} = \sum_{\sigma_{q1}=\pm 1} \sum_{\sigma_{q2}=\pm 1} \sum_{\sigma_{q3}=\pm 1} \sum_{\sigma_{q4}=\pm 1} \{...\}, \qquad H_{2\beta} = -H_{sh} + \sum_{f=1}^{4} (\sum_{f'=1}^{4} \frac{J_{ff'}}{4} \eta_{f'} + \frac{1}{2} (\vec{\mu}_{f}\vec{E} + 3\eta_{f}^{2}\mu_{f}'E_{2})) \frac{\sigma_{qf}}{2}.$$

Молярна теплоємність псевдоспінової підсистеми кристала GPI знаходиться чисельним диференціюванням ентропії. Повну теплоємність вважаємо сумою псевдоспінової і граткової складової, яку апроксимуємо прямою:

 $C = \Delta C^{\sigma} + C_0 + C_1 (T - T_c).$

Знаючи поведінку поляризації і теплоємності під дією поля можна розраховувати зміну температури при адіабатичній зміні поля *E*₂ чи *E*₃ за формулою

$$\Delta T = -\int_{0}^{E_{i}} \frac{TV}{C} \left(\frac{\partial P_{i}}{\partial T}\right)_{E_{i}} dE_{i},$$
(16)

<u>4</u> σ

де $V = v N_A / 4$ – молярний об'єм.

Параметри теорії залишаються такими ж як наведено в розділі 1. Лише в сегнетофазі замість у-компоненти дипольного моменту $\mu_{13\,ferro}^y = 3.82 \cdot 10^{-18} \,\mathrm{CFCE} \cdot \mathrm{cm}$ використовуються поправки до ефективних дипольних моментів $\mu_1' = \mu_3' = 0.25 \cdot 10^{-18} \,\mathrm{CFCE} \cdot \mathrm{cm}$ та $\mu_2' = \mu_4' = 0 \,\mathrm{CFCE} \cdot \mathrm{cm}$.

Вплив поздовжнього електричного поля зводиться до розмиття фазового переходу. В результаті, крива $P_2(T)$ стає згладжена (рис. 13, криві 2_2 , 4_2). В позначеннях кривих " a_2 ", " a_3 ", на цих і наступних рисунках число a означає величину поля в MB/м, а індекси 2, 3 – напрям поля (E_2 , E_3).

Поперечне поле E_3 індукує компоненту поляризації P_3 і понижує температуру T_c , як показано на рис. 14. При слабих полях фазовий перехід залишається

переходом другого роду. При цьому температурна залежність $P_2(T)$ якісно подібна, як і у випадку E_3 =0МВ/м (рис. 13, криві 4₃, 5₃).

Рис. 13: Температурні залежності поляризації P_2 кристала GPI при різних значеннях поля E_2 і E_3 . Крива 0, а також символи \circ [3] відповідають нульовому полю.

Рис. 14: Залежність температури T_c кристала GPI від поперечного поля E_3 .

При полях, сильніших ніж деяке критичне $E^{tr} \approx 5.9 \text{ MB/m}$ (трикритична точка), фазовий перехід стає першого роду (штрихова крива на рис. 14). Як наслідок, компоненти поляризації мають стрибок в точці T_c (криві 6₃, 6,5₃, 7₃ на рис. 13).

В поздовжньому електричному полі криві $\mathcal{E}_{22}^{\sigma,\varepsilon}(T)$ є згладжені (рис. 15, криві 1₂, 2₂, 4₂, а також рис. 16).

Рис. 15: Температурні залежності діелектричної проникності механічно вільного $\mathcal{E}_{22}^{\sigma}$ (суцільні криві) і затиснутого $\mathcal{E}_{22}^{\varepsilon}$ (штрихові криві) кристала GPI при різних значеннях напруженості електричного поля E_2 і E_3 ; символи – експериментальні дані [4](\circ), [6] (\Box) при відсутності поля.

Слід відзначити, що криві $\mathcal{E}_{22}^{\sigma}(T)$ на рис. 16, розраховані при напруженостях поля E_2 =20, 30, 40, 70, 120, 170, 220 кВ/м, досить добре узгоджується з експериментальними даними [13], які вимірювались при напруженостях поля E_2 =0, 10, 20, 50, 100, 150, 200 кВ/м. Це вказує на існування в кристалі з роботи [13] внутрішнього поздовжнього поля E_{2in} =20кВ/м. Експериментальні дані [13] для $\mathcal{E}_{22}^{\sigma}(T)$ при відсутності поля є в півтора рази завищені, порівняно із рядом інших робіт. Тому для теоретичного опису даних [13] ми припускаємо, що в цьому зразку GPI параметри μ_{13}^{ν} =4,32·10⁻¹⁸ СГСЕ·см.

Рис. 16: Температурна залежність статичної проникності $\mathcal{E}_{22}^{\sigma}$ кристала GPI при різних значеннях напруженості електричного поля E_2 (MV/m): 0.0 - 1,1; 0.02 - 2,2' \circ ; 0.04 - 3,3' \diamond ; 0.07 - 4,4' \triangleleft ; 0.12 - 5,5' \triangleright ; 0.22 - 6,6' ∇ і залежність проникності $\mathcal{E}_{22}^{\sigma}$ від поля E_2 при різних температурах T (K): 225.3 – $1,\Box$; 225.6 – $2,\circ$; 225.8 – $3,\Delta$; 226.0 – $4,\nabla$; 226.2 – $5,\diamond$; 227.0 – 6; 230.0 – 7. Символи – експериментальні дані [13].

В поперечному полі $E_3 < E^{tr}$ поздовжня діелектрична проникність вільного $\varepsilon_{22}^{\sigma}$ кристала прямує до безмежності в точці T_c (рис. 15, суцільні криві 4₃, 5₃), тоді як $\varepsilon_{22}^{\epsilon}$ є скінченна (рис. 15, штрихові криві 4₃, 5₃), що пов'язано з перекиданням псевдоспінів у підгратці "В" поблизу точки T_c під дією поля E_3 . В ненульовому полі криві $\varepsilon_{22}^{\sigma}(T)$ і $\varepsilon_{22}^{\epsilon}(T)$ не співпадають навіть в парафазі. При полях $E_3 > E^{tr}$ через фазовий перехід першого роду проникності $\varepsilon_{22}^{\sigma,\epsilon}$ стають скінченні і спадають з ростом поля (рис. 15, криві 6₃, 6,5₃, 7₃).

Поперечні діелектричні проникності вільного $\varepsilon_{22}^{\sigma}$ і затиснутого $\varepsilon_{22}^{\varepsilon}$ кристалів при відсутності поля є скінченні і мають злам в точці T_c (рис. 17, суцільна крива 0 і дуже близька до неї штрихова крива 0, відповідно).

Рис. 17: Температурні залежності діелектричної проникності механічно вільного $\mathcal{E}_{33}^{\sigma}$ (суцільні криві) і затиснутого \mathcal{E}_{33}^{e} (штрихові криві) кристала GPI при різних значеннях напруженості електричних полів E_2 і E_3 ; символи \circ – експериментальні дані [5] при відсутності поля.

В параелектричній фазі проникності $\mathcal{E}_{22}^{\sigma}$ і $\mathcal{E}_{22}^{\varepsilon}$ співпадають. В поздовжньому полі криві $\mathcal{E}_{33}^{\sigma}(T)$ стають згладженими (рис. 17, крива 4₂). У випадку же поперечного поля $E_3 < E^{tr}$ поперечні діелектричні проникності $\mathcal{E}_{33}^{\sigma,\varepsilon}$ в сегнетофазі значно зростають порівняно з випадком $E_3=0$, а на кривих $\mathcal{E}_{22}^{\sigma}(T)$ в точці T_c виникає розрив (рис. 17, криві 4₃, 5₃). Таке зростання $\mathcal{E}_{33}^{\sigma,\varepsilon}$ пов'язане з розупорядкуванням псевдоспінів у підгратці "В" під дією поля E_3 . Максимальне значення $\mathcal{E}_{33}^{\sigma,\varepsilon}$ прямує до безмежності при $E_3 \to E^{tr}$. При полях $E_3 > E^{tr}$ фазовий перехід стає першого роду, а проникності $\mathcal{E}_{33}^{\sigma,\varepsilon}$ знову спадають з ростом поля (рис. 17, криві 6₃, 6,5₃, 7₃, 8₃).

Вплив полів E_2 і E_3 на п'єзоелектричні коефіцієнти, пружні сталі, молярну ентропію і теплоємність восновному подібний до впливу на діелектричні характеристики: поле E_2 згладжує криві температурних залежностей цих характеристик поблизу температури T_c , а поле E_3 понижує T_c .

представлено залежність електрокалоричної рис. 18 (EK)зміни Ha температури ΔT від адіабатично прикладеного поздовжнього поля E_2 (зліва) і поперечного Е₃ (справа) при різних початкових температурах (до прикладання поля). При слабих полях (E₂<1MB/м) при початковій температурі T=T_c=225K $\Delta T \sim E_2^{2/3}$ (зелена крива на рис. 18а); при $T < T_c \Delta T \sim E_2$ (сині криві на рис. 18а); при $T > T_c \Delta T \sim E_2^2$ (червоні криві на рис. 18а). При полях $E_2 > 1$ MB/м залежності $\Delta T(E_2)$ відхиляються від згаданих законів. У випадку адіабатичного прикладання поперечного поля E_3 *EK* зміна температури ΔT може бути як додатня, так і від'ємна (рис. 18б). При температурах $T > T_c$ поперечний ЕК ефект якісно подібний до поздовжнього: при слабих полях $\Delta T \sim E_3^2$ (зелена і червоні криві на рис. 18), при сильних полях залежності $\Delta T(E_3)$ відхиляються від квадратичного закону. А при початкових температурах $T < T_c$ при слабих полях $E_3 < E^{tr}$ температура кристала нелінійно понижується з полем (сині криві на рис. 18б). ЕК зміна температури від'ємна. Це пов'язано зі згаданим вище розупорядкуванням псевдоспінів у підгратці "В" під дією поля E_3 . При подальшому посиленні поля ($E_3 > E^{tr}$), як вже було сказано вище, псевдоспіни у підгратці "В" перекидаються і впорядковуються в напрямку поля.

Рис. 18: Залежність ЕК зміни температури ΔT кристала GPI від поля E_2 і E_3 при різних початкових температурах.

В четвертому розділі на основі запропонованих псевдоспінових моделей квазіодновимірних сегнетоелектриків з водневими зв'язками CsH₂PO₄ і моноклінного кристалу RbD₂PO₄, які враховують лінійні за деформаціями гратки ε_1 , ε_2 , ε_3 , і ε_5 внески в енергію псевдоспінової підсистеми, досліджено вплив тисків різної симетрії і електричного поля E_2 на термодинамічні характеристики CsH₂PO₄ та вплив гідростатичного тиску на ці ж характеристики кристала RbD₂PO₄. Модель

кристала CsH₂PO₄ враховує також залежність ефективних дипольних моментів псевдоспінів від параметрів впорядкування $\mu(\eta)$, що дозволяє узгодити ефективні дипольні моменти в сегнето- і парафазі.

В основі моделі цих кристалів лежить система протонів, що рухаються на коротких О-Н...О зв'язках з двомінімумним потенціалом між групами РО₄, які утворюють зигзагоподібні ланцюжки вздовж *b*-осі кристала. Нижче температури фазового переходу протони впорядковуються вздовж ланцюжків. При цьому виникає спонтанна поляризація вздовж *b*-осі, а в кристалі RbD₂PO₄ – підграткова поляризація вздовж *b*-осі (антисегнетофаза). Примітивну комірку CsH₂PO₄ утворюють два ланцюжки (*l*=A, B), а RbD₂PO₄ – чотири (*l*=1,...,4), кожний з яких містить два сусідні тетраедри PO₄ разом з двома короткими водневими зв'язками, що відносяться до одного з них.

Гамільтоніан моделі цих кристалів, аналогічно до (1), складається із "затравної" і псевдоспінової частин. "Затравна" частина:

$$U_{seed} = v\{\frac{1}{2}\sum_{j,j'} c_{jj'}^{E0} \varepsilon_j \varepsilon_{j'} - \sum_j e_{2j}^0 E_2 \varepsilon_i - \frac{1}{2} \chi_{22}^{\varepsilon_0} E_2^2\}, j, j' = 1, 2, 3, 5,$$
(17)

Псевдоспінова частина враховує короткосяжні \hat{H}_{short} взаємодії протонів поблизу тетраедрів PO₄ аналогічно до (3), далекосяжні взаємодії \hat{H}_{long} аналогічно до (5), які враховано в наближенні середнього поля, а також доданок \hat{H}_{E} – взаємодію псевдоспінів з електричним полем E_2 . В гамільтоніані кристала CsH₂PO₄ також враховано доданок \hat{H}'_{E} (формула (13)), який враховує залежність ефективних дипольних моментів від середнього значення оператора псевдоспіна. Симетрія унарних функцій розподілу псевдоспінів у CsH₂PO₄: $\langle \sigma_{q1}^{A} \rangle = \langle \sigma_{q2}^{A} \rangle = \eta_1$, $\langle \sigma_{q1}^{B} \rangle = \langle \sigma_{q2}^{B} \rangle = \eta_2$, а в кристалі RbD₂PO₄: $\langle \sigma_{q1}^{1} \rangle = \langle \sigma_{q2}^{2} \rangle = \eta_a$, $-\langle \sigma_{qf}^{3} \rangle = -\langle \sigma_{qf}^{4} \rangle = \eta_b$ (антисегнетовпорядкування). В наближенні двочастинкового кластера термодинамічний потенціал CsH₂PO₄ в розрахунку на одну примітивну комірку має такий вигляд:

$$g = U_{seed} + v_1(\eta_1^2 + \eta_2^2) + 2v_2\eta_1\eta_2 + 2(\eta_1^3 + \eta_2^3)\mu E_2 + 2k_BT\ln 2 - 2w - v\sum_j\sigma_j\varepsilon_j - \frac{1}{2}\sigma_j\varepsilon_j - \frac{1}{2$$

$$-k_{B}T\ln(1-\eta_{1}^{2})-k_{B}T\ln(1-\eta_{2}^{2})-2k_{B}T\ln D.$$
(18)

А у випадку моноклінного RbD₂PO₄

$$g = U_{seed} + \nu [\eta_a^2 + \eta_b^2] - 2\nu_{ab}\eta_a\eta_b - 4\frac{1}{\beta}\ln 2 - 4w_2 + \nu (\sum_{i=1}^3 p \,\mathcal{E}_i - \sigma_5 \mathcal{E}_5) - \frac{1}{\beta}\ln(1 - \eta_a^2) - \frac{1}{\beta}\ln(1 - \eta_b^2) - 2\frac{1}{\beta}\ln(a_2 + chy_{2a}) - 2\frac{1}{\beta}\ln(a_2 + chy_{2b}).$$
(19)

У випадку прикладання гідростатичного тиску $\sigma_1 = \sigma_2 = \sigma_3 = -p_h$, $\sigma_4 = \sigma_5 = \sigma_6 = 0$. одновісних тисків $\sigma_i = -p_i$, $\sigma_j = 0$.

Константи короткосяжних w, і далекосяжних внутріпідграткових v_1 та міжпідграткових v_2 взаємодій між псевдоспінами в кристалі CsH₂PO₄ (відповідно w_2 , і v, v_{ab} в RbD₂PO₄) розкладаємо в ряд за деформаціями ε_1 , ε_2 , ε_3 і ε_5 .

Параметри порядку η_1 , η_2 (чи η_a , η_b) і деформації ε_j є варіаційними параметрами і визначаються з умови мінімуму термодинамічного потенціалу, на основі якого потім отримано аналітичні вирази для поздовжньої поляризації P_2 , діелектричної сприйнятливості при постійній деформації χ_{22}^{e} , коефіцієнтів п'єзоелектричної напруги e_{21} , пружних сталих за постійного поля c_{il}^{E} , молярну теплоємність.

Параметри короткосяжних і далекосяжних взаємодій лінійно послаблюються під дією гідростатичного чи одновісних тисків. Як наслідок, температури фазового переходу CsH₂PO₄ (рис. 19) і RbD₂PO₄ понижуються. У випадку гідростатичного тиску в CsH₂PO₄ така залежність $T_c(p)$ існує до певного критичного тиску p_c .

Рис. 19: Залежність від одновісних тисків p_1, p_2, p_3 температури переходу T_c , а також віл гідростатичного тиску температури переходу 3 парафази сегнетофазу T_c , в парафази 3 В антисегнетофазу T_N , сегнетофази в 3 антисегнетофазу T_{AF} при різних значеннях електрич-ного поля E₂ (MV/m): 0.0 – 1, 0.1 – 2, 0.2 – 3, 0.3 – 4, 0.4 – 5, 0.5 – 6 для кристалів CsH₂PO₄. Символи експе-риментальні дані [17]. Трикритичні точки T_N^{tr} (позна-чені як *) розділяють криві фазових переходів першого роду (штрихові лінії) і другого роду (суцільні лінії).

При цьому при $p < p_c$ фазовий перехід в точці T_c залишається переходом другого роду, а температурні залежності різних термодинамічних характеристик, зокрема, спонтанної поляризації та статичної діелектричної проникності, якісно не міняються при зміні тиску (рис. 20, криві 1-4).

Рис. 20: Температурна залежність спонтанної поляризації СDP при різних значеннях гідростатичного тиску p,ГПа: 0.0 – 1, 0.1 – 2, 0.25 – 3, 0.3 – 4, 0.317 – 5; (Рис. а) і поздовжньої діелектричної проникності CDP при різних значеннях гідростатичного тиску p,ГПа: 0.0 – 1, 0.1 – 2, 0.25 – 3, 0.3 – 4, 0.4 – 5, 0.45 – 6 (Рис. б). Символи \circ – експериментальні дані [17].

Рис. 21: Температурна залежність діелектричної проникності кристалу RbD₂PO₄ з T_{c2} =315К при різних значеннях гідростатичного тиску p, ГПа: 0.0 – 1, \circ ; 0.153 – 2, \Box ; 0.182 – 3, \diamond ; 0.301 – 4, Δ ; 0.315 – 5, ∇ ; 0.441 – 6, \triangleright ; 0.478 – 7, \triangleleft ; Точки – [18].

При $p > p_c$ міжпідграткові взаємодії стають від'ємними, і замість переходу парафаза-сегнетофаза існує перехід другого роду парафаза-антисегнетофаза. При цьому спонтанна поляризація відсутня, а поздовжня діелектрична проникність $\varepsilon_{22}(T)$

є скінченна і має злам в точці T_N (рис. 206, криві 5,6). При $p \approx p_c$ при пониженні температури спочатку відбувається перехід парафаза-антисегнетофаза, а при нижчій температурі — перехід антисегнетофаза-сегнетофаза. При цьому спонтанна поляризація має стрибок (рис. 20а, крива 5).

В кристалі RbD₂PO₄ має місце перехід парафаза-антисегнетофаза, а вплив гідростатичного тиску на поздовжню діелектричну проникність $\varepsilon_{22}(T)$ (рис. 21) якісно подібний, як в кристалі CsH₂PO₄ при $p > p_c$ (рис. 20б, криві 5,6).

При гідростатичних тисках, менших за критичний, поле E_2 розмиває фазовий перехід в кристалі CsH₂PO₄. Як наслідок, згладжуються криві $\varepsilon_{22}(T)$ (рис. 22, зліва) та інших термодинамічних характеристик. При гідростатичних тисках, більших за критичний, діелектрична проникність в антисегнетофазі зростає порівняно з випадком E_2 =0, що пов'язано з розупорядкуванням підгратки "В" під дією поля E_2 ; а на кривих $\varepsilon_{22}(T)$ в точці T_N виникає розрив (рис. 22, справа).

Рис. 22: Температурна залежність поздовжньої діелектричної проникності CsH_2PO_4 при р=0ГПа і 0.45ГПа при різних значеннях поля E_2 (MV/m): 0.0 – 1, 0.1 – 2, 0.2 – 3, 0.3 – 4, 0.4 – 5, 0.5 – 6. Символи \circ – експериментальні дані [17].

В п'ятому розділі розроблено дві модифікації псевдоспінової моделі деформованого кристала KH_2PO_4 . В першій модифікації врахувано п'єзоелектричний зв'язок псевдоспінової підсистеми з деформацією ε_6 , та залежності параметрів взаємодії від деформацій ε_1 , ε_2 , ε_3 ; і на її основі досліджено вплив гідростатисного тиску на термодинамічні характеристики кристалу KH_2PO_4 .

В цьому кристалі фазовий перехід відбувається в результаті впорядкування протонів на водневих зв'язках з двомінімумним потенціалом, що з'єднують групи PO₄, з одночасним зміщенням іонів К відносно груп H₂PO₄ вздовж *c*-осі. В результаті виникає спонтанна поляризація вздовж *c*-осі. Модельний гамільтоніан має такий вигляд:

$$\hat{H} = NU_{seed} + \hat{H}_{long} + \hat{H}_{short} + \sum_{qf} 2\psi_6 \varepsilon_6 \frac{\sigma_{qf}}{2} - \sum_{qf} \mu_{f3} E_3 \frac{\sigma_{qf}}{2}.$$
(20)

Тут перший доданок – "затравна" енергія граткової підсистеми, яка не залежить від протонної підсистеми, аналогічно до виразу (2):

$$U_{seed} = v \bigg(\frac{1}{2} \sum_{ij} c_{ij}^{E0} \varepsilon_i \varepsilon_j + \frac{1}{2} c_{66}^{E0} \varepsilon_6^2 - \sum_{i=1}^3 e_{3i}^0 E_3 \varepsilon_i - e_{36}^0 E_3 \varepsilon_6 - \frac{1}{2} \chi_{33}^{\varepsilon_0} E_3^2 \bigg).$$
(21)

Доданок \hat{H}_{long} в гамільтоніані (20) аналогічний виразу (5), він описує далекосяжні взаємодії між псевдоспінами, які враховано в наближенні середнього поля. Параметри далекосяжних взаємодій змінюються при гідростатичному тиску внаслідок змін з тиском у дипольних моментах водневих зв'язків, які пропорційні до

віддалі між рівноважними положеннями протона на зв'язку $\delta = \delta_0 + \delta_1 p$, і лінійно залежать від деформацій:

$$J_{ff'}(qq') = J^{0}_{ff'}(qq')[1 + \frac{2\delta_1}{\delta_0}p] + \sum_i \psi^{i}_{ff'}(qq')\mathcal{E}_i.$$

Доданок \hat{H}_{short} в гамільтоніані (20) описує короткосяжні конфігураційні взаємодії псевдоспінів поблизу груп РО₄:

$$\hat{H}_{short} = \sum_{q} \left\{ \left(\frac{\delta_{s6}}{8} \varepsilon_{6} + \frac{\delta_{16}}{4} \varepsilon_{6} \right) (\sigma_{q1} + \sigma_{q2} + \sigma_{q3} + \sigma_{q4}) + \left(\frac{\delta_{s6}}{8} \varepsilon_{6} - \frac{\delta_{16}}{4} \varepsilon_{6} \right) (\sigma_{q1} \sigma_{q2} \sigma_{q3} + \sigma_{q1} \sigma_{q2} \sigma_{q4} + \sigma_{q1} \sigma_{q3} \sigma_{q4} + \sigma_{q2} \sigma_{q3} \sigma_{q4}) + \left(\frac{1}{4} (V + \delta_{a6} \varepsilon_{6}) (\sigma_{q1} \sigma_{q2} + \sigma_{q3} \sigma_{q4}) + \frac{1}{4} (V - \delta_{a6} \varepsilon_{6}) (\sigma_{q2} \sigma_{q3} + \sigma_{q4} \sigma_{q1}) + \frac{1}{4} U (\sigma_{q1} \sigma_{q3} + \sigma_{q2} \sigma_{q4}) + \frac{1}{16} \Phi \sigma_{q1} \sigma_{q2} \sigma_{q3} \sigma_{q4} \right\},$$
(22)

Тут введено позначення

$$V = -\frac{1}{2}w_1, U = \frac{1}{2}w_1 - \varepsilon, \Phi = 4\varepsilon - 8w + 2w_1,$$

де σ_{qf} – оператор *z*-компоненти псевдоспіна, який описує стан протона, що перебуває в *q*-ій комірці на *f*-ому зв'язку ($\sigma_{qf} = \pm 1$), δ_{s6} , δ_{16} , δ_{a6} , – ефективні деформаційні потенціали; ε , *w*, *w*₁ – конфігураційні енергії розширеної моделі Слетера-Такагі (див.[1]) Вони також лінійно залежать від гідростатичного тиску і деформацій гратки:

$$\mathcal{E}=\mathcal{E}^{0}\left[1+\frac{2\delta_{1}}{\delta_{0}}p\right]+\sum_{i}\delta_{1i}\mathcal{E}_{i}, \quad w=w^{0}\left[1+\frac{2\delta_{1}}{\delta_{0}}p\right]+\sum_{i}\delta_{2i}\mathcal{E}_{i}, \quad w_{1}=w_{1}^{0}\left[1+\frac{2\delta_{1}}{\delta_{0}}p\right]+\sum_{i}\delta_{3i}\mathcal{E}_{i}, \quad (23)$$

Тут враховано, що слейтерівські енергії з гідростатичним тиском змінюються в основному внаслідок відповідних змін у віддалі $\delta = \delta_0 + \delta_1 p$ [1].

Четвертий доданок в гамільтоніані (20) – описує взаємодію псевдоспінів з внутрішнім деформаційним полем, а п'ятий доданок – з зовнішнім електричним полем E_3 , де ψ_6 – параметр деформаційного молекулярного поля; $\mu_{f3}=\mu_3$ – ефективний дипольний момент *f*-го водневого зв'язку.

Враховуючи специфіку кристалічної структури сегнетоелектриків типу КН₂РО₄ для розрахунку їх термодинамічного потенціалу використаємо наближення чотиричастинкового кластера. В цьому наближенні в розрахунку на одну примітивну комірку він має вигляд:

$$g = U_{seed} + \frac{2}{\beta} \ln 2 + 2\nu \eta^2 - \frac{2}{\beta} \ln[1 - \eta^2] - \frac{2}{\beta} \ln D - \nu \sigma_6 \varepsilon_6 - \nu \sum_{i=1}^3 \sigma_i \varepsilon_i.$$
(24)

Тут параметр $v = (J_{11} + 2J_{12} + J_{13})/4$ – власне значення матриці $J_{ff'} = \sum_{q'} J_{ff'}(qq')$, яка є

фур'є-образом матриці далекосяжної взаємодії між псевдоспінами; величина *D* – вклад в статистичну суму, який враховує короткосяжні кореляції псевдоспінів в межах чотиричастинкового кластера:

$$D = \cosh(2z + \beta \delta_{s6} \varepsilon_6) + 4b \cosh(z - \beta \delta_{16} \varepsilon_6) + 2a \cosh(\beta \delta_{a6} \varepsilon_6) + d, \qquad (25)$$

де введено позначення

$$z = \frac{1}{2}\ln\frac{1+\eta}{1-\eta} + \beta v\eta - \beta \psi_6 \varepsilon_6 + \frac{\beta \mu_3}{2}E_3, \quad a = e^{-\beta \varepsilon}, \ b = e^{-\beta w}, \ d = e^{-\beta w_1}$$

При прикладанні гідростатичного тиску $\sigma_1 = \sigma_2 = \sigma_3 = -p$, $\sigma_6 = 0$, а у випадку одновісного тиску $\sigma_3 = -p$, $\sigma_1 = \sigma_2 = \sigma_6 = 0$. Параметр порядку η і деформації ε_i , $\varepsilon_6 \in$ варіаційними параметрами і знаходяться з умови мінімуму термодинамічного потенціалу. Знайшовши рівноважний термодинамічний потенціал, отримано вирази для поляризації, ізотермічної діелектричної сприйнятливості механічно затиснутого кристала, ізотермічних коефіцієнтів п'єзоелектричної напруги e_{3i} , e_{36} , ізотермічних пружних сталих при постійному полі.

Числовий розрахунок показує, що температури фазового переходу кристалів $K(H_{1-x}D_x)_2PO_4$ при різних ступенях дейтерування *x* практично лінійно залежать від гідростатичного (рис. 23) та одновісних тисків, а температурна залежність поздовжньої діелектричної проникності при цьому якісно не міняється (рис. 24).

Рис. 23: Залежність від гідростатичного тиску температури переходу T_c з парафази в сегнетофазу для кристалів $K(H_{1-x}D_x)_2PO_4$ при різних x: 0.32 – 1, Δ [19]; 0.84 – 2, \Box [19]; 0.98 – 3, \circ [20].

Рис. 24: Температурні залежності поздовжньої статичної діелектричної проникності кристала $K(H_{0.16}D_{0.84})_2PO_4$ при різних значеннях гідростатичного тиску *p*, ГПа: 0.0 – 1; 0.18 – 2; 0.50 – 3; 1.0 – 4; 1.5 – 5; 2.0 – 6; 2.5 – 7; \Box – [19]. Суцільні лінії – проникність затиснутого, а штрихові – вільного кристала.

В другій модифікації псевдоспінової моделі KH_2PO_4 враховано п'єзоелектричний зв'язок псевдоспінової підсистеми з деформацією ε_6 , та залежності ефективних дипольних моментів псевдоспінів від параметра впорядкування; і на її основі досліджено впливу поздовжнього поля E_3 і зсувної напруги σ_6 на термодинамічні характеристики кристала. В цьому випадку до гамільтоніану (20) треба додати такий доданок:

$$\hat{H}_{E} = -\left(\frac{1}{N}\sum_{q'f'}\frac{\sigma_{q'f'}}{2}\right)^{2}\mu' E_{3}\sum_{qf}\frac{\sigma_{qf}}{2} \approx -12N\mu' E_{3}\eta^{2}\sum_{f=1}^{4}\frac{\sigma_{qf}}{2} + 16N\mu' E_{3}\eta^{3}.$$
(26)

В цій модифікації термодинамічний потенціал має вигляд:

$$g = \frac{v}{2}c_{66}^{E_0}\varepsilon_6^2 - ve_{36}^0\varepsilon_6 E_3 - \frac{v}{2}\chi_{33}^{\varepsilon_0}E_3^2 + 2v_c\eta^2 + 16\mu'E_3\eta^3 + \frac{2}{\beta}\ln 2 - \frac{2}{\beta}\ln[1 - \eta^2] - \frac{2}{\beta}\ln D - v\sigma_6\varepsilon_6.$$
(27)

З термодинамічного потенціалу отримано вирази для поляризації P_3 , діелектричної сприйнятливості механічно затиснутого і вільного кристалів $\chi_{33}^{\varepsilon,\sigma}$, п'єзоелектричних коефіцієнтів e_{36} , d_{36} , псевдоспінового вкладу в молярну ентропію *S* і молярну теплоємність ΔC^{σ} . Повну теплоємність вважаємо сумою псевдоспінової і граткової складової, яку апроксимуємо прямою: $C = \Delta C^{\sigma} + C_0 + C_1(T - T_c)$. Повна ентропія, як функція температури і поля є сумою протонної *S* і граткової складової:

$$S_{total}(T, E) = S + (C_0 - C_1 T_c) \ln(T) + C_1 T + const$$
(28)

Розв'язавши (28) відносно температури при $S_{total}(T, E_3, \sigma_6) = const$ і двох величинах поля і напруги, можна розрахувати електрокалоричний, п'єзокалоричний чи комбінований мультикалоричний ефект:

$$\Delta T = T(S_{total}, E_3(2), \sigma_6(2)) - T(S_{total}, E_3(1), \sigma_6(1)).$$
⁽²⁹⁾

Електричне поле E_3 майже лінійно підвищує температуру T_c , а при полях, більших за критичне E^* , фазовий перехід розмивається, що видно з температурної залежності поляризації сегнетоелектриків $K(H_{1-x}D_x)_2PO_4$ при різних величинах електричного поля (рис. 25). Для $K(H_{1-x}D_x)_2PO_4$ при x=0 $E^*=125B/cm$, а при x=0.89 $E^*=7.1$ кB/cm.

Рис. 25: Температурна залежність поляризації К(H_{1-x}D_x)₂PO₄ при x=0 і різних *E*₃ (MV/m): 0.0 − 1, Δ[21]; 0.581 − 2, ○[22]; 1.250 − 3, □[22]; 2.031 − 4, ◊[22] і при x=0.89 і різних *E*₃ (MV/m): 0.0 − 1; 0.282 − 2, ○[23]; 0.564 − 3, □[23]; 0.71 − 4; 0.846 − 5, ◊[23]; 1.128 − 6,Δ [23].

Отримані залежності електрокалоричної зміни температури кристалів $K(H_{1-x}D_x)_2PO_4$ від адіабатично прикладеного поля показані на рис. 26.

Рис. 26: Польова залежність електрокалоричної зміни температури $K(H_{1-x}D_x)_2PO_4$ для x=0.0 (суцільні лінії 1,2,3) і x=0.89 (штрихові лінії 1',2',3') при $T - T_c^0 = -2.04 \text{ K} - 1,1',\Box;$ $T = T_c^0 - 2,2',\circ;$ $T - T_c^0 = 3.2 \text{ K} - 3,3',\diamond.$ Експериментальні дані взято з [21] – \circ,\Box і [24] – \diamond .

При малих полях розрахована електрокалорична зміна температури зростає полем лінійно при початковій температурі нижче T_c⁰ (криві 1, 1'), і квадратично – вище T_c^0 (криві 2, 2'). Відхилення експериментальних даних від лінійної залежності в сегнетофазі при полях

 $E_3 < 2$ кВ/см може бути пов'язане з наявністю доменів. Домени, орієнтовані за полем, нагріваються, а орієнтовані проти поля — охолоджуються; таким чином, загальна

зміна температури близька до нуля. При великих полях отримані криві відхиляються від лінійної чи квадратичної залежності. П'єзокалорична зміна температури при адіабатичному прикладанні напруги σ_6 залежить від цієї напруги якісно подібно, як електрокалорична зміна температури залежить від поля E_3 .

При одночасному прикладанні електричного поля E_3 і напруги σ_6 виникає

Рис. 27: Температурна за-лежність електрокалоричної зміни температури кристалів KH_2PO_4 при прикладанні електричного поля E_3 (криві 1), напруги σ_6 (криві 2), одночасно поля і напруги (криві 3). мультикалоричний ефект (рис. 27). Він більший, ніж окремо електрокалоричний чи п'єзокалоричний, а далеко від температури Кюрі навіть більший ніж сумарний електрокалоричний + п'єзокалоричний ефект.

В шостому розділі в рамках чотирипідграткової псевдоспінової моделі сегнетової солі (Rs, NaKC₄H₄O₆·4H₂O), яка враховує п'єзоелектричний зв'язок псевдоспінової підсистеми зі зсувними деформаціями ε_4 , ε_5 , ε_6 , досліджено вплив поперечних полів E_2 і E_3 на температури фазових переходів, діелектричні, п'єзоелектричні та пружні властивості Rs.

В цьому кристалі перехід в сегнетофазу виникає внаслідок впорядкування молекул кристалізаційної води разом з іонами калію в одному з двох асиметричних положень рівноваги. Гамільтоніан моделі складається із псевдоспінової частини, де в ролі псевдоспінів є зміщення згаданих вище іонів, а також затравочної частини, яка не залежить від псевдоспінової підсистеми та описує енергію гратки, і яка включає в себе пружну, п'єзоелектричну і діелектричну енергії. Він є узагальненням запропонованого в роботі [25] гамільтоніану шляхом врахування п'єзоелектричного зв'язку псевдоспінової і граткової частини, а також узагальненням гамільтоніану роботи [26] на "тривимірну" модель.

Для розрахунку фізичних характеристик Rs використано термодинамічний потенціал у розрахунку на одну комірку, отриманий у наближенні середнього поля:

$$g = \frac{G}{N} = v \left(\sum_{j=4}^{6} \frac{1}{2} c_{jj}^{E_0} \varepsilon_j^2 - \sum_{i=1}^{3} e_{ii+3}^0 E_i \varepsilon_{i+3} - \sum_{i=1}^{3} \frac{1}{2} \chi_{ii}^{\varepsilon_0} E_i^2 \right) -$$
(30)
$$-4T \ln 2 + \frac{J_1}{2} \varepsilon_j^2 + \frac{J_2}{2} \varepsilon_j^2 + \frac{J_3}{2} \varepsilon_j^2 + \frac{J_4}{2} \sigma_j^2 - k T \sum_{i=1}^{4} \ln \cosh\left(\frac{\beta}{2}H_i\right) - v \sum_{i=1}^{6} \sigma_i \varepsilon_i$$

$$-4T\ln 2 + \frac{J_1}{2}\xi_1^2 + \frac{J_2}{2}\xi_2^2 + \frac{J_3}{2}\xi_3^2 + \frac{J_4}{2}\sigma^2 - k_BT\sum_{f=1}^{2}\ln\cosh\left(\frac{p}{2}H_f\right) - v\sum_{j=4}^{5}\sigma_j\varepsilon_j,$$

У (30) використані наступні позначення:

$$\begin{split} H_{1,4} &= \frac{J}{2} \eta_{1,4} + \frac{K_{12}}{2} \eta_{2,3} + \frac{K_{13}}{2} \eta_{3,2} + \frac{K_{14}}{2} \eta_{4,1} \pm \Delta - 2 \psi_4 \varepsilon_4 - 2 \psi_5 \varepsilon_5 \mp 2 \psi_6 \varepsilon_6 + \mu_1 E_1 + \mu_2 E_2 \pm \mu_3 E_3, \\ H_{2,3} &= \frac{J}{2} \eta_{2,3} + \frac{K_{12}}{2} \eta_{1,4} + \frac{K_{13}}{2} \eta_{4,1} + \frac{K_{14}}{2} \eta_{3,2} \pm \Delta - 2 \psi_4 \varepsilon_4 + 2 \psi_5 \varepsilon_5 \pm 2 \psi_6 \varepsilon_6 \pm \mu_1 E_1 - \mu_2 E_2 \mp \mu_3 E_3, \\ \xi_{1,2} &= \frac{1}{4} (\eta_1 \pm \eta_2 \pm \eta_3 + \eta_4), \quad \xi_3 &= \frac{1}{4} (\eta_1 - \eta_2 + \eta_3 - \eta_4), \quad \sigma = \frac{1}{4} (\eta_1 + \eta_2 - \eta_3 - \eta_4), \\ J_{1,2} &= J \pm K_{12} \pm K_{13} + K_{14}, \quad J_{3,4} = J \mp K_{12} \mp K_{13} - K_{14}. \end{split}$$

На основі термодинамічного потенціала (30) отримано аналітичні вирази для діелектричних, п'єзоелектричних, пружних і теплових характеристик Rs.

Рис. 28: Залежності нижньої (T_{c1}) і верхньої (T_{c2}) температур Кюрі від полів E_2 і E_3 .

Числові розрахунки показують, що поперечне поле E_2 звужує діапазон температур існування сегнетофази (рис. 28), а при деякому критичному значенні поля E_2 сегнетофаза зовсім зникає. Поле E_3 , навпаки, розширює область температур існування сегнетофази. На рис. 29 показані температурні залежності компонент поляризації P_i при різних значеннях полів E_2 і E_3 та обернених компонент статичних діелектричних сприйнятливостей механічно затиснутого і вільного кристалів Rs при різних значеннях поля E_2 .

Рис. 29: Температурна залежність складових поляризації під впливом поля E_2 (зліва) і E_3 (справа)(кВ/см): 1 – 0; 2 – 50; 3 – 100; 4 – 150; 5 – 200 та обернених компонент тензора сприйнятливостей затиснутого і вільного кристалів при різних значеннях напруженості поля E_2 (кВ/см): 1 – 0; 2 – 100; 3 – 200.

В цьому ж розділі також запропоновано модифіковану чотирипідграткову псевдоспінову модель сегнетоелектрика RbHSO₄, яка враховує залежність параметрів взаємодій між псевдоспінами від деформацій гратки. Гамільтоніан моделі у псевдоспіновому представленні має вигляд:

$$\hat{H} = NU_{seed} - \frac{1}{2} \sum_{qq'} \sum_{f,f'=1}^{4} J_{ff'}(qq') \frac{\sigma_{qf}}{2} \frac{\sigma_{q'f'}}{2} - \sum_{q} \sum_{f=1}^{4} (\Delta_f + \vec{\mu}_f \vec{E}) \frac{\sigma_{qf}}{2}.$$
(31)

Доданок U_{seed} в (31) – затравна енергія, яка відповідає гратці важких іонів і явно не залежить від конфігурації псевдоспінової підсистеми. Вона включає в себе пружну, п'єзоелектричну і діелектричну частини. Другий доданок у (31) описує

взаємодії між псевдоспінами; $\sigma_{qf} - z$ -компонента оператора псевдоспіна, який знаходиться в *q*-ій комірці на сульфатній групі (SO₄)_{1f} (*f*=1,2,3,4) і описує два можливих положення сульфатної групи (SO₄)_{1f}. Третій доданок в (31) описує взаємодію псевдоспінів з локальними полями Δ_f і з електричним полем \vec{E} . Параметри $\vec{\mu}_1 = \vec{\mu}_2 = (\mu^x, \mu^y, \mu^z), \ \vec{\mu}_3 = \vec{\mu}_4 = (\mu^x, -\mu^y, \mu^z) - ефективні дипольні моменти в розрахунку на один псевдоспін.$

Фур'є-образи констант взаємодій $J_{ff'} = \sum_{q'} J_{ff'}(qq')$ при *k*=0, а також локальні поля Δ_f лінійно розкладено за деформаціями ε_i :

$$J_{ff'} = J_{ff'}^{0} + \sum_{j} \psi_{ffj} \varepsilon_{j}, \quad \Delta_{f} = \Delta_{f}^{0} + \sum_{j} \varphi_{fj} \varepsilon_{j}.$$
(32)

Для розрахунку термодинамічних характеристик RbHSO₄ використано термодинамічний потенціал у розрахунку на одну комірку, отриманий у наближенні молекулярного поля:

$$g = \frac{G}{N} = U_{seed} + \frac{1}{8} \sum_{ff'} J_{ff'} \eta_f \eta_{f'} - 4 \frac{1}{\beta} \ln 2 - \frac{1}{\beta} \sum_{f=1}^{4} \ln \cosh\left(\frac{\beta}{2}H_f\right) - \nu \sum_{j=1}^{6} \sigma_j \varepsilon_j.$$
 (33)

Тут введено позначення

$$H_f = (\frac{1}{2} \sum_{f'} J_{ff'} \eta_{f'} + \Delta_f + \vec{\mu}_f \vec{E}).$$

Мінімізуючи термодинамічний потенціал (33), знаходимо систему рівнянь для параметрів порядку η_f і деформації ε_j , а також отримуємо компоненти вектора поляризації P_i , компоненти тензора діелектричної сприйнятливості механічно затиснутого $\chi_{ii'}^{\varepsilon}$ і вільного $\chi_{ii'}^{\sigma}$ кристалів, п'єзоелектричні коефіцінти e_{ij} , пружні сталі при постійному полі c_{ij} , псевдоспіновий вклад в молярну ентропію S і в теплоємність ΔC .

Вплив тисків і механічних напруг найбільше проявляється в зміні температури T_c (рис. 30). Температурний хід діелектричної проникності механічно вільного $\mathcal{E}_{33}^{\sigma}$ кристала якісно не міняється при наявності гідростатичного тиску p_h (рис. 31).

Рис. 30: Залежність температури переходу T_c кристала RbHSO₄ від гідростатичного тиску p_h , \circ [27]; від одновісних тисків p_1 , p_2 , p_3 ; і від зсувних напруг σ_4 , σ_5 , σ_6 .

Рис. 31: Температурний хід діелектричної проникності механічно вільного кристала $\mathcal{E}_{33}^{\sigma}$ при наявності гідростатичного тиску p_h (кбар): 0.0 – 1; 3.36 – 2, \circ ; 4.01 – 3, \Box ; 4.79 – 4, Δ ; 5.87 – 5, ∇ ; 6.85 – 6 \triangleright . Символи – експериментальні дані [27].

Вплив поздовжнього електричного поля E_3 зводиться до розмивання фазового переходу. В результаті криві температурних залежностей термодинамічних характеристик, зокрема, діелектричної проникності в зовнішньому полі стають згладженими (рис. 32).

Рис. 32: Температурна залежність оберненої діелектричної проникності механічно вільного $\mathcal{E}_{33}^{\sigma}$ кристала RbHSO₄ при різних значеннях поздовжнього електричного поля E_3 (B/см): 0 – 1, \circ ; 480 – 2, \diamond ; 950 – 3, \Box ; 1900 – 4, Δ ; 2860 – 5, ∇ . Символи – експериментальні дані [28].

Запропонована модель використана для дослідження електрокалоричного ефекту в RbHSO₄, тобто зміни температури ΔT_{ec} кристала при адіабатичному (при постійній ентропії) прикладанні електричного поля. При слабих полях (E_3 <1MB/м) при початковій температурі $T=T_c$ розрахована електрокалорична зміна температури $\Delta T_{ec} \sim E_3^{2/3}$; при $T < T_c \ \Delta T_{ec} \sim E_3$; при $T > T_c \ \Delta T_{ec} \sim E_3^2$. При полях E_3 >1MB/м залежності $\Delta T_{ec}(E_3)$ відхиляються від згаданих законів. Розрахована зміна температури в кристалі RbHSO₄ досить мала $\Delta T_{ec} < 1K$ навіть при E_3 =50MB/м.

ВИСНОВКИ

- 1. В рамках псевдоспінової моделі деформованого сегнетоелектрика з водневими зв'язками GPI встановлено, що гідростатичний і одновісні тиски, а також від'ємна зсувна напруга σ_5 майже лінійно понижують температуру T_c . Температурні залежності термодинамічних характеристик при цьому якісно не міняються, лише слабо зростають за величиною при $\Delta T = T T_c = const$.
- 2. Зсувні напруги σ_4 і σ_6 , прикладені до GPI незалежно від знаку, призводять до нелінійного підвищення температури T_c . Вони якісно не впливають на молярну теплоємність, поздовжні характеристики: спонтанну поляризацію P_2 , діелектричну проникність ε_{22} , п'єзоелектричні коефіцієнти e_{2j} , h_{2j} . В площині XZ виника-ють поперечні компоненти поляризації P_1 і P_3 , а поперечні проникності ε_{11} і ε_{33} стають подібними по характеру поведінки до поздовжньої ε_{22} .
- 3. Встановлено, що динамічна діелектрична проникність GPI при низьких частотах поводиться як статична; при частотах, співмірних з оберненим часом релаксації спостерігається релаксаційна дисперсія; а при високих частотах проявляється лише гратковий вклад в проникність. Область поздовжньої дисперсії в GPI при наближенні температури до точки фазового переходу T_c зсувається до низьких частот, що пов'язано зі зростанням часу релаксації при наближенні до T_c . Область поперечної дисперсії лежить при вищих частотах, ніж поздовжньої і слабо залежить від температури. Гідростатичний та одновісні тиски збільшують час релаксації в кристалі GPI при $\Delta T = T T_c = const$. Це призводить до зсуву області дисперсії до нижчих частот. Динамічні проникності мають монодисперсний характер.

- 4. Прикладання до кристала GPI лише поперечного електричного поля E_1 або E_3 при відсутності механічних напруг понижує температуру T_c за квадратичним законом. При цьому значно зростають поперечні компоненти проникності ε_{11} і ε_{33} в сегнетофазі, а також індукуються компоненти поляризації P_1 і P_3 у всьому температурному діапазоні. А прикладання поля E_1 або E_3 одночасно зі зсувною напругою σ_4 або σ_6 призводить до розмивання фазового переходу.
- 5. Врахування залежності поздовжньої складової ефективних дипольних моментів від параметрів впорядкування призводить до невеликого збільшення спонтанної поляризації кристала GPI поблизу T_c , поздовжньої проникності ε_{22} в сегнетофазі та п'єзоелектричних коефіцієнтів e_{2j} і d_{2j} , але не впливає на поперечну проникність, поздовжню проникність в парафазі, пружні сталі та теплоємність.
- 6. Поздовжнє поле E_2 приводить до розмивання фазового переходу в кристалі GPI. При адіабатично прикладеному слабому полі Е2 електрокалорична зміна температури ΔT лінійно зростає з полем в сегнетофазі, квадратично – в парафазі і за законом $\Delta T \sim E_2^{2/3}$ при при початковій температурі $T=T_c$. В сильному полі залежності $\Delta T(E_2)$ відхиляються від згаданих законів. В поперечному полі E_3 електрокалоричний ефект в парафазі якісно подібний до поздовжнього, тоді як в сегнетофазі він може бути від'ємний. ∐е пов'язано 3 антисегнетовпорядкуванням в площині (*a*,*c*) нижче точки *T*_c.
- 7. На основі псевдоспінової моделі деформованого кристала CsH_2PO_4 показано, що під дією гідростатичного та одновісних тисків послаблюються далекосяжні і короткосяжні (в меншій мірі) взаємодії, внаслідок чого температура T_c понижується; а температурні залежності молярної теплоємності, спонтанної поляризації P_2 , діелектричної проникності ε_{22} , п'єзоелектричних коефіцієнтів e_{2j} при цьому якісно не міняються. Міжпідграткові взаємодії при гідростатичному тиску, більшому за критичний $p > p_c$, стають від'ємними. Як наслідок, виникають переходи парафаза-антисегнетофаза і сегнетофаза-антисегнетофаза. В кристалі RbD₂PO₄ у зв'язку з антисегнетоелектричним впорядкуванням вплив гідростатичного тиску на ε_{22} подібний як в кристалі CsH₂PO₄ вище критичного тиску. Критичний тиск дещо зменшується з температурою. В результаті поблизу критичного тиску при пониженні температури кристал CsH₂PO₄ переходить спочатку з парафази в антисегнетофазу, а потім з антисегнетофази в сегнетофази.
- 8. Поздовжнє поле E_2 збільшує критичний тиск p_c в кристалі CsH₂PO₄ і розмиває фазовий перехід при тисках $p < p_c$. При тисках $p > p_c$ поле E_2 понижує температуру переходу з пара- в антисегнетофазу T_N і збільшує проникність ε_{22} в антисегнетофазі. Це пов'язано з розупорядкуванням псевдоспінів в одній з підграток під дією поля E_2 . Достатньо сильне поле може змінити рід фазового переходу в точці T_N з другого на перший. Найсильніший вплив поля на розраховані характеристики є поблизу критичного тиску.
- 9. В рамках псевдоспінової моделі деформованого сегнетоелектрика типу KH₂PO₄ показано, що при прикладанні гідростатичного та одновісного тисків практично лінійно понижується температура фазового переходу. При цьому температурні залежності діелектричних і п'єзоелектричних характеристик якісно не міняються.
- 10. Врахування залежності ефективного дипольного моменту від параметра впорядкування в рамках псевдоспінової моделі КН₂PO₄ слабо вплинуло на термо-

динамічні характеристики при відсутності електричного поля E_3 , проте дозволило правильно описати розмивання фазового переходу парафаза-сегнетофаза при великих полях E_3 чи при великій зсувній напрузі σ_6 в сегнетоелектриках типу KDP. Встановлено, що зміна температури при адіабатичному прикладанні поля E_3 чи напруги σ_6 до кристала KDP може сягати кілька гадусів в сильних полях чи напругах. П'єзокалоричний ефект якісно подібний до електрокалоричного.

- 11. В рамках чотирипідграткової псевдоспінової моделі сегнетової солі, яка враховує п'єзоелектричний зв'язок псевдоспінової підсистеми зі зсувними деформаціями ε_4 , ε_5 , ε_6 , показано, що під дією поперечного поля E_2 область сегнетофази звужується і при полях, більших за деяке критичне, зникає. При збільшенні поля E_2 спонтанна поляризація P_s і спонтанна деформація ε_4 зменшуються, індукуються компонента поляризації P_2 і деформації ε_5 при всіх температурах, а також компонента поляризації P_3 і деформації ε_6 в сегнетофазі. Обернені поздов-жні сприйнятливості затиснутого і вільного кристалів ($\chi_{11}^{e,\sigma}$)⁻¹ якісно не міняються. З ростом поля E_2 в точках T_{c1} і T_{c2} поперечна компонента (χ_{22}^{σ})⁻¹ має розрив а (χ_{33}^{σ})⁻¹ зануляється. Поле E_3 , навпаки, приводить до розширення сегнетоелектричної фази в сегнетовій солі. При цьому залежності температур фазових переходів T_{c1} і T_{c2} від полів E_2 і E_3 мають квадратичний характер. Вплив поля E_3 на компоненти поляризації P_1 , P_2 , P_3 і на компоненти сприйнятливості ($\chi_{11}^{e,\sigma}$)⁻¹, ($\chi_{22}^{e,\sigma}$)⁻¹ і ($\chi_{23}^{e,\sigma}$)⁻¹ якісно подібний до впливу поля E_2 на компоненти P_1 , P_3 , P_2 , ($\chi_{11}^{e,\sigma}$)⁻¹, ($\chi_{22}^{e,\sigma}$)⁻¹ і с
- 12. На основі псевдоспінової моделі деформованого кристала RbHSO₄ встановлено, що температура T_c має лінійно зростаючу залежність від гідростатичного p_h та одновісних p_2 , p_3 тисків, а також від зсувної напруги σ_5 . При цьому фазовий перехід залишається переходом другого роду, а температурні залежності різних термодинамічних характеристик якісно не міняються. Одновісний тиск p_1 лінійно понижує T_c . Починаючи з деякого критичного тиску p_1^{cr} перехід стає переходом першого роду. Зсувна напруга σ_6 нелінійно понижує температуру T_c , а напруга σ_4 не впливає на T_c . Поле E_3 розмиває фазовий перехід в RbHSO₄. При адіабатичному прикладанні слабкого поля E_3 електрокалорична зміна температури ΔT_{ec} лінійно зростає з полем в сегнетофазі, квадратично в парафазі і за законом $\Delta T_{ec} \sim E_3^{2/3}$ при $T = T_c$. В сильному полі залежності $\Delta T_{ec}(E_3)$ відхиляються від згаданих законів.

СПИСОК ЦИТОВАНОЇ ЛІТЕРАТУРИ

- [1] І.В. Стасюк, Р.Р. Левицький, А.П. Моїна, О.Г. Сливка, О.В. Величко. Польові та деформаційні ефекти у складних сегнетоактивних сполуках. Ужгород: Гражда,. 392с.(2009)
- [2] І.В. Стасюк, Р.Р. Левицький, А.П. Моїна, О.В. Величко, Укр. фіз. журн. 4, №1, 3-63, (2008).

- [3] J. Nayeem, T. Kikuta, N. Nakatani, F. Matsui, S.-N. Takeda, K. Ha. Ferroelectrics, 332, 13 (2006)
- [4] J. Nayeem, H. Wakabayashi, T. Kikuta, T. Yamazaki, N. Nakatani. *Ferroelectrics*, 269, 153 (2002)
- [5] S. Dacko, Z. Czapla, J. Baran, M. Drozd. Physics Letters A 223, 217 (1996)
- [6] M. Wiesner. *Phys.stat. sol* (b) **238**, 68 (2003)
- [7] A. Deepthy, H.L. Bhat, A.V. Alex, J. Philip. Phys. Rev. B, 62, 8752 (2000)
- [8] K. Lapsa, M. Drozdowski, P. Ziobrowski L. Szczepanska. Ferroelectrics, 239, 87 (2000)
- [9] J. Furtak, Z. Czapla, and A.V. Kityk. *Zeitschrift für Naturforschung A*, **52**, No.11, 778 (1997)
- [10] N. Yasuda, T. Sakurai, Z. Czapla. J. Phys.: Condens Matter 9, L347 (1997)
- [11] N. Yasuda, A. Kaneda, Z. Czapla. J. Phys.: Condens Matter 9, L447 (1997)
- [12] T. Kikuta, Y. Takemoto, T. Yamazaki, N. Nakatani. Ferroelectrics 302, 99 (2004)
- [13] R. Tchukvinskyi, R. Cach, Z. Czapla, S. Dacko. Phys.stat. sol (a) 165, 309 (1998)
- [14] J. Baran, G. Bator, R. Jakubas, M. Sledz. J. Phys.: Condens. Matter 8, 10647 (1996)
- [15] R. Tchukvinskyi, Z. Czapla, R. Sobiestianskas, A. Brilingas, J. Grigas, J. Baran. Acta Phys. Polonica A, 1997, 92, 1191-1196.
- [16] I. Stasyuk, Z. Czapla, S. Dacko, O. Velychko. J. Phys.: Condens. Matter 16, 1963 (2004)
- [17] N. Yasuda, M. Okamoto, H. Shimizu, S. Fujimoto, K. Yoshino, Y. Inuishi Y., Phys. Rev. Lett., 41, 1311, (1978).
- [18] Gesi K., Ozawa K., Osaka T., Makita Y. J.Phys.Soc.Jap., v.52, p.2538-2543 (1983)
- [19] G.A. Samara, Ferroelectrics, 22, 925, (1979).
- [20] С.Г. Жуков, В.А. Кульбачинский, П.С. Смирнов, Б.А. Струков, С.М. Чудинов, Изв. АН СССР, сер.физ., **49**, 255, (1985).
- [21] G.G. Wiseman, IEEE Transactions on Electron Devices, 16, 588 (1969)
- [22] Chabin M., Gilletta F., Ferroelectrics, **15**, 149 (1977)
- [23] E.V. Sidnenko and V.V. Gladkii, Kristallografiya, 17, 978 (1972) [Sov. Phys. Crystallogr. 17, 861 (1973)]
- [24] Shimshoni M. Harnik E., J. Phys. Chem.Solids., **31**, 1416 (1969)
- [25] Stasyuk I.V., Velychko O.V., Ferroelectrics, **316**, 51 (2005)
- [26] Levitskii R.R., Zachek I.R., Verkholyak T.M., Moina A.P., Phys. Rev. B, 67, No. 17, 174112 (2003)
- [27] K. Gesi, K. Ozawa, J. Phys. Soc. Jap. 38, 459 (1975)
- [28] E. Nakamura, H. Kajikawa J. Phys. Soc. Jap. 44, 519 (1978);

Результати дисертації опубліковано в таких роботах

 The effect of transverse electric fields on dielectric, piezoelectric, elastic and thermal properties of the Rochelle salt NaKC₄H₄O₆·4H₂O / R. R. Levitskii, I. R. Zachek, A. S. Vdovych, I. V. Stasyuk // *Condens. Matter Phys.* — 2009. — Vol. 12, no. 2. — P. 295–317.

- Левицький, Р. Р. Вплив гідростатичного тиску на фазові переходи та термодинамічні характеристики квазіодновимірних сегнетоелектриків типу CsH₂PO₄ / P. P. Левицький, І. Р. Зачек, А. С. Вдович // Журн. фіз. досл. — 2012. — Т. 16, № 4. — С. 4702: 1–11.
- 3. Zachek, I. Dielectric properties of monoclinic RbD₂PO₄. The influence of hydrostatic pressure / I. Zachek, R. Levitskii, A. Vdovych // Ferroelectrics. 2013. Vol. 444, no. 1. P. 67–75.
- 4. Левицький, Р. Р. Діелектрині властивості моноклінного RbD₂PO₄ / Р. Р. Левицький, І. Р. Зачек, А. С. Вдович // Фізика і хімія твердого тіла. 2013. Т. 14, № 3. С. 513–518.
- 5. Вплив п'єзоелектричного зв'язку на деформаційні ефекти у сегнетоелектриках К(H_{1-*x*}D_{*x*})₂PO₄ / Р. Р. Левицький, І. Р. Зачек, А. С. Вдович, І. В. Стасюк // Журн. фіз. досл. — 2013. — Т. 17, № 4. — С. 4703: 1–12.
- 6. Electrocaloric effect in KH₂PO₄ family crystals / A. S. Vdovych, A. P. Moina, R. R. Levitskii, I. R. Zachek // *Condens. Matter Phys.* 2014. Vol. 17, no. 4. P. 43703: 1–10.
- Зачек, І. Р. Вплив гідростатичного тиску p_h і напруги зсуву σ₅ на фазові переходи та термодинамічні характеристики сегнетоелектрика RbHSO₄ / І. Р. Зачек, Р. Р. Левицький, А. С. Вдович // Журн. фіз. досл. — 2015. — Т. 19, № 3. — С. 3703: 1–9.
- 8. Piezocaloric and multicaloric effect in the KH₂PO₄ type ferroelectrics / A. S. Vdovych, A. P. Moina, R. R. Levitskii, I. R. Zachek // *Ferroelectrics.* 2016. Vol. 501, no. 1. P. 83–90.
- Thermodynamic properties of ferroelectric NH₃CH₂COOH·H₂PO₃ crystal / I. R. Zachek, Ya. Shchur, R. R. Levitskii, A. S. Vdovych // *Physica B.* — 2017. — Vol. 520. — P. 164–173.
- Influence of electric fields on dielectric properties of GPI ferroelectric / I. R. Zachek, R. R. Levitskii, A. S. Vdovych, I. V. Stasyuk // Condens. Matter Phys. — 2017. — Vol. 20, no. 2. — P. 23706: 1–17.
- 11. Зачек, І. Р. Вплив гідростатичного тиску на релаксацію квазіодновимірного сегнетоелектрика GPI / І. Р. Зачек, Р. Р. Левицький, А. С. Вдович // Фізика і хімія твердого тіла. 2017. Т. 18, № 2. С. 236–242.
- Zachek, I. R. The effect of hydrostatic pressure on thermodynamic characteristics of NH₃CH₂COOH·H₂PO₃ type ferroelectric materials / I. R. Zachek, R. R. Levitskii, A. S. Vdovych // Condens. Matter Phys. 2017. Vol. 20, no. 4. P. 43707: 1–14.
- Zachek, I. R. The influence of uniaxial pressures on thermodynamic properties of the GPI ferroelectric / I. R. Zachek, R. R. Levitskii, A. S. Vdovych // J. Phys. Stud. — 2017. — Vol. 21, no. 1/2. — P. 1704: 1–12.
- Zachek, I. R. Influence of uniaxial pressures on dynamic properties of NH₃CH₂COOH·H₂PO₃ ferroelectric / I. R. Zachek, R. R. Levitskii, A. S. Vdovych // J. Phys. Stud. — 2018. — Vol. 22, no. 2. — P. 2702: 1–12.
- Vdovych, A. S. Influence of longitudinal electric field on thermodynamic properties of NH₃CH₂COOH·H₂PO₃ ferroelectric / A. S. Vdovych, I. R. Zachek, R. R. Levitskii // Ukr. J. Phys. — 2018. — Vol. 63, no. 4. — P. 350–361.

- 16. Dynamic properties of NH₃CH₂COOH·H₂PO₃ ferroelectric / I. R. Zachek, R. R. Levitskii, A. S. Vdovych, O. B. Bilenka // Condens. Matter Phys. — 2018. — Vol. 21, no. 1. — P. 13704: 1–13.
- 17. Zachek, I. R. Deformation effects in glycinium phosphite ferroelectric / I. R. Zachek, R. R. Levitskii, A. S. Vdovych // Condens. Matter Phys. 2018. Vol. 21, no. 3. P. 33702: 1–17.
- Vdovych, A. S. Calculation of transverse piezoelectric characteristics of quasi-onedimensional glycine phosphite ferroelectric / A. S. Vdovych, I. R. Zachek, R. R. Levitskii // Math. Model. Comput. — 2018. — Vol. 5, no. 2. — P. 242–252.
- 19. Field-deformational effects in GPI ferroelectric materials / A. S. Vdovych, I. R. Zachek, R. R. Levitskii, I. V. Stasyuk // *Phase Transitions.* 2019. Vol. 92, no. 5. P. 430–439.
- Vdovych, A. S. Effect of stresses σ₅, σ₆ and electric field E₃ on thermodynamic characteristics of GPI ferroelectric / A. S. Vdovych, R. R. Levitskii, I. R. Zachek // J. Phys. Stud. 2019. Vol. 23, no. 3. P. 3702: 1–8.
- Vdovych, A. S. Effect of hydrostatic pressure and longitudinal electric field on phase transitions and thermodynamic characteristics of quasione-dimensional CsH₂PO₄ ferroelectric / A. S. Vdovych, I. R. Zachek, R. R. Levitskii // Condens. Matter Phys. 2020. Vol. 23, no. 3. P. 33702: 1–16.
- 22. Vdovych, A. S. Field and deformation effects in RbHSO₄ ferroelectric / A. S. Vdovych, R. R. Levitskii, I. R. Zachek // J. Phys. Stud. 2020. Vol. 24, no. 2. P. 2702: 1–13.
- Левицький, Р. Р. Вплив поперечних електричних полів на діелектричні, п'єзоелектричні, пружні і теплові властивості сегнетової солі / Р. Р. Левицький, І. Р. Зачек, А. С. Вдович. — Львів: Ін-т фіз. конденс. систем., 2009. — 57 с. — (Препр./НАН України. Ін-т фіз. конденс. систем.; ICMP-09-02U).
- 24. *Вдович, А. С.* Деформаційні і польові ефекти в сегнетоелектрику фосфіт гліцину / А. С. Вдович, Р. Р. Левицький, І. Р. Зачек. Львів: Ін-т фіз. конденс. систем., 2020. 146 с. (Препр./НАН України. Ін-т фіз. конденс. систем.; ICMP-20-05U).
- 25. Вдович, А. С. Вплив одновісних, гідростатичного тисків та поздовжнього електричного поля на фазові переходи та термодинамічні характеристики квазіодновимірного сегнетоелектрика CsH₂PO₄ / А. С. Вдович, Р. Р. Левицький, І. Р. Зачек. Львів: Ін-т фіз. конденс. систем., 2020. 26 с. (Препр./НАН України. Ін-т фіз. конденс. систем.; ICMP-20-11U).
- 26. Electrocaloric effect in KH₂PO₄ / A. S. Vdovych, A. P. Moina, R. R. Levitskii, I. R. Zachek. 2014. 15 p. arXiv: 1405.1327v1.
- Levitsky, R. R. Influence of transverse electric fields on physical properties of the Rochelle salt NaKC₄H₄O₆·4H₂O / R. R. Levitsky, I. R. Zachek, A. S. Vdovych // Statistical Physics: Modern Trends and Applications, Lviv, Ukraine, June 23-25, 2009: Programme and abstracts. — Lviv: 2009. — P. 183.
- 28. Zachek, I. R. Dielectric properties of monoclinic RbD₂PO₄. The effect of hydrostatic pressure / I. R. Zachek, A. S. Vdovych, R. R. Levitsky // The Seventh International Seminar on Ferroelastic Physics, September 10 13, 2012, Voronezh, Russia: Book

of abstracts. — Voronezh: 2012. — P. 147.

- Electrocaloric effect in KH₂PO₄ / A. S. Vdovych, A. P. Moina, R. R. Levitsky, I. R. Zachek // III Polish–Lithuanian– Ukrainian Meeting on Ferroelectrics Physics, 31 August–4 September, 2014, Wroslaw, Poland: Book of abstracts. — Wroslaw: 2014. — P. 5.
- 30. Electrocaloric and Piezocaloric Effect in KH₂PO₄ Type Ferroelectrics / A. S. Vdovych, A. P. Moina, R. R. Levitsky, I. R. Zachek // The Eighth International Seminar on Ferroelastic Physics, 14-16 September, 2015, Voronezh, Russia: Abstract book. — Voronezh: 2015. — P. 84.
- Electrocaloric and Piezocaloric Effect in KH₂PO₄ Type Ferroelectrics / A. S. Vdovych, A. P. Moina, R. R. Levitsky, I. R. Zachek // 5th Seminar "Properties of ferroelectric and superionic systems", 26 – 27 October, 2015, Uzhhorod, Ukraine. — Uzhhorod: 2015. — P. 7–8.
- Thermodynamic properties of ferroelectric Glycine Phosphite / I. R. Zachek, R. R. Levitskii, Ya. Y. Shchur, A. S. Vdovych // 6th Seminar "Properties of ferroelectric and superionic systems", 17 – 18 October, 2016, Uzhhorod, Ukraine: Program and abstracts. — Uzhhorod: 2016. — P. 10–11.
- 33. Transverse field effect in GPI ferroelectrics / I. R. Zachek, R. R. Levitskii, A. S. Vdovych, I. V. Stasyuk // 7th Seminar "Properties of ferroelectric and superionic systems", 24 April, 2017, Uzhhorod, Ukraine: Program and abstracts. — Uzhhorod: 2017. — P. 9–10.
- 34. Transverse field effect in GPI ferroelectrics: microscopic consideration / I. R. Zachek, R. R. Levitskii, A. S. Vdovych, I. V. Stasyuk // International Conference on Oxide Materials for Electronic Engineering – fabrication, properties and applications "OMEE-2017", May 29 – June 2, 2017, Lviv, Ukraine: Book of Abstracts. — Lviv: 2017. — P. 200.
- 35. Thermodynamic properties of ferroelectric Glycine Phosphite / I. R. Zachek, R. R. Levitskii, Ya. Y. Shchur, A. S. Vdovych // International Conference on Oxide Materials for Electronic Engineering fabrication, properties and applications "OMEE-2017", May 29 June 2, 2017, Lviv, Ukraine: Book of Abstracts. Lviv: 2017. P. 217.
- 36. Zachek, I. R. Effect of hydrostatic pressure on thermodynamic properties of ferroelectric GPI / I. R. Zachek, R. R. Levitskii, A. S. Vdovych // International Conference on Oxide Materials for Electronic Engineering – fabrication, properties and applications "OMEE-2017", May 29 – June 2, 2017, Lviv, Ukraine: Book of Abstracts. — Lviv: 2017. — P. 218.
- 37. Relaxation dielectric properties of GPI crystal / I. R. Zachek, R. R. Levitskii, A. S. Vdovych, O. B. Bilenka // International Conference on Oxide Materials for Electronic Engineering – fabrication, properties and applications "OMEE-2017", May 29 – June 2, 2017, Lviv, Ukraine: Book of Abstracts. — Lviv: 2017. — P. 219.
- 38. Influence of shear stresses and electric field E₃ on thermodynamic characteristics of GPI ferroelectric / I. R. Zachek, R. R. Levitskii, A. S. Vdovych, I. V. Stasyuk // V Ukrainian-Polish-Lithuanian Meeting on Physics of Ferroelectrics, 18-20 September, 2018, Uzhhorod, Ukraine: Programme & Abstract. Uzhhorod: 2018. P. 34.

- Vdovych, A. S. Effect of mechanical stresses on thermodynamic characteristics of ferroelectric glycine phosphite / A. S. Vdovych, I. R. Zachek, R. R. Levitskii // V Ukrainian-Polish-Lithuanian Meeting on Physics of Ferroelectrics, 18-20 September, 2018, Uzhhorod, Ukraine: Programme & Abstract. Uzhhorod: 2018. P. 43.
- Левицький, Р. Р. Деформаційні і польові ефекти в сегнетоелектрику фосфіт гліцину / Р. Р. Левицький, А. С. Вдович, І. Р. Зачек // Програма і тези доповідей "Різдвяні дискусії 2019", Львів, 10–11 січня 2019 р. — Львів: 2019. — С. 10. — [J. Phys. Stud. 2019. Vol. 23, no. 1. С. 1998–1].
- Vdovych, A. S. Effect of hydrostatic pressure and longitudinal electric field on dielectric properties of CDP ferroelectric / A. S. Vdovych, I. R. Zachek, R. R. Levitskii // The 5-th Conference "Statistical Physics: Modern Trends and Applications". July 3–6, 2019 Lviv, Ukraine: Programme of abstracts. — Lviv: 2019. — P. 165.
- Vdovych, A. S. Effect of hydrostatic pressure and longitudinal electric field on dielectric properties of CDP ferroelectric / A. S. Vdovych, I. R. Zachek, R. R. Levitskii // VIII International seminar "Properties of ferroelectric and superionic systems", 29 – 30 October, 2019, Uzhhorod, Ukraine: Programme and abstracts. — Uzhhorod: 2019. — P. 13–14.

АНОТАЦІЯ

Вдович А.С. Вплив електричних полів і механічних напруг на фізичні властивості сегнетоактивних сполук типу лад-безлад. – На правах рукопису.

Дисертація на здобуття наукового ступеня доктора фізико-математичних наук за спеціальністю 01.04.07 — фізика твердого тіла. — Інститут фізики конденсованих систем Національної академії наук України, Львів, 2021.

Дисертаційна робота стосується досліджень в рамках запропонованих псевдоспінових моделей деформованих кристалів фосфіту гліцину (GPI), CsH₂PO₄, RbD₂PO₄, RbHSO₄ і сегнетової солі впливу механічних напруг та зовнішніх полів різної симетрії на їх термодинамічні, а в GPI і динамічні характеристики. Розрахунки фізичних характеристик KH_2PO_4 проведено в наближенні чотиричастинкового, а GPI, CsH₂PO₄ і RbD₂PO₄ – в наближенні двочастинкового кластера; для RbHSO₄ і сегнетової солі використано наближення молекулярного поля. Порівнюючи розраховані фізичні характеристики цих кристалів з відповідними експериментальними даними, отримано для них оптимальний набір модельних параметрів, які забезпечують задовільне узгодження отриманих теоретичних результатів з наявними експериментальними даними. Розраховано електрокалоричний ефект в кристалах GPI, KH₂PO₄ та RbHSO₄, а також п'єзокалоричний ефект в GPI може бути від'ємним.

Ключові слова: псевдоспінова модель, кластерне наближення, діелектрична проникність, п'єзоелектричні коефіцієнти, вплив електричного поля, вплив тиску, електрокалоричний ефект.

АННОТАЦИЯ

Вдовыч А.С. Влияние электрических полей и механических напряжений на физические свойства сегнетоактивных соединений типа порядокбеспорядок. – На правах рукописи.

Диссертация на соискание научной степени доктора физикоматематических наук по специальности 01.04.07 – физика твердого тела. – Институт физики конденсированных систем Национальной академии наук Украины, Львов, 2021.

Диссертационная работа касается исследований в рамках предложенных псевдоспиновых моделей деформированных кристаллов фосфита глицина (GPI), CsH₂PO₄, RbD₂PO₄, KH₂PO₄, RbHSO₄ и сегнетовой соли влияния механических напряжений и внешних полей различной симметрии на их термодинамические, а в GPI и динамические характеристики. Расчеты физических характеристик KH₂PO₄ проведено в приближении четырехчастичного, а GPI, CsH₂PO₄ и RbD₂PO₄ – в приближении двухчастичного кластера; для **RbHSO**₄ сегнетовой И соли приближение использовано молекулярного Сравнивая рассчитанные поля. физические характеристики этих кристаллов с соответствующими экспериментальными данными, получено для них оптимальный набор модельных параметров, которые обеспечивают удовлетворительное согласие полученных теоретических результатов с имеющимися экспериментальными данными. Рассчитано електрокалорический эффект в кристаллах GPI, KH₂PO₄ и RbHSO₄, а также пьезокалорический эффект в КН₂РО₄. Установлено, что в поперечном поле електрокалорический эффект в GPI может быть отрицательным.

Ключевые слова: псевдоспиновая модель, кластерное приближение, диэлектрическая проницаемость, пьезоэлектрические коэффициенты, влияние электрического поля, влияние давления, електрокалоричний эффект.

ABSTRACT

Vdovych A.S. Influence of electric fields and mechanical stresses on physical properties of the order-disorder type ferroelectric compounds. – Manuscript.

Thesis for the Degree of Doctor of Sciences in Physics and Mathematics on the speciality 01.04.07 "Solid-state Physics". – Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, Lviv, 2021.

Investigations of the effect of hydrostatic and uniaxial pressures, shear stresses and electric fields are a very important instrument for obtaining valuable information about the behavior of physical characteristics of ferroelectric materials, especially with a complex structure of effective dipole moments.

In the thesis there are carried out complex fundamental studies of the effect of mechanical stresses and external electric fields of different symmetry on physical characteristics of the ferroelectric crystals glycinium phosphite (GPI), CsH_2PO_4 , RbD_2PO_4 , KH_2PO_4 , $RbHSO_4$, and Rochelle salt within the proposed pseudospin models of deformed corresponding crystals. The calculations of physical characteristics of KH_2PO_4 are carried out in four-particle cluster approximation, of quasione-dimensional crystals GPI, CsH_2PO_4 , and RbD_2PO_4 – in two-particle cluster approximation; and for $RbHSO_4$ and Rochelle salt a mean-field approximation is used. Comparing the calculated physical

characteristics of these crystals with corresponding experimental data it is obtained the optimal set of parameters for these crystals, which ensures satisfactory agreement of the obtained theoretical results with available experimental data.

It is shown that the phase transition temperature T_c lowers under influence of hydrostatic p_h and uniaxial pressures p_1 , p_2 , p_3 in the crystals GPI, CsH₂PO₄, p_h and p_3 – in K(H_{1-x}D_x)₂PO₄, p_h – in RbD₂PO₄, p_1 – in RbHSO₄. However, the pressures p_h , p_2 , p_3 , as well as shear stress σ_5 linearly increase the transition temperature T_c in RbHSO₄. At that the temperature dependences of dielectric, piezoelectric, elastic and thermal characteristics qualitatively do not change. The crystal CsH₂PO₄, has such peculiarity, that at the values of pressure p_h , larger than some critical value p_{cr} , there takes place a phase transition to antiferroelectric phase.

Shear stresses σ_4 and σ_6 at the absence of electric field decrease the symmetry of GPI crystal and independently on their sign nonlinearly increase T_c . At that transverse permittivities ε_{11} and ε_{33} go to infinity at the T_c point. In the other special case, when the only transverse field E_1 or E_3 is applied to GPI at $\sigma_4=\sigma_6=0$, the temperature T_c lowers almost by quadratic law, and the permittivities ε_{11} and ε_{33} noticeably increase in the ferroelectric phase. Application of the field E_1 or E_3 simultaneously with the stress σ_4 or σ_6 leads to smearing of the phase transition. In the crystal RbHSO₄, in cotrast to GPI, the shear stress σ_6 nonlinearly lowers T_c .

Within the Glauber method, the effect of hydrostatic and uniaxial pressures on dynamic dielectric characteristics of GPI is investigated. It is shown that the pressures increase relaxation times and shift the region of dispersion to lower frequencies. At that, the temperature and frequency dependences of dielectric permittivity qualitatively do not change.

Taking into account of dependence of longitudinal effective dipole moment on order parameter let us agree the effective dipole moments in the ferroelectric and paraelectric phases and to describe correctly smearing of the phase transition in the longitudinal field E_2 in GPI and CsH₂PO₄ or at strong enough longitudinal field E_3 in the KH₂PO₄ type crystal. Longitudinal field E_2 increases the critical hydrostatic pressure p_{cr} in CsH₂PO₄ and lowers the paraelectric-antiferroelectric phase transition temperature.

Electrocaloric effect in the crystals GPI, KH₂PO₄ and RbHSO₄ is calculated, as well as piezocaloric effect in KH₂PO₄. The theory predicts the values of the electrocaloric or piezocaloric temperature change of a few kelvins in high fields in KH₂PO₄. It is discovered that the electrocaloric effect in GPI under transverse electric field may be negative due to antiferroelectric ordering in the plane perpendicular to spontaneous polarization. Further deep study of electrocaloric, piezocaloric and barocaloric effects in these ferroelectric crystals are very important for ascertaining of possibility of their practical utilization.

Within the frames of modified pseudospin model of deformed Rochelle salt, the effect of transverse electric fields E_2 and E_3 on its thermodynamic characteristics is investigated. It is shown that the field E_2 constricts the temperature region of the ferroelectric phase, however the field E_3 widens it.

Key words: pseudospin model, cluster approximation, dielectric permittivity, piezoelectric coefficients, electric field effect, pressure effect, electrocaloric effect.